
Rachid Echahed and Detlef Plump (Eds.): Tenth International

Workshop on Graph Computation Models (GCM 2019)

EPTCS 309, 2019, pp. 87–104, doi:10.4204/EPTCS.309.5

c© Christian Sandmann & Annegret Habel

This work is licensed under the

Creative Commons Attribution License.

Rule-based Graph Repair∗

Christian Sandmann, Annegret Habel

Universität Oldenburg
{habel,sandmann}@informatik.uni-oldenburg.de

Model repair is an essential topic in model-driven engineering. Since models are suitably formalized

as graph-like structures, we consider the problem of rule-based graph repair: Given a rule set and

a graph constraint, try to construct a graph program based on the given set of rules, such that the

application to any graph yields a graph satisfying the graph constraint. We show the existence of

repair programs for specific constraints, and show the existence of rule-based repair programs for

specific constraints compatible with the rule set.

1 Introduction

In model-driven software engineering the primary artifacts are models, which have to be consistent w.r.t.

a set of constraints (see e.g. [5]). These constraints can be specified by the Object Constraint Language

(OCL) [13]. To increase the productivity of software development, it is necessary to automatically detect

and resolve inconsistencies arising during the development process, called model repair (see, e.g. [12,

10, 11]). Since models can be represented as graph-like structures [2] and a subset of OCL constraints

can be represented as graph conditions [16, 1], we investigate graph repair and rule-based graph repair.

Firstly, the problem of graph repair is considered: Given a graph constraint d, we derive repairing sets

from the constraint d and try to construct a graph program using this rule set, called repair program. The

repair program is constructed, such that the application to any graph yields a graph satisfying the graph

constraint. Secondly, we consider the problem of rule-based graph repair: Given a set of rules R and a

constraint d, try to construct a repair program P based on the rule set R, i.e., we allow to equip the rules

of R with the dangling-edges operator, context, application conditions [6], and interface [14].

Rule-based repair problem

rule-based

repairconstraint d

rule set R
R-based program P

∀G⇒P H.H |= d

If a graph G is generated by a grammar with rule set R, then, after the application of an R-based program,

the result can be generated by the grammar, too. This is interesting in contexts where the language is

defined by a grammar, like triple graph grammars [18].

As main results, we show that, (1) there are repair programs for all “proper” conditions, and (2) there are

rule-based repair programs for proper conditions provided that the given rule set is compatible with the

rule sets of the original program.

We illustrate our approach by a small railroad system.

∗This work is partly supported by the German Research Foundation (DFG), Grants HA 2936/4-2 and TA 2941/3-2 (Meta-

Modeling and Graph Grammars: Generating Development Environments for Modeling Languages).

http://dx.doi.org/10.4204/EPTCS.309.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

88 Rule-based Graph Repair

Example 1 (railroad system). The specification of a railroad system is given in terms of graphs, rules

(for moving the trains), and conditions. The basic items are waypoints, bi-directional tracks and trains.

The static part of the system is given by a directed rail net graph: tracks are modeled by undirected edges

(or a pair of directed edges, respectively) and trains are modeled by edges. Source and target nodes of a

train edge encode the train’s position on the track and the direction of its movement.

The dynamic part of the system is specified by graph transformation rules. The rules model the movement

and deletion of trains thereon. Application of the rule Move (Delete) means to find an occurrence of the

left-hand side in the rail net graph and to replace it with the right-hand side of the rule.

Delete = 〈
1 2

←֓
1 2

→֒
1 2

〉

Move = 〈
1 2 3

←֓
1 2 3

→֒
1 2 3

〉

In the following, we consider the constraint NoTwo below, meaning that there are no two trains occupying

the same piece of track.

NoTwo = ∄

One may look for repair programs for the constraint NoTwo based on the rule sets {Move}, {Delete},
and {Move,Delete} such that the application to any graph yields a graph satisfying the constraint

NoTwo.

The structure of the paper is as follows. In Section 2, we review the definitions of graphs, graph con-

ditions, and graph programs. In Section 3, we introduce repair programs and show that there are repair

programs for so-called proper conditions. In Section 4, we introduce rule-based programs, show that

there are rule-based programs for transformations, and rule-based repair programs for proper conditions

compatible with a rule set. In Section 5, we present some related concepts. In Section 6, we give a

conclusion and mention some further work.

2 Preliminaries

In the following, we recall the definitions of directed, labelled graphs, graph conditions, rules and trans-

formations [4], graph programs [7], and basic transformations [6].

A directed, labelled graph consists of a set of nodes and a set of edges where each edge is equipped with

a source and a target node and where each node and edge is equipped with a label.

Definition 1 (graphs & morphisms). A (directed, labelled) graph (over a label alphabet L) is a

system G = (VG,EG,sG, tG, lV,G, lE,G) where VG and EG are finite sets of nodes (or vertices) and edges,

sG, tG : EG → VG are total functions assigning source and target to each edge, and lV,G : VG → L ,

lE,G : EG→L are total labeling functions. If VG = /0, then G is the empty graph, denoted by /0. A graph

is unlabelled if the label alphabet is a singleton. Given graphs G and H , a (graph) morphism g : G→ H

consists of total functions gV : VG → VH and gE : EG → EH that preserve sources, targets, and labels,

Christian Sandmann & Annegret Habel 89

that is, gV ◦ sG = sH ◦gE, gV ◦ tG = tH ◦gE, lV,G = lV,H ◦gV, lE,G = lE,H ◦gE. The morphism g is injective

(surjective) if gV and gE are injective (surjective), and an isomorphism if it is injective and surjective. In

the latter case, G and H are isomorphic, which is denoted by G∼= H . An injective morphism g : G →֒ H

is an inclusion morphism if gV(v) = v and gE(e) = e for all v ∈VG and all e ∈ EG.

Convention. Drawing a graph, nodes are drawn as circles with their labels (if existent) inside, and edges

are drawn as arrows with their labels (if existent) placed next to them. Arbitrary graph morphisms are

drawn by usual arrows→, injective graph morphisms are distinguished by →֒.

Graph conditions are nested constructs, which can be represented as trees of morphisms equipped with

quantifiers and Boolean connectives. Graph conditions and first-order graph formulas are expressively

equivalent [6].

Definition 2 (graph conditions). A (graph) condition over a graph A is of the form (a) true or ∃(a,c)
where a : A →֒ C is a proper inclusion morphism1 and c is a condition over C. (b) For a condition c

over A, ¬c is a condition over A. (c) For conditions ci (i ∈ I for some finite index set I2) over A, ∧i∈Ici

is a condition over A. Conditions over the empty graph /0 are called constraints. In the context of rules,

conditions are called application conditions. Conditions built by (a) and (b) are called linear.

Any injective morphism p : A →֒ G satisfies true. An injective morphism p satisfies ∃(a,c) with

a : A →֒C if there exists an injective morphism q : C →֒ G such that q◦a = p and q satisfies c.

A

G

C,
a

p q
=

c

|=
)∃(

An injective morphism p satisfies ¬c if p does not satisfy c, and p satisfies ∧i∈Ici if p satisfies each ci

(i ∈ I). We write p |= c if p satisfies the condition c (over A). A condition c over A is satisfiable if there

is a morphism p : A →֒ G that satisfies c. A graph G satisfies a constraint c, G |= c, if the morphism

p : /0 →֒ G satisfies c. A constraint c is satisfiable if there is a graph G that satisfies c.

Two conditions c and c′ over A are equivalent, denoted by c ≡ c′, if for all graphs G and all injective

morphisms p : A →֒ G, p |= c iff p |= c′. A condition c implies a condition c′, denoted by c⇒ c′, if for

all graphs and all injective morphisms p : A →֒ G, p |= c implies p |= c′.

Notation. Graph conditions may be written in a more compact form: ∃a := ∃(a,true), false :=¬true
and ∀(a,c) := ∄(a,¬c), and ∄ := ¬∃ . The expressions ∨i∈Ici and c⇒ c′ are defined as usual. For an

inclusion morphism a : A →֒C in a condition, we just depict the codomain C, if the domain A can be

unambiguously inferred.

Example 2. The expression ¬∃(/0 →֒ •
1

, ¬∃(•
1
→֒ •

1
• ,true)∨¬∃(•

1
→֒ •

1
• ,true))

is a constraint according to Definition 2, written in compact form as ∀(•
1

, ∃(•
1
•)∧∃(•

1
•))

meaning that, for every node, there exists a real 3 outgoing and a real incoming edge.

1Without loss of generality, we may assume that for all inclusion morphisms a : A →֒ C in the condition, A is a proper

subgraph of C.
2In this paper, we consider graph conditions with finite index sets.
3An edge is said to be real, if it is not a loop.

90 Rule-based Graph Repair

Fact 1 (equivalences [14]). There are the following equivalences:

∃(x,true) ≡ ∃x ∀(x,true) ≡ true

∃(x,false) ≡ false ∀(x,false) ≡ ∄x

∀(x,∃(y,false)) ≡ ∀(x,false)≡ ∄x ∃(x,∀(y,false)) ≡ ∃(x,∄y)

To simplify our reasoning, the repair program operates on a subset of conditions in normal form, so-

called conditions with alternating quantifiers.

Definition 3 (alternating quantifiers, proper and basic conditions). A linear condition of the form

Q(a1,Q(a2,Q(a3, . . .))) with Q ∈ {∀,∃}, ∀ = ∃ , ∃ = ∀ ending with true or false is a condition with

alternating quantifiers (ANF). Such a condition in ANF is proper if it ends with a condition ∃(b,true)≡
∃b or it is a condition of the form ∃(a,∀(b,false))≡∃(a,∄b) or ∀(b,false)≡ ∄b. A proper condition

is basic if it is of the form ∃b or ∄b.

Q(a1,Q(a2,Q(a3, . . . ,true) Q(a1,Q(a2,Q(a3, . . . ,false)

+ ∀(b,false)≡ ∄b
+ ∃(a,∀(b,false)≡ ∃(a,∄b)

– ∄b
– ∃(a,∄b)

proper not proper

Example 3. The linear conditions ∀(•
1

, ∃(•
1
• ,true)) and ∀(•

1
, ∃(•

1
• ,false)) are

conditions with alternating quantifiers. ∀(•
1
,∃(•

1
• ,true)) and ∃(•

1
,∀(•

1
• ,∃(•

1
•
2

,true)))

are proper. Moreover, ∀(•
1
•
2
• ,false)≡ ∄(•

1
•
2
•) is proper. The linear condition ∀(•

1
,

∃(•
1
• ,∀(•

1
• • ,false)))≡ ∀(•

1
,∃(•

1
• ,∄(•

1
• •))) is non-proper.

By a normal form result for conditions [14], we obtain a normal form result for linear conditions saying

that every linear condition effectively can be transformed into an equivalent condition with alternating

quantifiers.

Fact 2 (normal form). For every linear condition, there exists an equivalent condition with alternating

quantifiers.

Proof. By a conjunctive normal form result in [14], every condition can be effectively transformed

equivalent condition in normal form. The application of the rule ∄(a,¬c) ≡ ∀(a,c) as long as possible

yields an equivalent condition with alternating quantifiers. ✷

By definition, proper conditions are satisfiable.

Fact 3 (proper conditions are satisfiable). Every proper condition is satisfiable.

Proof. By Definition 3, a proper condition is true, ends with a condition of the form ∃(x,true)≡ ∃x,

∀(x,true)≡ true, or is of the form ∄b or ∃(a,∄b) and b is not an isomorphism. Thus, it is satisfiable.✷

Fact 4 (non-proper satisfiable conditions). There are non-proper conditions that are satisfiable.

Proof. The non-proper condition ∀(•
1
•
2
,∃(•

1
•
2
,∀(•

1
•
2
,false))) can be transformed into

a proper one: ∀(•
1
•
2
,∃(•

1
•
2
,∄(•

1
•
2
))) ≡ ∀(•

1
•
2
,false) ≡ ∄ •

1
•
2

. By Fact 3, the

condition is satisfiable. ✷

Christian Sandmann & Annegret Habel 91

Plain rules are specified by a pair of injective graph morphisms. They may be equipped with context,

application conditions, and interfaces. For restricting the applicability of rules, the rules are equipped

with a left application condition. By extending the rules with a context, it is possible to require an

application condition over an extended left-hand side (see Example 12). By the interfaces, it becomes

possible to hand over information between the transformation steps.

Definition 4 (rules and transformations). A plain rule p = 〈L ←֓ K →֒ R〉 consists of two inclusion

morphisms K →֒ L and K →֒ R. The rule p equipped with context K →֒ K′ is the rule 〈L′ ←֓ K′ →֒ R′〉
where L′ and R′ are the pushout objects in the diagrams (1) and (2) below.

L K R

K′L′ R′

(1) (2)

A rule ρ = 〈x, p,ac,y〉 with interfaces X and Y consists of a plain rule p = 〈L ←֓ K →֒ R〉 with left

application condition ac and two injective morphisms x : X →֒ L, y : Y →֒ R, called the (left and right)

interface morphisms. If both interfaces are empty, i.e., the domains of the interface morphisms are empty,

we write ρ = 〈p,ac〉. If additionally ac = true, we write ρ = 〈p〉 or short p. A direct transformation

G⇒ρ ,g,h,i H or short G⇒ρ H from G to H applying ρ at g : X →֒ G consists of the following steps:

(1) Select a match g′ : L →֒ G such that g = g′ ◦ x and g′ |= ac.

(2) Apply the plain rule4 p at g′ (possibly) yielding a comatch h′ : R →֒ H .

(3) Unselect h : Y →֒ H , i.e., define h = h′ ◦ y.

X L K R Y

DG H

x l r y

l∗ r∗
g

g′ h′
h

i

tr

(1) (2)
= =

ac

Figure 1: A direct transformation

A triple 〈g,h, i〉 with partial5 morphism i = y−1 ◦ r ◦ l−1 ◦ x (called interface relation) is in the semantics

of ρ , denoted by JρK, if there is an injective morphism g′ : L →֒ G such that g = g′ ◦ x and g′ |= ac,

G⇒p,g′,h′ H , and h = h′ ◦ y. We write G⇒ρ ,g,h,i H or short G⇒ρ H . Given graphs G, H and a finite set

R of rules, G derives H by R if G∼= H or there is a sequence of direct transformations G = G0⇒ρ1,g1,h1

G1⇒ρ2,h1,h2
. . .⇒ρn,hn−1,hn

Gn = H with ρ1, . . . ,ρn ∈R. In this case, we write G⇒∗
R

H or just G⇒∗ H .

Notation. If both interfaces of ρ = 〈x, p,ac,y〉 are empty, we write ρ = 〈p,ac〉. If additionally ac= true,

we write ρ = 〈p〉 or short p. A plain rule p = 〈L ←֓ K →֒ R〉 sometimes is denoted by L⇒ R where

4The application of a plain rule is as in the double-pushout approach [4].
5A partial morphism i : X ⇀ Y is an injective morphism X ′ →֒Y such that X ′ ⊆ X .

92 Rule-based Graph Repair

indexes in L and R refer to the corresponding nodes. Moreover, Sel(x,ac) and Uns(x) denote the rules

〈x, id,ac〉 (selection of elements) and 〈id,y〉 (unselection of selected elements), respectively, where id

denotes the identical rule 〈L ←֓ L →֒ L〉. Additionally, Sel(x) abbreviates Sel(x,true).

Example 4. Consider the rule ρ = 〈x, p,y〉 with the plain rule p = 〈 •
1
←֓ •

1
→֒ •

1
•
2
〉, and the

interface morphisms x : •
1
→֒ •

1
, y : •

1
→֒ •

1
•
2

(see Figure 2).

•
1

•
3

•
1

•
3

•
1 •

2

•
3

•
1

•
2

•
1

•
1

•
1

•
1

interfaces

l r

(1) (2)g′ h′

x y

g
h

= =

Figure 2: A direct example transformation

Each injective morphism g : • →֒ • • fixes a node in the host graph. In general, the morphism g

restricts the allowed matches g′ from the left-hand-side into the host graph by g′ = g◦ x. The plain rule

is applied at g′ according the double-pushout approach yielding the comatch h′ : •
1
•
2
→֒ •

1

•
2
•
3

.

Defining h = h′ ◦ y, we fix the node 1 for the next rule application. It says that at this position (and no

other) the rule shall be applied.

With every transformation t : G⇒∗ H , a partial track morphism can be associated that “follows” the

items of G through the transformation: this morphism is undefined for all items in G that are removed

by t, and maps all other items to the corresponding items in H .

Definition 5 (track morphism [15]). The track morphism trG⇒H from G to H is the partial morphism

defined by trG⇒H(x) = r∗(l∗−1(x)) if x ∈ D and undefined otherwise, where the morphisms l∗ : D →֒ G

and r∗ : D →֒H are the induced morphisms of l : K →֒ L and r : K →֒R, respectively (see Figure 1). Given

a transformation G⇒∗ H , trG⇒∗H is defined by induction on the length of the transformation: trG⇒∗H =
iso for an isomorphism iso : G→ H and trG⇒∗H = trG′⇒H ◦ trG⇒∗G′ for G⇒+ H = G⇒∗ G′⇒ H .

Example 5. For the direct transformation t : G⇒ρ H in Example 4, the track morphism is trt : •
1
•
3
→֒

•
1

•
2
•
3

. For the direct inverse transformation t ′, trt ′ : •1
•
2
•
3

⇀ •
1
•
3

is partial.

Graph programs are made of sets of rules with interface, non-deterministic choice, sequential composi-

tion, as-long-as possible iteration, and the try-statement.

Definition 6 (graph programs). The set of (graph) programs with interface X , Prog(X), is defined

inductively: Consider

(1) Every rule ρ with interface X (and Y) is in Prog(X).
(2) If P,Q ∈ Prog(X), then {P,Q} is in Prog(X) (nondeterministic choice).

(3) If P ∈ Prog(X) and Q ∈ Prog(Y), then 〈P;Q〉 ∈ Prog(X) (sequential composition).

(4) If P ∈ Prog(X), then P ↓, and try P are in Prog(X) (iteration & try).

Christian Sandmann & Annegret Habel 93

The semantics of a program P with interface X , denoted by JPK, is a set of triples such that, for all

〈g,h, i〉 ∈ JPK, X = dom(g) = dom(i)6 and dom(h) = ran(i), and is defined as follows:

(1) JρK as in Definition 4

(2) J{P,Q}K = JPK∪ JQK
(3) J〈P;Q〉K = {〈g1,h2, i2◦i1〉 | 〈g1,h1, i1〉∈JPK,〈g2,h2, i2〉∈JQK and h1 = g2}
(4) JP ↓K = {〈g,h, id〉 ∈ P∗ | ∄h′.〈h,h′, id〉 ∈ JFix(P)K}

Jtry PK = {〈g,h, i〉 | 〈g,h, i〉 ∈ JPK}∪{〈g,g, id〉 | ∄h.〈g,h, i〉 ∈ JPK}

where P∗ =
⋃∞

j=0 P j with P0 = Skip, P j = 〈Fix(P);P j−1〉 for j > 0 and JFix(P)K = {〈g,h ◦ i, id〉 |
〈g,h, i〉 ∈ JPK}. Two programs P,P′ are equivalent, denoted P ≡ P′, if JPK = JP′K. A program P is

terminating if the relation→ is terminating.

The statement Skip is the identity element Sel(id,true) of sequential composition.

Example 6. Consider a slightly modified example as in Example 4. For restricting the applicability of

the plain rule AddEdge = 〈 •
1
←֓ •

1
→֒ •

1
•
2
〉 to a fixed node, the rule is equipped with a right

interface y1 : •
1
→֒ •

1
•
2

yielding the rule AddEdge1 = 〈AddEdge,y1〉 as well as with a left interface

x2 : •
1
→֒ •

1
yielding the rule AddEdge2 = 〈AddEdge,x2〉. By Definitions 4 and 6, h′1 ◦ y1 = h1 =

g2 = g′2 ◦ x2, i.e., the middle diagram commutes (see Figure 3).

•
1

•
2

•
1

•
1

•
1

•
1

•
1

•
2

=

•
1

•
2

•
1 •

2

•
3

•
1

•
3

•
1

•
1

=

•
1

h′1g′1

g′2 h′2

y1 x2

(1)

h1

(2) (3) (4)

Figure 3: A sequence of direct transformations

The construction Shift “shifts” existential conditions over morphisms into a disjunction of existential

application conditions.

Lemma 1 (Shift [6]). There is a construction Shift, such that the following holds. Let d be condition

over A and b : A →֒ R,n : R →֒ H . Then n◦b |= d ⇐⇒ n |= Shift(b,d).

Construction 1. For rules ρ with plain rule p = 〈L ←֓ K →֒ R〉, the construction is as follows.

A

C

R

R′

a a′(1)

b

b′

d

Shift(b,true) := true.

Shift(b,∃ (a,d)) :=
∨

(a′,b′)∈F ∃(a
′,Shift(b′,d)) where

F = {(a′,b′) | b′ ◦a = a′ ◦b, a′,b′ inj, (a′,b′) jointly surjective7}
Shift(b,¬d) := ¬Shift(b,d), Shift(b,∧i∈Idi) := ∧i∈IShift(b,di).

6For a partial morphism i, dom(i) and ran(i) denote the domain and codomain of i, respectively.
7A pair (a′,b′) is jointly surjective if for each x ∈ R′ there is a preimage y ∈ R with a′(y) = x or z ∈C with b′(z) = x.

94 Rule-based Graph Repair

Example 7 (Shift). The application of Shift to the injective morphism b : /0 →֒ •
1

and the condition

d = ∃(/0 →֒ •
2

) yields the condition Shift(b,d) = ∃(•
1
→֒ •

1
•
2

)∨∃(•
1
→֒ •

1= 2
). The

application of Shift to b and of the condition d′ = ∃(/0 →֒ •
2

,∄ •
2

) over b yields the condition

Shift(b,d′) = ∃(•
1
→֒ •

1
•
2

,∄ •
1

•
2

)∨∃(•
1
→֒ •

1= 2
,∄ •

1 = 2
).

3 Graph repair

In this section, we define repair programs and look for repair programs for graph conditions.

A repair program for a constraint is a program such that, for every application to a graph, the resulting

graph satisfies the constraint. More generally, a repair program for a condition over a graph A is a

program P with interface A such that for every triple 〈g,h, i〉 in the semantics of P, the composition of

the interface relation i and the comatch h satisfies the condition.

Definition 7 (repair programs). A program P is a repair program for a constraint d if, for all transfor-

mations G⇒P H , H |= d. An A-preserving program 8 P is a repair program for a condition d over A, if,

for all triples 〈g,h, i〉 ∈ JPK, h◦ i |= d.

A A

G H

i

P

g h

d

Example 8. For the condition c = ∃(•
1
→֒ •

1
), the • -preserving program Pc = try R is a

repair program for c, where R = 〈x, •
1
⇒ •

1
,∄ •

1
,y〉, with the interface morphisms x : •

1
→֒

•
1
,y : •

1
←֓ •

1
. For the constraint d = ∀(• ,∃ •), meaning that every node has a loop, the

program 〈Sel(/0 →֒ •
1
);Pc;Uns(•

1
←֓ /0)〉 ↓ is a repair program for d.

Remark. A program for a condition is destructive, if it deletes the input graph and creates a graph

satisfying the condition from the empty graph. In general, destructive programs are no repair programs

for d over A 6= /0, because it is not A-preserving.

The most significant point are the repair programs for the basic conditions ∃a and ∄a. Whenever we

have repairing sets, we obtain a repair program for proper conditions.

Definition 8 (repairing sets). Let a : A →֒C with A ⊂C. An A-set Ra is repairing for ∃a if try Ra is

a repair program for ∃a. An A-set Sa is repairing for ∄a if S ′
a↓ (see Definition 9) is a repair program

for ∄a.

Example 9. For the condition c from Example 8, the repairing set is R.

7For a rule p = 〈L ←֓ K →֒ R〉, p−1 = 〈R ←֓ K →֒ L〉 denotes the inverse rule. For L′ ⇒p R′ with intermediate graph K′,

〈L′ ←֓ K′ →֒ R′〉 is the derived rule.
8A program is A-preserving if the dependency relation i of the program is total. If, additionally, the codomain of i is A, the

program is a program with interfaces A or short A-program. For a rule set with interfaces A, we speak of A-set.

Christian Sandmann & Annegret Habel 95

Definition 9 (The dangling-edges operator). For node-deleting rules ρ , the dangling condition9 may be

not satisfied. In this case, we consider the program ρ ′ that fixes a match for the rule, deletes the dangling

edges, and afterwards applies the rule at the match. The program corresponds with the SPO-way of

rewriting [9]. The proceeding can be extended to sets of rules: For a rule set S , S ′ = {ρ ′ | ρ ∈S }.

In the following, we show that, for basic conditions ∃(A →֒C) and ∄(A →֒C) over A, there are repairing

A-sets Ra and Sa, respectively. The rules in Ra are increasing and of the form B⇒C where A⊆ B⊂C

and an application condition requiring that no larger subgraph B′ of C occurs and the shifted condition ∄a

is satisfied. By the application condition, each rule can only be applied iff the condition is not satisfied

and no other rule whose left-hand side includes B and is larger can be applied. The rules in Sa are

decreasing and of the form C⇒ B where A⊆ B⊂C such that, if the number of edges in C is larger than

the one in A, they delete one edge and no node, and delete a node, otherwise. By B ⊂C, both rule sets

do not contain identical rules. The rule set Ra can be used, e.g., for the repair program of the condition

∀(x,∃a), the rule set Sa for the condition ∃(x,∄a) (see Construction 3).

Lemma 2 (basic repair). For basic conditions over A, there are repairing sets with interfaces A.

There are several repairing sets for a basic condition: We present two examples of repairing sets. The

first one is quite intuitive, but, in general does not lead to a terminating and maximally preserving repair

program. The second one is more complicated, but yields a terminating and maximally preserving repair

program.

Construction 2. For d = ∃a (∄a) with a : A →֒C, A⊂C, the sets Ra and Sa are constructed as follows.

(1) Ra = {〈idA,A⇒C,a〉} and Sa = {〈a,C⇒ A, idA〉}

(2) Ra = {〈b,B⇒C,ac∧ acB,a〉 | A →֒
b B⊂C} and Sa = {〈a,C⇒ B,b〉 | A →֒b B⊂C and (*)}

where ac = Shift(A →֒ B,∄a), acB =
∧

B′ ∄B′,
∧

B′ ranges over B′ with B⊂ B′ ⊆C, and

(*) if EC ⊃ EB then |VC|= |VB|, |EC|= |EB|+1 else |VC|= |VB|+1.

Proof. (1) Let 〈g,h, i〉 ∈ Jtry RaK. If g |= ∄a, then the rule 〈idA,A⇒ C,a〉 in Ra is applicable and

h◦ i |= ∃a. If g |= ∃a, then, by the semantics of try , g = h◦ i |= ∃a. Thus, try Ra is a repair program

for ∃a. Let 〈g,h, i〉 ∈ JS ′
a↓K. By the semantics of ↓, S ′

a is not applicable to the domain of h ◦ i, i.e.,

h◦ i |= ∄a. Thus, S ′
a↓ is a repair program for ∄a. For Construction (2), see the proof [8, Thm 1]. ✷

Example 10. 1. Consider the condition d = ∃a, with a : •
1
→֒ •

1
• . By Construction (1), the rule

ρ = 〈x, p,y〉 with the plain rule p = 〈 •
1
←֓ •

1
→֒ •

1
•
2
〉 and the interface morphisms x : •

1
→֒

•
1

, y : •
1
→֒ •

1
• constitutes the repairing set for ∃a. By Construction (2), we obtain a repairing

set Ra for ∃a.

Ra =

{

ρ1 = 〈x1,
•
1

⇒ •
1
• ,∄ •

1
• ,y1〉

ρ2 = 〈x2,
•
1
•
2
⇒ •

1
•
2
,∄ •

1
•
2
∧∄ •

1
• •

2
,y2〉

where the interface morphisms xi,yi can be unambiguously inferred. The first rule requires a node and

attaches a node and a real outgoing edge, provided that there do not exist two nodes. The second rule

9The dangling condition for a rule ρ = 〈L ←֓ K →֒ R〉 and an injective morphism g : L →֒G requires: “No edge in G−g(L)
is incident to a node in g(L−K)”.

96 Rule-based Graph Repair

requires two nodes and attaches a real outgoing edge provided there is no real outgoing edge from the

image of node 1 to the image of node 2, and no real outgoing edge at the image of node 1. The rule set

Ra can be used, e.g., for a repair program try Ra for the condition ∃a.

2. Consider the condition ∄b, with b : •
1
→֒ •

1
• . By Construction (1), the rule set {ρ} with

ρ = 〈x, •
1
• ⇒ •

1
,y〉 constitutes the repairing set for ∄b, with interfaces •

1
. By Construction (2),

the rule set Sb = 〈x, •
1
•
2
⇒ •

1
•
2
,y〉 constitutes the repairing set for ∄b, with interfaces •

1
.

The rule set Sb can be used, e.g., for a repair program S ′
b ↓ for the condition ∄(•

1
→֒ •

1
•) (see

Construction 3).

Fact 5 (compositions of repairing sets). If Ra,R
′
a are repairing sets for a basic condition d, then

Ra∪R ′a is a repairing set for d. If Ra,Rc are repairing sets for ∃a and ∃c, respectively, and a = c ◦b,

then Ra ∪Rca is a repairing set for ∃a, where Rca = {〈b, p,y〉 | 〈p,y〉 ∈ Rc}. If Sa,Sc are repairing

sets for ∄a and ∄c, respectively, and a = c ◦ b, then Sa ∪Sca is a repairing set for ∄a, where Sca =
{〈b, p,y〉 | 〈p,y〉 ∈Sc}.

Proof. Straightforward. ✷

For proper conditions, a repair program can be constructed.

Theorem 1 (repair). For proper conditions, repair programs can be constructed.

Construction 3. For proper conditions d over A, the A-program Pd is constructed inductively as follows.

(1) For d = true, Pd = Skip.

(2) For d = ∃a, Pd = try Ra.

(3) For d = ∄a, Pd = S ′
a↓.

(4) For d = ∃(a,c), Pd = P∃a;〈Sel(a);Pc;Uns(a)〉.

(5) For d = ∀(a,c), Pd = 〈Sel(a,¬c);Pc;Uns(a)〉↓

where a : A →֒ C with A ⊂ C, Ra and Sa are repairing A-sets, and Pc is a repair program for c with

interfaces C.

Example 11. 1. For the constraint d = ∃(•
1
,∄ •

1
•) meaning there exists a node without 2-cycle,

i.e., two real edges in opposite direction, Pd = 〈try Ra;〈Sel(a);S ′
b ↓;Uns(a)〉〉 where a : /0 →֒ •

1
,

b : •
1
→֒ •

1
• , and Sb is the repairing set from Example 10. The program checks whether there

exists a node, and if not, it creates one. It selects a node and, if there are two edges in opposite directions,

it deletes one. The check of existence is done one time, the deletion as long as possible.

2. For the constraint d = ∀(•
1
,∃ •

1
•), meaning that, for every node, there exists a real outgoing

edge, Pd = 〈Sel(a,¬c);Pc;Uns(a)〉 ↓, is a repair program for d, where a : /0 →֒ •
1

, Pc = try Ra is the

repair program for c = ∃(•
1
→֒ •

1
•), and Ra is the repairing set from Example 10. The repair

program selects a node without a real outgoing edge, e.g. the third node from left (see below), applies

the rule, and unselects the selected part. Afterwards all nodes possess a real outgoing edge.

◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦
Sel(a,¬c) Ra Uns(a)

Christian Sandmann & Annegret Habel 97

Proof (of Theorem 1). By induction on the structure of the condition. Let d be a proper condition

and Pd the program in Construction 3. (1) Let d = true. For all triples 〈g,h, i〉 ∈ JSkipK, h◦ i |= true,

i.e., Skip is a repair program for true. For (2) and (3) see Lemma 2.

(4) Let 〈g,h, i〉 ∈ JP∃a;〈Sel(a);Pc;Uns(a)〉K (see Figure 4, left). We show that h |= ∃(a,c), i.e., there is

some injective morphism q : C →֒H such that p= q◦a and q |= c. Let 〈g,h1, i1〉 ∈ JP∃aK with h1◦i1 |= ∃a,

〈h1,h2,a〉 ∈ JSel(a)K with h1 = h2 ◦ a, 〈h2,h3, i2〉 ∈ JPcK with h3 ◦ i2 |= c, 〈h3,h,a
−1〉 ∈ JUns(a)K with

h = h3 ◦a. Choose q = h3. Then h = h3 ◦a = q◦a and, since Pd is A-preserving, q = h3 = h3 ◦ i2 |= c,

i.e., h |= ∃(a,c). (For A-preserving programs, the interface relation i2 total. Without loss of generality, it

is an inclusion.)

(5) Let 〈g,h, i〉 ∈ J〈Sel(a,¬c);Pc;Uns(a)〉↓K. We show that h |= ∀(a,c) = ¬∃(a,¬c). (see Figure 4,

right.) By the semantics of ↓, the program 〈Sel(a,¬c);Pc;Uns(a)〉 is not applicable to the domain of h1.

Then there is an injective morphism h such that h = h1 ◦a and h |= ¬c, i.e., h |= ¬∃(a,¬c) = ∀(a,c). ✷

G

A A

H1

C C

H

A
i1 a i2

P∃a

g h1 h2 h3

a

h

Pc

= =

G

A C

H

C A
a i a

Pc

g h0 h1 h= =

Figure 4: Illustration of the proof

In the following, we look for properties of the constructed repair programs. Whenever a condition graph

requires the non-existence (existence) of a certain subgraph, there is no non-deleting (non-adding) repair

program that repairs all graphs. Therefore, we look for minimally deleting or maximally preserving

repair programs.

Definition 10 (maximally preserving repair). A repair program Pd for a proper condition d is maximally

preserving, if, for all transformations t : G⇒Pd,g,h H ,

pres(Pd, t)≥ size(G)−∆(g,d)

where, for a transformation t via Pd, pres(Pd , t) denotes the number of preserved items by t, i.e., the

items in the domain of the partial track morphisms of t, and ∆(g,d) denotes the maximum number of

necessary deletions. Given an injective morphism g : A →֒G and a proper condition d, ∆(g,d) is defined

inductively as follows: ∆(g,true) = 0, ∆(g,∃a) = 0,

(1) ∆(g,∄a) = ∑g′∈Ext(g)(1+dang(g′))

(2) ∆(g,∃ (a,c)) = maxg′∈Ext(g) ∆(g′,c)

(3) ∆(g,∀(a,c)) = ∑g′∈Ext(g)(∆(g
′,c))

where Ext(g) = {g′ : C→G | g′ ◦a = g}, and dang(g′) denotes the maximum number of dangling edges

at g′, i.e. dang(g′) = 0 if there is some edge in g′(C−A) and maxv∈(C−A) inc(v), otherwise, where, for a

node v, inc(v) denotes the number of edges incident to v.

Remark. Given a morphism g : A →֒ G and a proper condition d, we determine the maximal number of

necessary deletions ∆(g,d). This is zero if the condition is true or of the form ∃a. For a condition of the

9For a set S, |S| denotes the number of elements.

98 Rule-based Graph Repair

form ∄a, we consider all morphisms g′ ∈ Ext(g), and sum up the number of deletions. For a condition

of the form ∃(a,c), we consider all morphisms g′ ∈ Ext(g) and build the maximum of all ∆(g′,c). For a

condition of the form ∀(a,c), we consider all morphisms g′ ∈ Ext(g) and sum up the number of necessary

deletions for the condition c at that position, i.e. ∆(g′,c).

Fact 6. Repair program based on (1), in general, are neither terminating nor maximally preserving.

Proof. For the condition ∀(•
1
,∃ •

1
•), 〈 •

1
⇒ •

1
• 〉 ↓ is a repair program based on (1) not

creating cycles. The same holds for 〈 •
1
⇒ •

1
• ,∄ •

1
• 〉 ↓. Both programs are not terminating.

A rule C⇒ A deletes [C−A] items, although only one item has to be deleted, i.e., in general it is not

maximally preserving. ✷

Lemma 3 (program properties). The repair program based on Construction 2(2) is terminating and

maximally preserving.

Proof. The termination of the repair program based on (2) is shown in [8]. The maximal preservation

of the repair program Pd based on (2) is shown by induction of the length of transformations: We show

that, for all transformations t : G⇒Pd ,g,h H ,

pres(Pd, t)≥ size(G)−∆(g,d).

Let d be a proper condition, Pd the repair program for d, and t : G⇒Pd,g,h H a transformation.

(1) For d = true, Pd = Skip, and pres(Skip, t) = size(G).

(2) For d = ∃a, Pd = try Ra, and pres(try Ra, t) = size(G).

(3) For d = ∄a. Pd = S ′
a↓. (a) If g |= d, then pres(S ′

a↓, t) = size(G). (b) If g 6|= d, then the trans-

formation G⇒+
S ′

a↓,g,h
H is of the form G⇒S ′

a,g,g1
G1 ⇒S ′

a↓,g1,h H where t1 denotes the trans-

formation starting with G1. Then, for all g′ ∈ Ext(g), (*) size(G1) = size(G)− ∆(g′,d) with

∆(g′,d) = 1+dang(g′). By definition of ∆, (**) ∆(g,d) = ∆(g′,d)+∆(g1,d).

pres(Pd, t) ≥ pres(Pd, t1)
≥ size(G1)−∆(g1,d) (induction hypothesis)

= size(G)−∆(g,d) ((*), (**))

(4) For d = ∃(a,c), Pd = P∃a;〈Sel(a);Pc;Uns(a)〉. (a) If g |= d, then Pres(Pd,G) = size(G). (b) If

g 6|= d, then G⇒Pd ,g.h H is of the form G⇒P∃a,g,g
′ G1⇒P′c,g

′,h H . Then size(G1) ≥ size(G) and,

for all g′ ∈ Ext(g), (**) ∆(g,d) = ∆(g′,c).

pres(Pd , t) = pres(P′c, t1)
≥ size(G1)−∆(g′,c) (induction hypothesis)

= size(G)−∆(g,d) ((*), (**))

(5) For d = ∀(a,c), Pd = 〈Sel(a,¬c);Pc;Uns(a)〉↓. (a) If g |= d, then Pres(Pd ,G) = size(G). (b) If

g 6|= d, then G⇒Pd ,g,h H is of the form G⇒P′c,g,g1
G1 ⇒Pd ,g1,h H where P′c denotes the program

without iteration. If c is of the form ∃(a′,c′), then, size(G1)≥ size(G) and, for every g′ ∈ Ext(g),
∆(g′,c) = 0. If c is of the form ∄a′, then, for every g′ ∈ Ext(g), size(G1) = size(G)−∆(g′,c) as

in Case (3). Thus, (*) size(G1)≥ size(G)−∆(g′,c). By definition of ∆, (**) ∆(g,d) = ∆(g1,d)+
∆(g′,c).

Christian Sandmann & Annegret Habel 99

pres(Pd, t) ≥ pres(Pd, t1)
≥ size(G1)−∆(g1,d) (induction hypothesis)

≥ size(G)−∆(g,d) ((*), (**))

This completes the inductive proof. ✷

4 Rule-based repair

A rule-based program is a program based on a set of rules equipped with the dangling-edges operator,

context, application condition, and interface.

Definition 11 (rule-based programs). Given a set of rules R, a program is R-based, if all rules in

the program are rules in R equipped with dangling-edges operator, context, application condition, and

interface. Additionally, the empty program Skip is R-based.

Example 12. The rule Build= 〈 1 2 ←֓ 1 2 →֒ 1 2 〉 equipped with the context

1 2 →֒
1 2

and the application condition ∄
1 2

∧∃
1 2

yields to the {Build}-

based program try Build2 with Build2 = 〈
1 2

←֓
1 2

→֒
1 2

,∄
1 2

∧

∃
1 2

〉.

The construction of an R-based repair program for a proper condition d is based on the following idea

(see Figure 5).

(1) Take a repair program for the condition d (Theorem 1).

(2) Try to refine the rules of the repairing sets by equivalent transformations via R.

(3) Transform the transformations into equivalent R-based programs (Theorem 2).

(4) Replace each repairing set in Pd by the equivalent R-based program (Theorem 3).

In the following, we introduce the main notion of compatibility, saying that, for all rules of the repairing

sets of the repair program for d, there are equivalent transformations via the rule set.

Definition 12 (equivalence). Two transformations t, t ′ from G to H are equivalent, denoted t ≡ t ′, if for

each extension form G∗ to H∗ there is an extension of t ′ from G∗ to H∗, and vice versa.

Definition 13 (compatibility). Let d be a proper condition. A set of rules R is d-compatible (w.r.t. a

repair program Pd) if, for all rules in the repairing sets of Pd, there are equivalent transformations via R.

In particular, if R = {ρ}, we also say that ρ is d-compatible.

Example 13. Let NoTwo = ∄(/0 →֒). Then {Delete} is a repairing set for NoTwo, and there is

a transformation ⇒
Delete2

via the Delete-based program Delete2 : 〈
1 2

⇒ 1 2 ,∃ 〉↓.

The rule set {Move} is a repairing set for ∄(/0 →֒). By Fact 5, the rule set {Move,Delete} is

a repairing set for NoTwo.

100 Rule-based Graph Repair

∃(a1 : A →֒ B, ∀(a2 : B →֒C, ∃(a3 : C →֒ D)))d =

Ra1
;try Sel(a1);〈Sel(a2,¬a3); Ra3;try Uns(a2)〉 ↓;Pd =

∀ρi ∈Ra1

ρi ≡ t1

∀ρi ∈Ra3

ρi ≡ t3

P(a1) P(a3)

(3) (3)

(2) (2)

(1) (1)

(4) (4)

Figure 5: Construction of an R-based repair program

Example 14 (no {Move,Delete}-based repair). Consider the constraint Station = ∃
0 1

(there

exists a train station). Whenever the start graph has no station, then no station can be created by a

{Move,Delete}-based program. The reason is that the labels of the constraint do not occur in the right-

hand sides of the rules.

In the case of R is d-compatible w.r.t. Pd, for all rules in the repair program, there are transformations

via R. These transformations via R can be transformed into R-based programs.

Theorem 2 (from transformations to rule-based programs). For every transformation t : G⇒∗
R

H ,

there is a R-based program P(t) such that t ≡ P(t).

Construction 4. Let t : G⇒∗
R

H be a transformation. For direct transformations t : G⇒ρ ,g,h H via a rule

ρ = 〈x, p,ac,y〉 with interfaces X and Y , let P(t) := 〈Sel(g′ ◦ x,ac′);ρ ′;Uns(h′ ◦ y)〉 be the rule with left

interface g′ ◦ x, ρ = G⇒ H be the rule ρ equipped with context, ac′ = Shift(g′,ac) the left application

condition for ρ , and h′ ◦ y the right interface. For transformations t : G = G0 ⇒
n+1
R

Gn+1 = H , with

t1 : G0⇒
n
R

Gn, and t2 : Gn⇒ρ Gn+1, P(t) := 〈P(t1);P(t2)〉.

Proof. Let t : G⇒∗
R

H be a transformation. By construction, P(t) is R-based. We show that there

is a transformation G⇒P(t) H . For one-step transformations, by construction, t ≡ P(t). For n+ 1-step

transformations, by induction hypothesis, t1 ≡ P(t1) and t2 ≡ P(t2). Then P(t) := 〈P(t1);P(t2)〉 is a

program with t ≡ P(t). ✷

Theorem 3 (rule-based repair). For every proper condition d, every repair program Pd for d, and every

rule set R d-compatible w.r.t. Pd, there is an R-based repair program for d.

Construction 5. Let P′d = Pd[repl] where repl is constructed as follows: By assumption, for the rules

in the repairing A-set, there are equivalent transformations via R. For these transformations, there are

equivalent R-based programs with interfaces (Theorem 2). The mapping repl replaces the repairing

A-sets by equivalent R-based programs with interfaces A.

Proof. By assumption, for all rules in the repairing A-sets of Pd, there are equivalent transformations

via R. By Theorem 2, the transformations can be transformed into equivalent R-based repair programs.

Christian Sandmann & Annegret Habel 101

This yields a mapping repl which replaces the repairing A-sets by equivalent R-based programs with

interfaces A. By the Leibniz’s replacement principle, the repair programs Pd and Pd[repl] are equivalent.

Thus, Pd[repl] is an R-based repair program for d. ✷

To get maximally preserving rule-based repair programs, we have to assume, that our input rule set is

maximally preserving, as well. If a rule set is maximally preserving, then the number of deleted items is

minimal. For non-deleting rule sets, the number of deleted elements is 0, and the graph can be preserved.

If a rule set is deleting, we delete edges instead of nodes, whenever possible, since it is more costly to

delete nodes than edges.

Fact 7 (program properties). Rule-based repair programs based on Construction 2(1), in general, are

neither terminating nor maximally preserving. Rule-based repair programs based on Construction 2(2)

are terminating and maximally preserving.

Proof. The statements follow immediately form the corresponding statements in Fact 3. ✷

5 Related concepts

In this section, we present some related concepts on rule-based graph repair. For the related problem of

model repair, there is a wide variety of different approaches. For a more sophisticated survey on different

model repair techniques, and a feature-based classification of these approaches, see Macedo et al. [10].

Rule-based repair. The notion rule-based repair is used in different meanings. In most cases [11, 8], a

rule set is derived from a set of constraints and a repair algorithm/program is constructed from the rule

set. In this paper, a rule set and a condition are given as input and a repair program is constructed from

the rule set.

In Nassar et al. 2017 [11], a rule-based approach to support the modeler in automatically trimming and

completing EMF models is presented. For that, repair rules are automatically generated from multiplicity

constraints imposed by a given meta-model. The rule schemes are carefully designed to consider the

EMF model constraints defined in [2].

In Habel and Sandmann 2018 [8], given a proper condition, we derive a rule set from the condition d

and construct a repair program using this rule set. The repair program is required to repair all graphs.

In this paper, we use programs with interface [14] with selection and unselection of parts, instead of

markings as in [8]. For simple cases and illustration purposes, marking may be an alternative. For

conditions with large nesting depth, the morphism-based concept is more convenient, the marking of

elements requires an additional marking for each nesting depth.

In Schneider et al. 2019 [17], a logic-based incremental approach to graph repair is presented, gen-

erating a sound and complete (upon termination) overview of least changing repairs. The graph repair

algorithm takes a graph and a first-order (FO) graph constraint as inputs and returns a set of graph repairs.

Given a condition and a graph, they compute a set of symbolic models, which cover the semantics of a

graph condition.

All approaches are proven to be correct, i.e. the repair (programs) yield to a graph satisfying the con-

dition. In Schneider et al. [17] the delta-based repair algorithm takes the graph update history explicitly

into account, i.e. the approach is dynamic. In contrast, our approach is static, i.e., we first construct

a (R-based) repair program, then apply this program to an arbitrary graph. In Schneider et al. [17],

102 Rule-based Graph Repair

Schneider et al. [17] Nassar et al. [11] Habel et al. [8] this work

input FO condition EMF model FO condition FO condition

& graph & rule set

output repair algorithm repair rules repair program repair program

& valid model

correctness + + + +

dynamic + - - -

termination - (+) + (+)

Table 1: Overview of selected repair approaches

the program does not terminate, if the repair updates trigger each other ad infinitum. If we choose the

repairing set accordingly, we get a terminating repair program.

In Taentzer et al. 2017 [19], a designer can specify a set of so-called change-preserving rules, and a set

of edit rules. Each edit rule, which yields an inconsistency, is then repaired by a set of repair rules. The

construction of the repair rules is based on the complement construction. It is shown, that a consistent

graph is obtained by the repair program, provided that each repair step is sequentially independent from

each following edit step, and each edit step can be repaired. The repaired models are not necessarily as

close as possible to the original model.

In Cheng et al. 2018 [3], a rule-based approach for graph repair is presented. Given a set of rules, and

a graph, they use this set of rules, to handle different kinds of conditions, i.e., incompleteness, conflicts

and redundancies. The rules are based on seven different operations not defined in the framework of the

DPO-approach. They look for the “best” repair based on the “graph edit distance”.

6 Conclusion

The repair programs are formed from rules derived from the given proper condition. They were con-

structed to be maximally preserving, i.e. to preserve nodes as much as possible. Additionally, we have

considered rule-based repair where the repair programs are constructed from a given set of small rules and

a given condition. Based on the repair program for proper conditions, we have constructed a rule-based

repair program for proper conditions provided that the given rule set is compatible with the repairing sets

of the original program.

Summarizing, we have constructed

(1) repair programs for proper conditions (Theorem 1),

(2) rule-based programs from transformations (Theorem 2),

(3) rule-based repair programs for proper conditions provided that the given rule set is compatible

with the repairing sets of the original program (Theorem 3).

Further topics are rule-based repair programs for all satisfiable conditions, for typed attributed graphs

and EMF-models, i.e., typed, attributed graphs satisfying some constraints, and an implementation. The

aim is to represent the structure of a meta model as graph-like structure, and OCL constraints as nested

graph conditions, and then use the (R-based) graph repair for (R-based) model repair.

Christian Sandmann & Annegret Habel 103

Acknowledgements. We are grateful to Marius Hubatschek, Jens Kosiol, Nebras Nassar, and the anony-

mous reviewers for their helpful comments to this paper.

References

[1] Gábor Bergmann (2014): Translating OCL to Graph Patterns. In: Model-Driven Engineering Languages

and Systems (MODELS 2014), LNCS, pp. 670–686, doi:10.1007/978-3-319-11653-2 41.

[2] Enrico Biermann, Claudia Ermel & Gabriele Taentzer (2012): Formal foundation of consistent EMF model

transformations by algebraic graph transformation. Software and System Modeling 11(2), pp. 227–250,

doi:10.1007/s10270-011-0199-7.

[3] Yurong Cheng, Lei Chen, Ye Yuan & Guoren Wang (2018): Rule-Based Graph Repairing: Semantic and

Efficient Repairing Methods. In: 34th IEEE International Conference on Data Engineering, ICDE 2018,, pp.

773–784, doi:10.1109/ICDE.2018.00075.

[4] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Algebraic Graph

Transformation. EATCS Monographs of Theoretical Computer Science, Springer.

[5] Hartmut Ehrig, Claudia Ermel, Ulrike Golas & Frank Hermann (2015): Graph and Model Transforma-

tion - General Framework and Applications. Monographs in Theoretical Computer Science, Springer,

doi:10.1007/978-3-662-47980-3.

[6] Annegret Habel & Karl-Heinz Pennemann (2009): Correctness of High-Level Transformation Sys-

tems Relative to Nested Conditions. Mathematical Structures in Computer Science 19, pp. 245–296,

doi:10.1017/S0960129500001353.

[7] Annegret Habel & Detlef Plump (2001): Computational Completeness of Programming Languages Based on

Graph Transformation. In: Foundations of Software Science and Computation Structures (FOSSACS 2001),

Lecture Notes in Computer Science 2030, pp. 230–245, doi:10.1007/BFb0017401.

[8] Annegret Habel & Christian Sandmann (2018): Graph Repair by Graph Programs. In: Graph

Computation Models (GCM 2018), Lecture Notes in Computer Science 11176, pp. 431–446,

doi:10.1007/s10009-018-0496-3.

[9] Michael Löwe (1993): Algebraic Approach to Single-Pushout Graph Transformation. Theoretical Computer

Science 109, pp. 181–224, doi:10.1016/0304-3975(93)90068-5.

[10] Nuno Macedo, Jorge Tiago & Alcino Cunha (2017): A Feature-Based Classification of Model Repair Ap-

proaches. IEEE Trans. Software Eng. 43(7), pp. 615–640, doi:10.1109/TSE.2016.2620145.

[11] Nebras Nassar, Hendrik Radke & Thorsten Arendt (2017): Rule-Based Repair of EMF Models: An Auto-

mated Interactive Approach. In: Theory and Practice of Model Transformation (ICMT 2017), Lecture Notes

in Computer Science 10374, pp. 171–181, doi:10.1007/978-3-319-21145-9 10.

[12] Christian Nentwich, Wolfgang Emmerich & Anthony Finkelstein (2003): Consistency Manage-

ment with Repair Actions. In: Software Engineering, IEEE Computer Society, pp. 455–464,

doi:10.1109/ICSE.2003.1201223.

[13] OMG: Object Constraint Language. https://www.omg.org/spec/OCL/.

[14] Karl-Heinz Pennemann (2009): Development of Correct Graph Transformation Systems. Ph.D. thesis, Uni-

versität Oldenburg.

[15] Detlef Plump (2005): Confluence of Graph Transformation Revisited. In: Processes, Terms and Cycles: Steps

on the Road to Infinity, Lecture Notes in Computer Science 3838, pp. 280–308, doi:10.1007/BF00289616.

[16] Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Habel & Grabriele Taentzer (2018): Translat-

ing Essential OCL Invariants to Nested Graph Constraints for Generating nstances of Meta-models. Science

of Computer Programming 152, pp. 38–62, doi:10.1016/j.scico.2017.08.006.

http://dx.doi.org/10.1007/978-3-319-11653-2_41
http://dx.doi.org/10.1007/s10270-011-0199-7
http://dx.doi.org/10.1109/ICDE.2018.00075
http://dx.doi.org/10.1007/978-3-662-47980-3
http://dx.doi.org/10.1017/S0960129500001353
http://dx.doi.org/10.1007/BFb0017401
http://dx.doi.org/10.1007/s10009-018-0496-3
http://dx.doi.org/10.1016/0304-3975(93)90068-5
http://dx.doi.org/10.1109/TSE.2016.2620145
http://dx.doi.org/10.1007/978-3-319-21145-9_10
http://dx.doi.org/10.1109/ICSE.2003.1201223
https://www.omg.org/spec/OCL/
http://dx.doi.org/10.1007/BF00289616
http://dx.doi.org/10.1016/j.scico.2017.08.006

104 Rule-based Graph Repair

[17] Sven Schneider, Leen Lambers & Fernando Orejas (2019): A Logic-Based Incremental Approach to Graph

Repair. In: Fundamental Approaches to Software Engineering - (FASE 2019), Lecture Notes in Computer

Science 11424, pp. 151–167, doi:10.1007/978-3-662-54494-5 16.

[18] Andy Schürr (1994): Specification of Graph Translators with Triple Graph Grammars. In: Graph-Theoretic

Concepts in Computer Science, 20th International Workshop, WG ’94, Herrsching, Germany, June 16-18,

1994, Proceedings, pp. 151–163. Available at https://doi.org/10.1007/3-540-59071-4_45.

[19] Gabriele Taentzer, Manuel Ohrndorf, Yngve Lamo & Adrian Rutle (2017): Change-Preserving Model Re-

pair. In: Fundamental Approaches to Software Engineering (ETAPS 2017), Lecture Notes in Computer

Science 10202, pp. 283–299, doi:10.1007/11880240 15.

http://dx.doi.org/10.1007/978-3-662-54494-5_16
https://doi.org/10.1007/3-540-59071-4_45
http://dx.doi.org/10.1007/11880240_15

	1 Introduction
	2 Preliminaries
	3 Graph repair
	4 Rule-based repair
	5 Related concepts
	6 Conclusion

