
B. Hoffmann and M. Minas (Eds.): Eleventh International
Workshop on Graph Computation Models (GCM 2020)
EPTCS 330, 2020, pp. 108–125, doi:10.4204/EPTCS.330.7

© T. Pshenitsyn
This work is licensed under the
Creative Commons Attribution License.

Weak Greibach Normal Form for Hyperedge Replacement
Grammars

Tikhon Pshenitsyn
Department of Mathematical Logic and Theory of Algorithms

Faculty of Mathematics and Mechanics
Lomonosov Moscow State University

GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation

*

tpshenitsyn@lpcs.math.msu.su

It is known that hyperedge replacement grammars are similar to string context-free grammars in the
sense of definitions and properties. Therefore, we expect that there is a generalization of the well-
known Greibach normal form from string grammars to hypergraph grammars. Such generalized
normal forms are presented in several papers; however, they do not cover a large class of hypergraph
languages (e.g. languages consisting of star graphs). In this paper, we introduce a weak Greibach
normal form, whose definition corresponds to the lexicalized normal form for string grammars, and
prove that every context-free hypergraph language (with nonsubstantial exceptions) can be generated
by a grammar in this normal form. The proof presented in this paper generalizes a corresponding one
for string grammars with a few more technicalities.

1 Introduction

Extensions of formal grammars and languages from strings to graphs are considered in a wide variety
of works. The resulting formalisms called graph grammars generate graph languages by means of pro-
ductions: each production is of the form A→ G; it allows one to replace a part of a graph labeled by
A with the graph G if certain conditions are satisfied. An overview on graph grammars can be found in
“Handbook on Graph Grammars and Computing by Graph Transformation” [11].

In this paper, we focus on a particular approach called hyperedge replacement grammar (HRG). An
overview on HRG can be found in the book [7] or in a chapter of the handbook mentioned above [3].
In brief, a hyperedge replacement grammar contains productions that allow one to replace an edge with
a certain label by a hypergraph; the rest is similar to string context-free grammar definitions. HRGs
appeared in the seventies, and they became popular from theoretical and practical points of view; partic-
ularly, they can be used in machine translation or programming (see, for instance, [9]). Many structural
properties of HRGs have been studied. Nicely, many theorems regarding context-free string grammars
(CFGs) can be extended to HRGs in a natural way; besides, it is often the case that proofs for CFGs can
be generalized to HRGs so there is no need to invent anything new.

For context-free grammars, there is a so-called Greibach normal form, which is helpful in a number of
investigations, e.g. to connect CFGs with categorial grammars (see [2]). Each production in a grammar in
the Greibach normal form has to begin with a terminal symbol and proceed with at most two nonterminal
ones. This definition can be weakened: one says that a grammar is in the weak Greibach normal form
(it is often called lexicalized) if there is exactly one terminal symbol in the right-hand side of each
production. Obviously, the same definition can be introduced for graphs. Namely, an HRG is said to be

*The study was funded by RFBR, project number 20-01-00670.

http://dx.doi.org/10.4204/EPTCS.330.7
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

T. Pshenitsyn 109

in the weak Greibach normal form if for each production A→ H the hypergraph H has exactly one edge
labeled by a terminal symbol.

The main objective of this paper is to present a precise class of graph languages that can be generated
by HRGs in the weak Greibach normal form. In order to do this we generalize the proof of existence of
the Greibach normal form for context-free grammars taken from [1] in a straightforward way. However,
several differences exist. Firstly, there is a nonsubstantial class of hypergraph context-free languages
that cannot be generated by grammars in the weak Greibach normal form (a problem arises because
of isolated nodes). Secondly, there is a trick in the proof for CFGs that exploits the string nature of
grammars, so it is hard to generalize it to hypergraphs. This led us to a large and technically heavy proof.
Finally, there are bad news regarding algorithmical complexity: conversion of an HRG into an equivalent
one in the weak Greibach normal form cannot be done even in exponential time.

In Sect. 2 we compare our contribution with other studies related to the Greibach normal form for
graph grammars. In Sect. 3 formal definitions related to hypergraphs and HRGs are presented. In Sect.
4 the weak Greibach normal form is introduced, related issues are discussed. Sect. 5 is devoted to the
main theorem. In Sect. 6 we discuss algorithmic complexity of the normalization procedure. In Sect. 7
we conclude.

2 Related Work

There are several works devoted to the Greibach normal form for graph grammars. The paper of Joost
Engelfriet [4] establishes that HRGs that produce languages of bounded degree are equivalent to apex
HRGs; this result generalizes the double Greibach normal form for CFGs. To recall, a language L
is of bounded degree if for some M all nodes of all hypergraphs in L have degree not exceeding M.
Obviously, there are substantive examples of languages of unbounded degree: for instance, the language
of star graphs, which have one node and arbitrarily many edges outgoing from it. Besides, the property
of being apex is stronger than the weak Greibach normal form we are interested in.

In the paper of Christina Jansen et al. [8] the local Greibach normal form is presented. The authors
prove that data structure grammars (it is a specific kind of grammars that generate so-called heap con-
figurations) can be transformed into grammars in the local Greibach normal form; after the proof the
authors point out that the normalization can be generalized to HRGs of bounded degree. However, the
authors also note that their procedure being algorithmically efficient cannot be generalized to all HRGs.

The weak Greibach normal form in the sense we are interested in is introduced for another type
of graph grammars. Namely, in [5] it is proved that each B-eNCE grammar (here we do not consider
definitions regarding this formalism) is equivalent to a B-eNCE grammar in the weak Greibach normal
form. In [6] it is shown that B-edNCE grammars and HRGs have the same recognizing power in some
sense (namely, since B-edNCE grammars produce usual graphs with labeled nodes and edges while
HRGs produce hypergraphs with labeled edges, the result is established w.r.t. two translations, from
graphs to hypergraphs and vice versa). However, it seems to be impossible that these two results can be
combined in order to obtain the normal form for HRGs.

Therefore, to our best knowledge, the question of whether each HRG is equivalent to an HRG in the
weak Greibach normal form has hitherto remained open. We answer it in this paper.

110 Weak Greibach Normal Form for HRGs

3 Preliminaries

This section is concerned with definitions related to hypergraphs. All of them are taken from [3]. Note
that we use a slightly different notation from that in the handbook mentioned above.

3.1 Hypergraphs, Sub-hypergraphs

N includes 0. The set of integers from 1 to n is denoted by [1,n].
It is convenient for us to use the following notation: if {i1, . . . , ik} is an indexed set of integers such

that for m < n im < in holds, then it is called index-ordered and the set is denoted as {i1, . . . , ik}IO.
The set Σ∗ is the set of all strings over the alphabet Σ including the empty string ε . The length |w| of the
word w is the number of positions in w. The i-th symbol in w is denote by w(i) (1≤ i≤ |w|). Σ+ denotes
the set of all nonempty strings. The set Σ~ is the set of all strings consisting of distinct symbols. The
set of all symbols contained in the word w is denoted by [w]. If f : Σ→ ∆ is a function from one set to
another, then it is naturally extended as a function f : Σ∗→ ∆∗ (f (σ1 . . .σk) = f (σ1) . . . f (σk)).

Let C be some fixed set of labels, for which the function type : C→ N is considered.

Definition 1. A hypergraph over C is a tuple G = 〈V,E,att, lab,ext〉 where V is the set of nodes, E is the
set of hyperedges, att : E → V~ assigns an ordered set of attachment nodes to each edge, lab : E →C
labels each hyperedge by some element of C in such a way that type(lab(e)) = |att(e)| whenever e ∈ E,
and ext ∈V~ is an ordered set of external nodes.

Components of a hypergraph G are denoted by VG,EG,attG, labG,extG.

In the remainder of the paper, hypergraphs are simply called graphs, and hyperedges are simply
called edges. The set of all graphs with labels from C is denoted by H (C). In this work, figures
contain graph drawings and sketches. In drawings, nodes are depicted by black dots, edges are denotes
as labeled boxes, att is represented with numbered lines (called “tentacles”), external nodes are depicted
by numbers in brackets. If an edge has type 2, it is depicted by an arrow. If we are not interested in a
specific form of a graph but we want to have a closer look at some its part, we depict the whole graph as
an area but draw its part of interest in detail.
Example 1. This is a graph:

(1)
s

(3)

(2)

p

p
1

2 3

If G is a graph, and e ∈ EG is labeled by a, then G can be denoted by G(e : a).

Definition 2. The function type (or typeG to be exact) returns the number of nodes attached to some
edge in a graph G: typeG(e) := |attG(e)|. If G is a graph, then type(G) := |extG|.

Definition 3. A sub-hypergraph (or just subgraph) H of a hypergraph G is a hypergraph such that VH ⊆
VG, EH ⊆ EG, and for all e ∈ EH attH(e) = attG(e), labH(e) = labG(e).

Definition 4. If H = 〈{vi}n
i=1,{e0},att, lab,v1 . . .vn〉, att(e0) = v1 . . .vn and lab(e0) = a, then H is called

a handle. It is denoted by }(a).

Definition 5. An isomorphism between graphs G and H is a pair of bijective functions E : EG → EH ,
V : VG→ VH such that attH ◦E = V ◦ attG, labG = labH ◦E , V (extG) = extH . In this work, we do not
distinguish between isomorphic graphs.

T. Pshenitsyn 111

3.2 Replacement

This procedure is defined in [3]. In short, the replacement of an edge e0 in G with a graph H can be done
if type(e0) = type(H) as follows:

1. Remove e0;

2. Insert an isomorphic copy of H (namely, H and G have to consist of disjoint sets of nodes and
edges);

3. For each i, fuse the i-th external node of H with the i-th attachement node of e0.

To be more precise, the set of edges in the resulting graph is (EG \ {e0})∪EH , and the set of nodes is
VG∪ (VH \ extH). The result is denoted by G[H/e0].

3.3 Hyperedge Replacement Grammars

Definition 6. A hyperedge replacement grammar (HRG) is a tuple HGr = 〈N,Σ,P,S〉, where N is a
finite alphabet of nonterminal symbols, Σ is a finite alphabet of terminal symbols (N ∩Σ = /0), P is a set
of productions, and S ∈ N. Each production is of the form A→ H where A ∈ N, H ∈H (N ∪Σ) and
type(A) = type(H). For π = A→ H we denote lhs(π) = A,rhs(π) = H.

Edges labeled by terminal (nonterminal) symbols are called terminal edges (nonterminal edges
resp.). If a graph contains terminal edges only, it is called terminal.

If G is a graph, e0 ∈ EG, lab(e0) = A and π = A→H ∈ P, then G directly derives G[H/e0] (we write
G⇒ G[H/e0] or G⇒

π
G[H/e0]). The transitive reflexive closure of⇒ is denoted by ∗⇒. If G ∗⇒ H, then

G is said to derive H. The corresponding sequence of production applications is called a derivation.

Definition 7. The language generated by an HRG HGr = 〈N,Σ,P,S〉 is the set of graphs H ∈H (Σ)

such that }(S) ∗⇒ H. It is denoted by L(HGr).
A graph language L is said to be a hypergraph context-free language (HCFL) if it is generated by

some HRG.
Two grammars are said to be equivalent if they generate the same language.

Further we simply write A ∗⇒ G instead of }(A) ∗⇒ G.

4 Weak Greibach Normal Form

In this section we introduce the formal definition of the normal form we are interested in, and establish a
simple property of languages generated by grammars in this normal form.

Definition 8. An HRG HGr is in the weak Greibach normal form (WGNF) if there is exactly one terminal
edge in the right-hand side of each production. Formally, ∀(X→H)∈PHGr ∃!e0 ∈EH : labH(e0)∈ ΣHGr.

Example 2. The grammar HGr1 = 〈{S},{a},P1,S〉 is in the WGNF where P1 contains the following
rules (type(S) = type(a) = 1):

S→

(1)

S
1

a
1 S→

(1)

a
1

This grammar generates the language of star 1-edged a-labeled hypergraphs, which is unbounded.

112 Weak Greibach Normal Form for HRGs

Remark 1. If 〈N,Σ,P,S〉 is in the WGNF and X k⇒ G for some X ∈ N, then G has exactly k terminal
edges (each production adds exactly one terminal edge).

Note that not each hypergraph context-free language can be generated by some HRG in the WGNF.
This follows from
Example 3. Consider the HRG HGr2 = 〈{T},{b},P2,T 〉 where P2 contains the following rules
(type(T) = type(b) = 0):

T → T T → b

The first production just adds an isolated node; thus this grammar produces graphs that have exactly one
edge labeled by b and arbitrarily many isolated nodes. If there is an equivalent HGr′ = 〈N,{b},P′,S′〉 in
the WGNF, then each right-hand side of each production in P′ contains exactly one terminal edge. Note
that if S′ k⇒ G,G ∈H ({b}) for some k in HGr′, then G has k terminal edges (Remark 1); hence k has
to be equal to 1 and therefore S′→ G ∈ P′. However, there are infinitely many graphs in L(HGr) while
|P′|< ∞.

It is seen that the reason of this problem is in isolated nodes. In the string case if a language contains
the empty word, then it cannot be generated by a grammar in the WGNF due to obvious reasons: each
production adds at least one terminal symbol so it is impossible to produce the empty word. In the case of
graphs, we also have to prohibit somehow undesired languages with “too many” isolated nodes occuring
in graphs.

Below we describe the precise class of languages generated by grammars in the weak Greibach
normal form. We denote by esize(G) the number of edges in G, and by isize(G) the number of isolated
nodes in G.

Definition 9. An HCFL L is said to be isolated-node bounded (ibHCFL) if there is a constant M such that,
for each G ∈ L, isize(G) < M ∗ esize(G). An HRG HGr is called isolated-node bounded if it generates
an ibHCFL.

Theorem 1. Each HRG HGr = 〈N,Σ,P,S〉 in the WGNF generates an ibHCFL.

Proof. Let M = maxA→H∈P{isize(H)}+1. Define esizeT (G) as the number of terminal edges in G. We

prove by induction on k that for each graph G such that X k⇒G,X ∈N isize(G)< M∗esizeT (G). Remark
1 implies that esizeT (G) = k.

Basis. If k = 0, then G =}(X), and the statement is trivial (0 < M).

Step. Let X k−1⇒ H ⇒ G. By the induction hypothesis, isize(H) < M ∗ esizeT (H). The number of
isolated nodes appeared at the last step does not exceed M by the definition of M. Then isize(G) <
M ∗ esizeT (H)+M = M ∗ esizeT (G).

Note finally that esizeT (G)≤ esize(G).

The other direction of this statement is of central interest in this paper. The next section is devoted to
it.

5 Transformation of HRGs Generating IBHCFLs into HRGs in the Weak
Greibach Normal Form

The main theorem we are going to prove is the following:

T. Pshenitsyn 113

Theorem 2. Each ibHCFL L can be generated by an HRG in the WGNF.

In other words, this theorem states that each context-free hypergraph language satisfying the isolated-
node boundedness property can be generated by a grammar in the weak Greibach normal form.

Structurally, the proof of this theorem is based on the corresponding one for string context-free
grammars. Let us recall the mains steps of the latter in brief (see details in [1]).

The input of the algorithm is a context-free grammar CFG that does not generate the empty word
(this property is related to isolated-node boundedness). The desired output is an equivalent grammar in
the weak Greibach normal form (i.e. in which each production is of the form A→ aA1 . . .An where a is
terminal while A1, . . . ,An are nonterminal).

1. Useless rules and symbols, ε-rules (i.e. rules of the form A→ ε) and chain rules (i.e. rules of the
form A→ B for A,B being nonterminal) are eliminated.

2. It is shown how to eliminate recursive A-productions, i.e. productions of the form A→ Aα for
some fixed nonterminal symbol A. The trick is to move A from the left side of Aα to the right side.
It is done as follows: if A→ Aα1| . . . |Aαm|β1| . . . |βp are all the A-productions (here | means enu-
meration of productions), then they are replaced by the productions A→ β1A′| . . . |βpA′|β1| . . . |βp

and A′→ α1| . . . |αm|α1A′| . . . |αmA′.

3. Left recursion is completely eliminated: nonterminals are numbered as A1, . . . ,An and then a proce-
dure involving application of step 2 is done such that its result is a grammar where each production
is either of the form Ai→ A jα for i < j or of the form Ai→ bα for b being terminal.

4. By taking compositions of the above productions and adding new nonterminal symbols the gram-
mar is normalized. The resulting grammar includes rules of the form A→ bα (b is terminal, α is
a string of nonterminals) only.

Our goal is to recreate this proof for HRGs. Note that steps 2-4 of the above plan actively exploit
string nature of CFGs: transformations of productions are based on movements of symbols from the
leftmost position to the rightmost one. Graphs in general do not have leftmost positions unlike strings,
so we are going to distinguish arbitrary edges in graphs so they play the role of “the leftmost symbol”. It
is done by means of δ (see the proof below).

In the proof we use the following

Lemma 1. If π = A→ G(e0 : B) is a production of a grammar HGr = 〈N,Σ,P,S〉 for A,B being non-
terminal, and B→ H1, . . . ,B→ Hk are all the productions in HGr with B in the left-hand side, then
replacing π by productions A→ G[H1/e0], . . . ,A→ G[Hk/e0] does not change the language generated.

It directly follows from the well-known context-freeness lemma.

5.1 Eliminating Useless, Edgeless and Chain Productions

Our first objective is to eliminate useless productions, productions with no edges in the right-hand side
and productions with one nonterminal edge only in the right-hand side. It appears that only this step
requires isolated-node boundedness. In the below transformations we provide theoretical reasonings that
they can be done irregarding their algorithmic realization; however, the latter can be done similarly to
the string case (see [1]).

Definition 10. A nonterminal symbol A in a grammar HGr is useless if there is no derivation of the form
S ∗⇒ H(e : A) ∗⇒ G in this grammar where G is terminal.

114 Weak Greibach Normal Form for HRGs

Transformation 1 (eliminating useless symbols).
Input: an HRG HGr.
Output: an equivalent HRG HGr′ without useless nonterminal symbols.

It suffices to remove all the useless symbols and all the productions containing them. This does not affect
the language generated.

Definition 11. A graph is called edgeless if it does not contain edges. A production A→ G is called
edgeless if G is edgeless.

Transformation 2 (eliminating edgeless productions).
Input: an HRG HGr that generates an ibHCFL without useless symbols.
Output: an HRG HGr′ without edgeless productions such that L(HGr′) = L(HGr).

Method.
Let HGr = 〈N,Σ,P,S〉. Let Null = {(A;H) |EH = /0, A∈N, A ∗⇒H}. This set is finite, because otherwise
there is a symbol A0 for which arbitrarily large edgeless graphs H exist such that (A0;H) ∈ Null; this
contradicts the fact that L(HGr) ∈ ibHCFL (it is important that A0 is not useless).

Let B→ G ∈ P and EG = {e1, . . . ,en}. Let P1 contain the rules of the form B→ G[H1/e1] . . . [Hn/en]
where Hi =}(lab(ei)) for at least one i (then replacement of ei by Hi changes nothing) and (lab(ei);Hi)
belongs to Null otherwise. It is argued that HGr′ = 〈N,Σ,P1,S〉 does not have productions with edgeless
right-hand sides (this follows from the construction) and that L(HGr′) = L(HGr).

Definition 12. A production A→G is called a chain production if EG = {e} and labG(e) is nonterminal.

Example 4. The first production in the grammar HGr2 is chain.

Transformation 3 (eliminating chain productions).
Input: an HRG HGr that generates an ibHCFL without useless symbols.
Output: an HRG HGr′ without chain productions such that L(HGr′) = L(HGr).

Method.
Let HGr = 〈N,Σ,P,S〉. Consider the set Chain = {(A;H) | EH = {e0}, labH(e0) = B, A,B ∈ N, A ∗⇒H}.
Note that Chain is finite (again, otherwise one can derive a graph with arbitrarily many isolated nodes
having a fixed number of edges). Let HGr′ = 〈N,Σ,P′′,S〉 where P′ = P\{A→H | (A;H) ∈Chain} and
P′′ = P′∪{A→ G | ∃H : (A;H) ∈Chain,H → G ∈ P′}. Thus we removed all the productions having a
graph with one edge in the right-hand side. It can be easily shown that L(HGr′) = L(HGr).
Remark 2. If HGr in Transformation 3 does not have edgeless productions, then HGr′ does not have
them either. Transformations 2 and 3 applied to a grammar without useless symbols transform them into
a grammar without useless symbols too.
Example 5. The grammar HGr2 from Example 3 cannot be turned into an equivalent one without edge-
less and chain productions.

The above procedures complete the first step of normalization.

5.2 Defining and Eliminating Recursive Productions

Now we start proving Theorem 2. Let HGr = 〈N,Σ,P,S〉 be a grammar that generates L. Applying
Transformations 1, 2, 3, we can assume that HGr does not have useless symbols, edgeless productions
and chain productions. Thus, the right-hand side of each production has at least two edges or one terminal
edge.

Let us carefully examine what happens in the string case at Step 2. Consider the following

T. Pshenitsyn 115

Example 6. Let A→ Ac|Ad|Be be all the A-productions in a string context-free grammar. After Step 2
there are the following ones: A→ BeA′|Be, A′→ c|d|cA′|dA′. Below we show how a derivation in the
old grammar is remodeled in the new one:

Old: A⇒ Ac⇒ Adc⇒ Addc⇒ Beddc.
New: A⇒ BeA′⇒ BedA′⇒ BeddA′⇒ Beddc.

The underlying idea is to invert the derivation: in the new derivation one starts with Be and applies new
productions in reverse order w.r.t. to the old derivation.

The same idea is used in the graph case. The difficulty is that we do not have the leftmost symbol in
productions. However, it suffices to distinguish an arbitrary edge in the right-hand side of each production
to play the role of the leftmost symbol. We do this by means of the function δ .

Definition 13. Let us fix an arbitrary function δ which acts on P in such a way that δ (A→ H) belongs
to EH . We denote µ(π) = lab(δ (π)).

Now µ(π) plays the role of the “leftmost” symbol of a production π . Then we define recursive
productions as expected.

Definition 14. A production π is recursive if lhs(π) = µ(π). A production π is an A-production if
lhs(π) = A.

Definition 15. A derivation A⇒ H1 ⇒ ··· ⇒ Hk is called a δ -derivation if each of its productions is
applied to the edge that is δ of the previous production. Formally, if A⇒

π1
H1⇒

π2
. . .⇒

πk
Hk, then πi has to

be appied to δ (πi−1) (in the subgraph that appears after the (i−1)-th step). We say that the final label of
such a derivation is µ(πk). Note that µ(πi) has to be nonterminal for i < k (but µ(πk) can be terminal).

Below we study how to eliminate all the recursive A-productions for some fixed A ∈ N. In the string
case the idea is quite simple: one moves A from the beginning of the string to its end in order to invert
a derivation process. Here we also exploit the idea of inverting the derivation but, of course, we have to
take into account more complex and general graph structures.

Let A⇒
π1

H1 ⇒
π2

. . .⇒
πk

Hk be a δ -derivation such that lhs(πi) = A for i = 1, . . . ,k and µ(πk) 6= A

(compare this with the old derivation in Example 6). We provide the following intuition behind the
below construction. Imagine that one has a hole in his sweater (this metaphor is related to that in [4]),
and he sews it up starting from edges (i.e. he applies π1, . . . ,πk−1) and finishing by sewing on a patch
in the center of the hole (i.e. he applies πk). In the new derivation one starts with the patch (that is, the
right-hand side of πk), then he sews up right-hand sides of πk−1, . . . ,π2 in this order (thus the patch grows
and becomes bigger) and finishing by connecting it with edges of the hole w.r.t. the production π1 (see
also Fig. 5 which provides a sketch of this process).

The major problem of this idea is the following: if we want to invert a derivation such as on Figure
5a and to obtain a new one, such as one drawn on Figure 5b, we have to carefully control external nodes.
Namely, in the old derivation external nodes of H are predefined by R1 while in the new derivation R1
appears at the very last step. In order to place external nodes correctly, we introduce complex nonterminal
symbols that describe how external nodes of a graph on the current derivation step correspond to external
nodes of a graph on the next and on the last step. This description is done by means of partial functions.

Now we proceed with formal realization of this idea. Let t = type(A). Let ρ1 = A→ R1, . . . ,ρK =
A→RK be all the recursive A-productions in P and let γ1 =A→G1, . . . ,γL =A→GL be the remaining A-
productions in P. Our goal is to construct a grammar equivalent to HGr without recursive A-productions.
Firstly, we simply remove them: P1 := P\{ρ1, . . . ,ρK}. In order to compensate for the lack of these rules
we add new ones accordingly to the procedure below.

116 Weak Greibach Normal Form for HRGs

A→ G

(1)(t) . . .

. .
.

(a) The production γ .

A→

R

A

(1)

. . .

(t)

. .
.

1

2t

. . .

(b) The production ρ .

Figure 1: The productions γ and ρ .

Definition 16. f : X → Y is a partial function if f is a function on some subset X ′ of X . We denote the
domain X ′ of f by Dom(f), and the range of f by Ran(f).

Definition 17. f : X → Y is a partial bijection if f is a partial function such that f |Dom(f) is a bijection.

Definition 18. If f : X → Y , g : Y → Z are partial functions, then g ◦ f : X → Z is a partial function
defined on Dom(f)∩ f−1(Dom(g)) that acts on this set as a usual composition.

Let γ = γi for some i and let ρ = ρ j for some j. We define e0 := δ (ρ), ẽ := δ (γ), G := rhs(γ)
and R := rhs(ρ). Illustrations of these productions are presented in Fig. 1. Firstly, we extend N by
new nonterminal symbols of the form (A, f ,g) where f ,g : [1, t]→ [1, t] are two partial bijections; the
resulting set is denoted by N′. Then we add to P1 rules of the following three forms:
Type I. Recall the metaphor about a sweater and a patch. If one imagines an A-labeled edge at the
beginning of a derivation as a hole in a sweater, then productions of type I are designed to add a patch
G at the very beginning of sewing up (= of a derivation). Partial functions are used to describe what
external nodes of G (edges of a patch) are equal to attachment nodes of the A-labelled edge (edges of a
hole).
Let f ,g : [1, t]→ [1, t] be two partial bijections. Informally, f specifies what nodes of extG are external
on the second step of the inverted derivation (see again Fig. 5b); g specifies what external nodes of the
second step graph are external at the last step. Let Dom(g◦ f) = {p1, . . . , pk}IO. We set

• V ′ :=VG∪{u1, . . . ,ut−k} for u1, . . . ,ut−k being new nodes;

• E ′ := EG∪{e′} where e′ is new;

• For e ∈ EG we set att ′(e) := attG(e) and lab′(e) = labG(e);

• For e′ we set att ′(e′) := extGu1 . . .ut−k;

• lab′(e′) := (A, f ,g);

• Let [1, t]\Ran(g◦ f) = { j1, . . . , jt−k}IO (note that g◦ f is bijective so Dom(g◦ f) and Ran(g◦ f)
are of the same size). Then we set ext ′(i) := ur, if i = jr, r ∈ {1, . . . , t− k} or ext ′(i) := extG(pr)
for i = ir = g(f (pr)), r ∈ {1, . . . ,k}.

We are ready to announce that G′ = 〈V ′,E ′,att ′, lab′,ext ′〉. Finally, we introduce the following rule:

ν1,γ, f ,g := A→ G′.

We define δ (ν1,γ, f ,g) = δ (γ) (note that γ is nonrecursive so is ν1,γ, f ,g).

Remark 3. Type of (A, f ,g) equals type((A, f ,g)) = t + t− k = 2 · type(A)−|Dom(g◦ f)|.

T. Pshenitsyn 117

A→ G (A, f ,g)

1

2
. . .

p1

(i1) . . .
pk

(ik) . . .
t t +1 . . . t +(t− k)

(j1) (jt−k)

Figure 2: The production ν1,γ, f ,g.

(A, f0, id)→

R′

(t +1)

. . .

(2t− k)

. . .

(1)

(2)
. . .

(t)

Figure 3: The production ν2,ρ .

Figure 2 illustrates this type of productions.
Type II. Production of type II are used at the last step of a derivation such a on Fig. 5b; returning

to the metaphor they allow one to finish sewing up and to finally connect a patch (that has grown by
applying productions of types I and III) with the edges of a hole.
We recall that ρ = A→ R such that δ (ρ) = e0 ∈ ER and lab(e0) = A. Let f0 : [1, t]→ [1, t] be a function
which is defined by the following relation: f0(i) = j⇔ attR(e0)(i) = extR(j). Obviously, f0 is a partial
bijection. We set

• V ′ :=VR;

• E ′ := EG \{e0};
• att ′ = attR|E ′ , lab′ = labR|E ′

• Let k be equal to |Dom(f0)| and let [1, t]\Ran(f0) = { j1, . . . , jt−k}IO. Then ext ′ = attR(e0)extR(j1)
. . .extR(jt−k).

We set R′ = 〈V ′,E ′,att ′, lab′,ext ′〉. Finally, we introduce ν2,ρ := (A, f0, id)→ R′ and set δ (ν2,ρ) := e for
some chosen e∈ ER′ (note that there is one since |EG| ≥ 2). Here id : [1, t]→ [1, t] is the identity function.
See Figure 3.
Remark 4. type(R′) = 2t−k = 2 ·type(A)−|Dom(f0)|= 2 ·type(A)−|Dom(id ◦ f0)|= type((A, f0, id)).
Thus the production is defined correctly.

Type III. Productions of type III serve to make a “sewing up step” from inside to outside. f ,g that
specify relations between external nodes on the current step, on the next step and on the final step are
changed by related functions f ′,g′.
Let f ,g, f ′,g′ : [1, t]→ [1, t] be partial bijections. The whole procedure described below can be done if
g′ ◦ f ′ = g.

118 Weak Greibach Normal Form for HRGs

We set

• V ′ :=VR∪{u1, . . . ,ut−k′} such that u1, . . . ,ut−k′ are new nodes (k′ is defined below);

• E ′ := ER \{e0}∪{e′} where e0 = δ (ρ) and e′ is new;

• For e ∈ ER \{e0} we set att ′(e) := attR(e) and lab′(e) = labR(e);

• For e′ we set att ′(e′) := extRu1 . . .ut−k′ ;

• lab′(e′) := (A, f ′,g′);

• Let

– M1 := Dom(g) \Ran(f) = {s1, . . . ,sp}IO (nodes of the current step that will be external at
the last step but that were not taken into account at the previous step);

– M2 := [1, t]\Ran(g◦ f) = { j1, . . . , jt−k}IO;

– g(si) = jli ;

– Let M2 \g(M1) = { jx1 , . . . , jxt−k−p}where {x1, . . . ,xt−k−p} is index-ordered; here we note that
g(M1) = Ran(g)\Ran(g◦ f), thus g(M1)⊆M2.

Then we set k′ = k+ p and

– ext ′(i) := attR(e0)(i) for i = 1, . . . , t;

– ext ′(t + li) = extR(si) for i = 1, . . . , p;

– ext ′(t + xi) := ui for i = 1, . . . , t− k′.

We set R′ = 〈V ′,E ′,att ′, lab′,ext ′〉. Then ν3,ρ, f ,g, f ′,g′ := (A, f ,g)→ R′. We put δ (ν3,ρ, f ,g, f ′,g′) = e for
some e ∈ ER \{e0}. The production is illustrated on Figure 4.

Remark 5. Again, we prove well-definedness of this production:

• Firstly, we check that type(R′) = type((A, f ,g)): |ext ′| = t + p+ t − k′ = 2t + p− k− p = 2 ·
type(A)−|Ran(g◦ f)|= type((A, f ,g));

• Secondly, we have to check that |att(e′)|= type((a, f ′,g′)): |att(e′)|= t+t−k′= t+ |M2\g(M1)|.
Note that M2 \ g(M1) = ([1, t]\Ran(g◦ f)) \ (Ran(g)\Ran(g◦ f)) = [1, t] \ (Ran(g) ∪ Ran(g ◦
f)) = [1, t]\Ran(g). This yields |att(e′)|= 2t−|Ran(g)|= 2t−|Ran(g′ ◦ f ′)|= type((A, f ′,g′)).

We say that P2 is obtained from P1 by adding all possible productions of all the above types. Obvi-
ously, their number is finite (each production is defined by at most four partial functions from [1, t] to
[1, t]).

Lemma 2. The grammar HGr1 = 〈N′,Σ,P2,S〉 is equivalent to HGr = 〈N,Σ,P,S〉.

Proof. Informally, it suffices to notice that the design of new productions allows one to invert productions
in the way which is shown on Figure 5. Example 7 provides an illustration of the formal proof, which is
given below.

Firstly, we check that L(HGr) ⊆ L(HGr1). In order to do that, we show how to model a branch
of a derivation that consists of rules of the form ρi and finishes with a rule γ j by means of HGr1. Let
A⇒

ρi1

H1 ⇒
ρi2

. . . ⇒
ρim

Hm ⇒
γ j

H be a δ -derivation in HGr where Hk = Hk−1[Rk/δ (ρik−1)],1 ≤ k < m and

H = Hm[G/δ (ρim)]. It is convenient to put H0 :=}(A) and say that δ (ρi0) := e0 where EH0 = {e0}. For
the sake of simplyfing notations we write ρ1, . . . ,ρm instead of ρi1 , . . . ,ρim and γ instead of γ j.

T. Pshenitsyn 119

(A, f ,g)→

(1)

(2)
. . .

(t)

(A, f ′,g′)

1

2

. . .

s1(t + l1)
. . .

sp

(t + lp)

. . .
t

t +1 . . . t +(t− k′)

(t + x1) (t + xt−k′)

R	

Figure 4: The production ν3,ρ, f ,g, f ′,g′ . Here R	 denotes a graph R without δ (ρ).

Let Gk be defined inductively as follows: Gm+1 = G; Gk = Rk[Gk+1/δ (ρk)]. Note that

H = Hm[G/δ (ρm)] =
= Hm−1[Rm/δ (ρm−1)][G/δ (ρm)] =
. . .
= R1[R2/δ (ρ1)] . . . [Rm/δ (ρm−1)][Gm+1/δ (ρm)] =
= R1[R2/δ (ρ1)] . . . [Gm/δ (ρm−1)] =
. . .
= R1[G2/δ (ρ1)] =
= G1.

To prove the claimed inclusion, it suffices to show then that A ⇒
HGr1

G1.

Observe that H = Hi−1[Ri[Gi+1/δ (ρi)]/δ (ρi−1)], i = 1, . . . ,m. Then Gi+1 can be considered as a
subgraph of Gi := Ri[Gi+1/δ (ρi)], which is a subgraph of H. Let fi be a partial function defined by
the following correspondence: fi(j) = k⇔ extGi+1(j) = extGi(k). Similarly we define gi: gi(j) = k⇔
extGi(j) = extH(k). It follows from these definitions that gi ◦ fi = gi−1.

Let σi = A→ Gi+1 and G′i := rhs(ν1,σi, fi,gi). We prove by the reverse induction on p = m, . . . ,1 that
then A ⇒

HGr1
G′p.

Basis. Since σm = A→ G = γ is not a recursive A-production, we added ν1,σm, fm,gm in our grammar.
This completes the basis case.

Step. We assume by the induction hypothesis that A ⇒
HGr1

G′p and our aim is to prove the same

for p− 1. G′p contains an edge labeled by (A, fp,gp). Then a type III rule is applied to this edge:
ν3,ρp, fp,gp, fp−1,gp−1 . The design of such rules allows us to perform exactly the substitution of Gp+1 into
Rp.

Therefore, A ⇒
HGr1

G′1. Note that the right-hand side of this derivation contains an edge labeled by

(A, f1,g1). Since G1 = H, we see that g1 is the identity function id. Thus we can apply the type II
rule of the form ν2,ρ1 whose left-hand side equals (A, f1, id) = (A, f1,g1). This rule is also designed in
such a way that its application is equivalent to substitution of G2 into R1. This means that A ⇒

HGr1
G′1⇒

R1[G2/δ (ρ1)] = G1, as required.

120 Weak Greibach Normal Form for HRGs

A⇒
R1

A ⇒

R	1

R2

A ∗⇒

R	1

R	2
. . .R	m

G

= H

(a) A δ -derivation in HGr.

A⇒
G

(A, fm,gm)

. . .

. . .

⇒ R	m

G

(A, fm−1,gm−1)

. . .

. . .

∗⇒ R	2
. . .R	m

G

(A, f1, id)

. . .

. . .

⇒ H

(b) Remodeling the δ -derivation from (5a) by means of HGr1.

Figure 5: Illustration of the proof of Lemma 2. External nodes are not depicted here.

Now, if there is an arbitrary derivation where the rule ρi is applied (1 ≤ i ≤ K), then we find the
largest δ -derivation within the derivation that includes this occurence ρi and remodel it as described
above. Thus, the above reasonings complete the proof for one of the inclusions.

To prove the reverse inclusion, it suffices to show how to transform a branch of a derivation containing
nonterminals of the form (A, f ,g) into a derivation in HGr. Let

A ⇒
ν1,γ, fm,gm

Gm+1 ⇒
ν3,ρm, fm,gm, fm−1 ,gm−1

Gm ⇒
ν3,ρm−1 , fm−1 ,gm−1 , fm−2 ,gm−2

. . . ⇒
ν3,ρ2 , f2 ,g2 , f1 ,g1

G2 ⇒
ν2,ρm

G1

be such a branch (it has to be of a similar form). Then we can consider a derivation in HGr of the form
A⇒

ρ1
H1⇒

ρ2
. . .⇒

ρm
Hm⇒

γ
H; the first part of the proof of this theorem allows us to conclude that H = G1.

Note that functions fi and gi in the first derivation can be arbitrary (they only have to satisfy the condition
of type III rules); however, it is not hard to show that they are the same as the functions fi and gi that are
built on the basis of the second derivation.

This finishes the proof.

There are two important observations regarding the procedure and the lemma above:

1. After such a procedure there are no recursive A-productions;

2. For each nonterminal (A, f ,g) there is no rule π such that µ(π) = (A, f ,g).

Note that HGr1 does not preserve all the properties that HGr had. Namely, rules of Type II can
contain only one edge. However, our further actions do not affect type II and type III rules so this does
not matter. Besides, useless symbols can appear, which also does not bother us (we deleted them only to
perform Transformations 2 and 3). This finishes the second step.

Example 7. Let a grammar contain two A-productions: the first one is recursive and the second one is
not recursive. They are depicted below; δ of each production is represented by the red color.

T. Pshenitsyn 121

ρ = A→
(1)

A

(2)

(3)

B 3
1

2

γ = A→ (1)

(2)

(3)

C

D

E

In this grammar the following δ -derivation is possible:

A⇒
(1)

A

(2)

(3)

B 3
1

2

⇒
(1)

A

(3)

(2)

B

B

2
3

1

⇒
(1)

A

(2)

(3)

B

B

B

1
2

3

⇒

⇒
(1)

(2)

(3)

B

B

B

C

D

E

= G

In the new grammar this derivation turns into the following one:

A⇒

C

D

E

(A, f3,g3)
1 3

2

(1) (2) (3)

4 5 6

⇒
(3)

C

D

E

B

(A, f2,g2)
2 1

3

(1) (2)

4 5

⇒

⇒ (3)

(2)

C

D

E

B

B

(A, f1,g1)
3 2

1

(1)

4

⇒ G

Here f3(1) = 2, f3(2) = 3; f1 = f2 = f3 = g2;g3(1) = 3;g1 = id are all the involved partial functions; it
is easy to check that they actually satisfy conditions from definitions. Note that if n is the total number of

122 Weak Greibach Normal Form for HRGs

derivation steps, then fi specifies a relation between external nodes on the (n− i)-th and on the (n− i+1)-
th steps and it is defined by a corresponding production in the old derivation. In this example, fi are all
defined by the production ρ , thus they are the same. gi defines a relation between external nodes on the
(n− i+1)-th step and external nodes at the end of a derivation (on the n-th step). As expected, g1 is the
identity function since n = 4 and (n−1+1) = n, so g1 specifies a relation between external nodes on the
last and on the last step.

5.3 Eliminating Recursion and Convertion into the WGNF

The rest of the steps are similar to those in the string case. Let us start with HGr; let N = {A1, . . . ,Am}.
Then the following transformation is done.

Transformation 4 (eliminating recursion).
Input: an HRG HGr as at the beginning of the proof (without useless symbols or edgeless or chain
productions).
Output: an equivalent HRG HGr′ with the same properties such that for each π ∈ P with lhs(π) = Ai

either µ(π) = A j and i < j or µ(π) ∈ Σ.

Method.

1. Set i = 1.

2. Eliminate all the recursive Ai-productions according to Lemma 2. Now it is argued that if π belongs
to the set of productions and lhs(π) = Ai, then µ(π) = Ak for k > i or µ(π) is terminal.

3. If i = m, then a desired grammar is obtained. Otherwise, set i = i+1 and j = 1.

4. Let A j → H1, . . . ,A j → Hh be all the A j productions. Let π = Ai → G(e0 : A j) be a production
with δ (π) = e0. Then we can replace π by the rules Ai→ G[H1/e0], . . . ,Ai→ G[Hh/e0] without
changing the generated language (see Lemma 1). For these rules we set δ (Ai → G[Hk/e0]) =
δ (A j→Hk), k = 1, . . . ,h. It will now be the case (due to the previous steps of this transformation)
that for each A j-production π µ(π) equals either a terminal or Ak for k > j. Thus all the Ai-
productions will have this property after such replacement.

5. If j = i−1, go to step 2; otherwise set j = j+1 and go to step 4.

Let HGr′ = 〈N′,Σ,P′,S〉 be a grammar that is obtained from HGr after Transformation 4. Let |N′|=
M (note that M is really large). We already know that HGr′ does not have recursions, i.e. there are no
δ -derivations A⇒

π1
H1 ⇒

π2
. . .⇒

πk
Hk such that µ(πk) = A. Indeed, due to the second observation after

Lemma 2: nonterminals of the form (B, f ,g) cannot participate in recursive δ -derivations since they
do not appear as values of µ . For the remaining nonterminals this is a consequence of the result of
Transformation 4. Thus we can put a linear order on N′ in such a way that for A⇒

π
G(e0 : B) ∈ P′, if

δ (π) = e0, then either B is terminal or it is nonterminal and A < B.
We define the final set of productions P as follows: A→ G belongs to P if there is a δ -derivation

A⇒
π1

H1 ⇒
π2

. . .⇒
πk

Hk = G of the length 1 ≤ k ≤ M such that µ(πk) is terminal. Obviously, the last

requirement yields that G has at least one terminal edge.

Lemma 3. HGr = 〈N′,Σ,P,S〉 is equivalent to HGr′.

T. Pshenitsyn 123

Proof. Clearly, L(HGr) ⊆ L(HGr′), because productions in HGr are composed of that in HGr′. The
reverse inclusion is proved by induction on the length n of derivation in HGr′ in more general form:
〈N′,Σ,P,X〉 is equivalent to 〈N′,Σ,P′,X〉 for each X ∈ N′.
Basis. If X → G ∈ P′ then it is also in P since G is terminal.
Step. Let X → H(e0 : Y) n−1⇒ G (where e0 = δ (X → H(e0 : Y))) be a derivation of a terminal graph
G. This derivation contains a δ -derivation X ⇒

π1
H1 = H(e0 : Y)⇒

π2
H2⇒

π3
H3 . . .⇒

πk
Hk and let µ(πi) = Xi

(we also set X0 = X). Then X0 < X1 < · · · < Xk, Xk is terminal and all Xi are different; thus k ≤M and
X → Hk ∈ P. Then the source derivation is rebuilt as follows: we apply X → Hk to X and then do the
same with nonterminal edges in Hk using the induction hypothesis. This completes the proof.

Thus L(HGr) = L. Now we have to overcome the following problem: the weak Greibach normal
form requires right-hand sides of productions to have exactly one terminal edge while we can guarantee
for HGr that there is at least one terminal edge. This problem is easily fixed: for each a∈ Σ we introduce
a new nonterminal symbol Ta and we add rules of the form Ta→}(a). Now, if A→G∈ P has more than
one terminal symbol in the right-hand side, then we choose one of them and replace the other ones by
corresponding nonterminals: a := Ta. After this step the modified grammar HGr still generates L, and it
is in the weak Greibach normal form.

6 Algorithmic Complexity

In the string case polynomial-time algorithms of convertion into the Greibach normal form are known;
one is interested whether they exist in the hypergraph case.

It can be seen that the proof we have presented is horrible from the point of view of algorithmic
complexity. The main problem is in the second step: the amount of partial bijections from the set [1, t] to
itself is equal to (C0

t)
20!+(C1

t)
21!+(C2

t)
22!+ · · ·+(Ct

t)
2t!, which grows even faster then any exponential

function. It is less obvious but another “heavy” part of the algorithm is the first step — eliminating chain
productions. One would hope that presence of these slow parts is the problem of our proof but this is not
the case.

Example 8. Consider a grammar HGr3 = 〈{S},{a},P3,S〉 where P has 3 productions (type(S) = n,
type(a) = n):

1. S→ 〈{v1, . . . ,vn},{e0},att, lab,v1v2 . . .vn〉, lab(e0) = S, att(e0) = v2v1v3v4 . . .vn;

2. S→ 〈{v1, . . . ,vn},{e0},att, lab,v1v2 . . .vn〉, lab(e0) = S, att(e0) = v2v3v4 . . .vnv1;

3. S→}(a).

Obviously, this grammar has a size O(n). It generates graphs with one a-labeled edge such that attach-
ment nodes of this edge are obtained from external nodes of the graph by a permutation composed of the
transposition (12) and of the cycle (12 . . .n). Since these permutations are generators of Sn, the language
L(HGr3) contains n! hypergraphs. All of them have exactly one hyperedge, so for all H ∈ L(HGr3) a
production S→ H has to belong to a grammar in the WGNF; therefore, even the number of productions
grows faster than any exponent apart from the algorithm involved.

This yields the following

Proposition 1. There is no exponential-time algorithm that takes an HRG generating an ibHCFL and
returns an equivalent HRG in the WGNF.

124 Weak Greibach Normal Form for HRGs

However, if we consider only HRGs of order r for some fixed r (i.e. in which types of symbols are
not greater than r), then the above example ceases to be a problem as well as the first and the second
steps in our proof since the number of partial bijections from [1;r] to itself (and, in particular, the size of
Sr) is constant when r is fixed.

7 Conclusion

Our desire to introduce the weak Greibach normal form appeared due to another research about hyper-
graph basic categorial grammars (we presented a paper [10] about them at ICGT-2020); in that work
we introduce a new approach to describing graph languages and prove that each grammar in this new
formalism can be transformed into an equivalent HRG in the WGNF and vice versa. Theorems 1 and 2
show that ibHCFL is exactly the class of languages generated by grammars in the weak Greibach nor-
mal form; thus we also answer a question about the recognizing power of hypergraph basic categorial
grammars — they also generate exactly ibHCFL. Besides, we suppose that the issue of the WGNF is a
fundamental theoretical question, and we have presented an answer in line with those in [4, 8]. Note that
the result gives a natural grammar characterization of the language class ibHCFL.

Acknowledgments. I thank my scientific advisor prof. Mati Pentus and anonymous reviewers for their
valuable advices.

References
[1] Alfred V. Aho & Jeffrey D. Ullman (1972): The theory of parsing, translation, and compiling. 1: Parsing.

Prentice-Hall. Available at https://www.worldcat.org/oclc/310805937.

[2] Y. Bar-Hillel, C. Caifman & E. Shamir (1960): On Categorial and Phrase-structure Grammars. Weizmann
Science Press.

[3] Frank Drewes, Hans-Jörg Kreowski & Annegret Habel (1997): Hyperedge Replacement, Graph Grammars.
In Grzegorz Rozenberg, editor: Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations, World Scientific, pp. 95–162, doi:10.1142/9789812384720 0002.

[4] Joost Engelfriet (1992): A Greibach Normal Form for Context-free Graph Grammars. In Werner Kuich,
editor: Automata, Languages and Programming, 19th International Colloquium, ICALP92, Vienna, Aus-
tria, July 13-17, 1992, Proceedings, Lecture Notes in Computer Science 623, Springer, pp. 138–149,
doi:10.1007/3-540-55719-9 70.

[5] Joost Engelfriet, George Leih & Emo Welzl (1990): Boundary Graph Grammars with Dynamic Edge Rela-
beling. J. Comput. Syst. Sci. 40(3), pp. 307–345, doi:10.1016/0022-0000(90)90002-3.

[6] Joost Engelfriet & Grzegorz Rozenberg (1990): A Comparison of Boundary Graph Grammars and Context-
Free Hypergraph Grammars. Inf. Comput. 84(2), pp. 163–206, doi:10.1016/0890-5401(90)90038-J.

[7] Annegret Habel (1992): Hyperedge Replacement: Grammars and Languages. Lecture Notes in Computer
Science 643, Springer, doi:10.1007/BFb0013875.

[8] Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen & Thomas Noll (2011): A Local Greibach Normal
Form for Hyperedge Replacement Grammars. In Adrian-Horia Dediu, Shunsuke Inenaga & Carlos Martı́n-
Vide, editors: Language and Automata Theory and Applications - 5th International Conference, LATA 2011,
Tarragona, Spain, May 26-31, 2011. Proceedings, Lecture Notes in Computer Science 6638, Springer, pp.
323–335, doi:10.1007/978-3-642-21254-3 25.

[9] Bevan K. Jones, Jacob Andreas, Daniel Bauer, Karl Moritz Hermann & Kevin Knight (2012): Semantics-
Based Machine Translation with Hyperedge Replacement Grammars. In Martin Kay & Christian Boitet,

https://www.worldcat.org/oclc/310805937
http://dx.doi.org/10.1142/9789812384720_0002
http://dx.doi.org/10.1007/3-540-55719-9_70
http://dx.doi.org/10.1016/0022-0000(90)90002-3
http://dx.doi.org/10.1016/0890-5401(90)90038-J
http://dx.doi.org/10.1007/BFb0013875
http://dx.doi.org/10.1007/978-3-642-21254-3_25

T. Pshenitsyn 125

editors: COLING 2012, 24th International Conference on Computational Linguistics, Proceedings of the
Conference: Technical Papers, 8-15 December 2012, Mumbai, India, Indian Institute of Technology Bombay,
pp. 1359–1376. Available at https://www.aclweb.org/anthology/C12-1083/.

[10] Tikhon Pshenitsyn (2020): Hypergraph Basic Categorial Grammars. In Fabio Gadducci & Timo Kehrer,
editors: Graph Transformation - 13th International Conference, ICGT 2020, Held as Part of STAF 2020,
Online, June 25-26, 2020, Proceedings, Lecture Notes in Computer Science 12150, Springer, pp. 146–162,
doi:10.1007/978-3-030-51372-6 9.

[11] Grzegorz Rozenberg, editor (1997): Handbook of Graph Grammars and Computing by Graph Transforma-
tions, Volume 1: Foundations. World Scientific, doi:10.1142/3303.

https://www.aclweb.org/anthology/C12-1083/
http://dx.doi.org/10.1007/978-3-030-51372-6_9
http://dx.doi.org/10.1142/3303

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Hypergraphs, Sub-hypergraphs
	3.2 Replacement
	3.3 Hyperedge Replacement Grammars

	4 Weak Greibach Normal Form
	5 Transformation of HRGs Generating IBHCFLs into HRGs in the Weak Greibach Normal Form
	5.1 Eliminating Useless, Edgeless and Chain Productions
	5.2 Defining and Eliminating Recursive Productions
	5.3 Eliminating Recursion and Convertion into the WGNF

	6 Algorithmic Complexity
	7 Conclusion

