
Dragan Bošnački, Stefan Edelkamp, Alberto Lluch Lafuente
& Anton Wijs (Eds.): 3rd Workshop on
GRAPH Inspection and Traversal Engineering (GRAPHITE 2014)
EPTCS 159, 2014, pp. 84–99, doi:10.4204/EPTCS.159.8

c© Senni V. & Stawowy M.
This work is licensed under the Creative Commons
Attribution-No Derivative Works License.

Backwards State-space Reduction
for Planning in Dynamic Knowledge Bases

Valerio Senni
IMT Institute for Advanced Studies, Lucca, Italy

valerio.senni@imtlucca.it

Michele Stawowy
IMT Institute for Advanced Studies, Lucca, Italy

michele.stawowy@imtlucca.it

In this paper we address the problem of planning in rich domains, where knowledge representation is
a key aspect for managing the complexity and size of the planning domain. We follow the approach of
Description Logic (DL) based Dynamic Knowledge Bases, where a state of the world is represented
concisely by a (possibly changing) ABox and a (fixed) TBox containing the axioms, and actions
that allow to change the content of the ABox. The plan goal is given in terms of satisfaction of a
DL query. In this paper we start from a traditional forward planning algorithm and we propose a
much more efficient variant by combining backward and forward search. In particular, we propose
a Backward State-space Reductiontechnique that consists in two phases: first, anAbstract Planning
GraphP is created by using theAbstract Backward Planning Algorithm(ABP), then the abstract
planning graphP is instantiated into a corresponding planning graphP by using theForward Plan
Instantiation Algorithm(FPI). The advantage is that in the preliminary ABP phase we produce a
symbolicplan that is a pattern to direct the search of the concrete plan. This can be seen as a kind of
informed search where the preliminary backward phase is useful to discover properties of the state-
space that can be used to direct the subsequent forward phase. We evaluate the effectiveness of our
ABP+FPI algorithm in the reduction of the explored planningdomain by comparing it to a standard
forward planning algorithm and applying both of them to a concrete business case study.

1 Introduction

In this paper we address the problem of planning in rich domains. In particular we consider the setting
where a large amount of data is structured and maintained through a knowledge management system.
We adopt a very well known and accepted formalism that is based on Description Logics and provides
very efficient reasoning services, that is the DL-Lite framework [6].

The focus on planning comes from the industrial needs of knowledge representation and handling, as
well as of work-flow management. Indeed, the large amount of data and high level of concurrency may
pose a difficulty in handling resources efficiently and avoiding inconsistent behaviours. Planning can be
used as a way of dynamically producing consistent work-flowson the basis of a given goal to reach. Our
notion of Dynamic Knowledge Base, that changes according toactions executed by agents in the system
and which we use to define our planning domain, is based on the DL-Lite framework.

Declarative work-flow management has been explored in [11] and in [12]. The first, defines a for-
mal framework combining the constraint-based language ConDec and Computational Logic, where cor-
rectness of work-flow execution is granted by using verification techniques, run-time monitoring, and
post-execution consistency analysis. The second, again based on the language ConDec, allows to specify
work-flows in a declarative way by using LTL-based temporal constraints. Both of these approaches do
not explicitly deal with data through an ontology as we can dousing Description Logics. Another ap-
proach to the construction of correct work-flows can be foundin [15], where Hierarchical Task Network

http://dx.doi.org/10.4204/EPTCS.159.8
http://creativecommons.org
http://creativecommons.org/licenses/by-nd/3.0/

Senni V. & Stawowy M. 85

planning is applied to a Description Logic (DL) based planning domain. This work had a different appli-
cation domain with respect to ours, that is web service composition. The idea of using DLs to represent
the states of the world is also used in [9], where the notion ofKnowledge and Action Base(KAB) is
introduced. Actions are applicable whenever a query has an answer in the current state of the world and
has the effect of creating a new state. This last work is the one closest to ours in spirit, because it targets
the business domain. However, there are several differences with our setting. First, the notion of plan-
ning domain. Second, the fact that they focus on the analysisof temporal properties of these evolving
knowledge bases while we focus on the problem of state-spaceexplosion when looking for a plan.

The contribution of this paper is the proposal of a novel planning technique that combines backwards
and forwards analysis to reduce the explored state-space. This technique exploits a symbolic representa-
tion of states and reasoning techniques provided by Description Logics.

Forward search algorithms can be made very effective if an efficient search heuristics is provided.
However, in lack of such heuristics they may end up exploringseveral paths that are not useful for reach-
ing the goal. Backward search algorithms can take advantageof knowing the goal state to consider only
actions that can lead to such a state. Our planning techniquehas the purpose of reducing the explored
state-space by combining backward and forward planning to take advantage of both approaches. In par-
ticular, we propose aBackward State-space Reductiontechnique that consists in structuring the planning
in two phases (identified jointly as ABP+FPI): first, anAbstract Planning GraphP is created by using
the Abstract Backward Planning Algorithm(ABP), then the abstract planning graphP is instantiated
into a corresponding planning graphP by using theForward Plan Instantiation Algorithm(FPI).

The advantage of the Backward State-space Reduction technique is that, in the preliminary ABP
phase, we produce (through a backward search) asymbolicplan that is a pattern to direct the search of the
concrete plan. In particular, in the subsequent (forward) FPI construction, the abstract plan constraints the
choice of actionsto be applied and the actions have alsostronger application conditions. This can be seen
as a kind of informed search where the preliminary backward phase is useful to discover properties of
the state-space that can be used to direct the subsequent forward phase. The effect of constraints induced
by the abstract plan is to significantly reduce the branchingof the planning by exploiting information
propagated from the goal condition in a backward manner.

We have implemented the ABP+FPI algorithm and compared it toa standard Forward Planning
algorithm over a case study that was designed to scale according to the values of certain parameters. The
preliminary experimental results are promising both in terms of the time taken for finding the entire set
of plans and in terms of the actual number of explored states.

First, we start by introducing the formalization of DynamicKnowledge Base in Sec. 2. Then, we
illustrate in Sec. 3 a Case Study which we use to test our planning technique. In Sec. 4 we describe the
Backward State-space Reduction technique. Finally, in Sec. 5 we discuss a software implementation of
our algorithm and some preliminary experiments.

2 Dynamic Knowledge Bases

For modelling domain resources and their relationships we adopt the Description Logic (DL) frame-
work [2], which it is tailored to modelling a data domain by means ofconcepts, that are sets of indi-
viduals, androles, that are binary relations among individuals. A DL knowledge base is made of two
elements: aTBox T, containing axioms over concepts and roles that must hold over all individuals of
the domain, and anABox A, containing membership assertions of individuals to concepts and their par-
ticipation into roles. Given a knowledge base〈T,A〉, there is a number of reasoning tasks that can be

86 Backward State-space Reduction for Planning

performed, among these the ones we are interested in are querying and consistency check.
Let us introduce the syntax of a fragment of DL, called DL-Lite [6]. LetN be an atomic concept

name andP be an atomic role name. We can compose them by using constructors in order to define more
complex concepts and roles as given in the following grammar:

B := N | ∃ R C := B | ¬ B (composed concepts)

R := P | P− V := R | ¬ R (composed roles)

where∃ is the projection ofRover its first argument,− is the inverse relation, and¬ is the complement.
TBoxaxioms are constructed from (composed) concepts and roles according to the following schemes:

B⊑C (concept inclusion) R⊑V (role inclusion) funct R (functionality)

They can be translated into equivalent FOL formulas in a standard way. TheABox contains ground
instances of concepts and roles, such asN(a) andP(b,c), for some individuals represented by the con-
stantsa, b, c. For the sake of simplicity, in this paper we do not allow function symbols, thus we consider
only finitely many possible individuals in a knowledge base.Extensions of the DL-Lite framework allow-
ing to reason over equalities and possibly infinite sets of individuals constructed from a finite signature
are possible [1]. We plan to extend the techniques presentedin this work to that more general setting.

Example 1 We can model the hierarchy of employees within a company as follows.

T = {Technician⊑ Employee, Manager ⊑ Employee, Technician⊑ ¬Manager}

Where the TBox requires that technicians and managers are employees, and they are disjoint concepts
(no individual can be part of both). One possible ABox is the following:

A = {Technician(e002)}

where an individual identified by the constante002 is classified as aTechnician. The assignment of
responsibilities of managing documents is modeled by a roleassignedTo and further axioms as follows:

T ′ = T ∪{∃ assignedTo⊑ Document, ∃ assignedTo− ⊑ Employee, funct assignedTo}

Note that we set (i) the domain of the roleassignedTo to be included withinDocument (using projection),
(ii) the range of the roleassignedTo to be included withinEmployee (using projection and the inverse
operator), and (iii)assignedTo to be functional (no document can be assigned to two employees at the
same time). We will discuss an extension of this example in the case study in Sec. 3.

We now introduce reasoning tasks over DL-Lite knowledge bases that we use in the planning algo-
rithm: testing consistency (i.e. the existence of a model) and answering queries. A DL-Lite knowledge
base is interpreted following the standard First Order Logic approach, where we fix a domain of inter-
pretation∆ and an interpretation functionI mapping individuals to elements of∆, concepts to subsets
of ∆, and roles to subsets of∆×∆. DL-Lite axioms can be translated into equivalent FOL formulas and
interpreted accordingly. An interpretationI is a modelof a knowledge base〈T,A〉 if it satisfies (the
translation of) all the assertions inT andA. A knowledge base issatisfiableif it has a model. Finally,
anABox Ais said to beconsistentw.r.t. aTBox T if the knowledge base〈T,A〉 is satisfiable.

Example 2 One possible model for the knowledge base〈T,A〉 presented in Example 1 is the one where
Technician(e002) andEmployee(e002) hold (obviously, considering onlyTechnician(e002) would not
satisfy all the axioms). An example of an inconsistent ABox is A′= {Technician(e002),Manager(e002)},
which contradicts the last axiom of T .

Queries over a DL-Lite knowledge base〈T,A〉 are constructed considering (i) the set of the constants
appearing in the assertions ofA, called theactive domainADOM(A), and (ii) the set of the predicate
symbols occurring inT and A, called thealphabetALPH(T,A). A query q is a FOL formula of the

Senni V. & Stawowy M. 87

form
∨n

i=1(∃yi .conji(~xi ,~yi)) calledunion of conjunctive queries, whereconji(~xi ,~yi) is a finite conjunc-
tion of atoms of the formN(z) andP(z,z′), for N,P ∈ ALPH(T,A), andz,z′ are either variables inxi ∪yi

or constants inADOM(A). Thecertain answersto a queryq over〈T,A〉 is the setANS(q,T,A) of substi-
tutionsϑ mapping free variables ofq to constants inADOM(A) and such thatqϑ holds inevery model
of 〈T,A〉, that is,qϑ is a logical consequence of〈T,A〉.

The most interesting feature of the DL-Lite framework is computing the set of the certain answers to
a query is decidable and also efficient [1], being PTIME-complete in the size of theABoxand theTBox
and AC0 in the size of theABox(this complexity is often referred to as thedata complexity).

In some cases, it can be useful to explicitly specify a role interms of the product of two concepts,
rather than simply constraining its domain and range, as discussed in the following Example 3.

Example 3 Let us consider the model of Example 1 and, in particular, theknowledge base〈T ′,A〉 de-
fined therein. We can further categorize documents by introducing the subclass of technical documents
through the axiomTechnicalDoc⊑Document. It can be useful to introduce acanManage role, which ex-
presses the competences of certain employees in managing certain documents: e.g. one can be interested
in modelling thatevery technician can manage every technical document. This can be used, for example,
as a prerequisite for assigning documents to employees (e.g. technical documents cannot be assigned
to non-technicians). However, this cannot be expressed directly as a DL-Lite axiom, since the required
axiom is∀ x,y. (Technician(x)∧TechnicalDoc(y)→ canManage(x,y)), which falls outside the allowed
syntax. What we can model in DL-Lite is given by the followingaxioms:∃ canManage−⊑TechnicalDoc

and∃ canManage⊑Technician, allowing only to constrain domain and range of the role ofcanManage.

In general neither joins nor concept products are expressible in DL-Lite and therefore we are not allowed
to consider axioms of the form∀ x,y. (N1(x)∧N2(y)→ R(x,y)), as mentioned in the example. In this
paper we allowthis specific formof axioms on the basis of recent results obtained in a language called
Datalog± [3]. Datalog± is indeed a family of languages, that strictly generalizes the DL-Lite family.
The so-calledstickyfragment of Datalog± [4] allows to specify concept products, as well as other more
general forms of joins, and enjoys the same data complexity of DL-Lite. In general, DL-Lite axioms can
be translated to Datalog± clauses. However, for the purpose of this paper, we stick to the restricted case of
the DL-Lite syntax and we simply allow the use of axioms of theform ∀ x,y. (N1(x)∧N2(y)→ R(x,y))
(or simplyN1(x)∧N2(y)→ R(x,y)) in the TBox, keeping the good complexity results. We call these
axiomssimple joinsand we assume to identify the DL-lite axioms inT by DL(T) and the simple join
axioms inT by SJ(T). We will use this separation for the design of the planning algorithms. We
call R(x,y) the conclusionof the axiom andN1(x)∧N2(y) the premise. We leave for future work the
extension of our planning domain reduction technique to thefull Datalog± framework.

Let us now consider thedynamicalaspect of our knowledge bases. We introduce the notion of
Dynamic Knowledge Base(DKB), which is a transition system where states are DL-Liteknowledge
bases and actions are used to update theABox. In particular, we assume theTBox Tdoes not change, so
the ABoxA is sufficient to identify the state of the system and we will feel free to refer only toA, without
explicitly mentioningT. A Dynamic Knowledge Base is a tuple〈T,A0,Γ〉, whereT is a TBox,A0 is an
ABox called theinitial state, andΓ is a finite set of well-formed actions.

An action is of the forma[x1, . . . ,xn]: q e (or simplya: q e), wherea is the action name,q is a
query (calledaction guard), ande is an (possibly non-ground)ABoxassertion (calledaction effect) such
thatVars(e) ⊆ Vars(q) = {x1, . . . ,xn}. An action iswell formedw.r.t. a knowledge base〈T,A〉 if predi-
cates occurring in its effects are disjoint from predicatesoccurring in conclusions of simple join axioms
in SJ(T). The well-formedness of actions is an important condition since it allows us to distinguish the
assertions that are entailed by simple join axioms from the assertions that can be introduced by actions.

88 Backward State-space Reduction for Planning

The informal semantics of an action is that, by using the query q, we extractonecertain answerϑ from
the current knowledge base and we obtain a correspondingground ABoxassertioneϑ . The effect of an
actiona over a stateA is, non-deterministically, a new stateA∪{eϑ}, for eachϑ ∈ ANS(q,T,A), which
we indicate asA a,ϑ A∪{eϑ}. We callaϑ an instantiationof a.

Of course adding an assertion to anABoxcould make it inconsistent. Such cases are not considered
in our transition system, and actions’ instantiations thatlead to inconsistentABox-es are ignored.

Example 4 Following up our previous examples based on a company case study, we can model the fact
that a manager can decide to assign documents to employees, e.g. for revision purposes. The following
action requires to identify a manager and an employee that isable to manage a document, and under
these conditions the document can be assigned to that employee:

appoint[x,y,z]: Manager(x)∧ canManage(y,z) assignedTo(z,y)

Considering Example 3, if y is bound to a technical document,the only eligible employees will be tech-
nicians. The effect on the knowledge base is the addition of an assignedTo assertion. Now, assume
an ABox of the form A= {Manager(e001),Technician(e002),Technician(e003),TechnicalDoc(d001)},
where we have two technicians. The two possible effects of the actionappoint are

A appoint,ϑ1
A∪{assignedTo(d001,e002)} and A appoint,ϑ2

A∪{assignedTo(d001,e003)},

whereϑ1 = {x 7→ e001,y 7→ e002,z 7→ d001} andϑ2 = {x 7→ e001,y 7→ e003,z 7→ d001}.
As mentioned before, actions can lead to inconsistent states:

A∪{assignedTo(d001,e002)} appoint,ϑ3
A∪{assignedTo(d001,e002),assignedTo(d001,e003)},

where the axiom regarding the functionality of the roleassignedTo is violated. Such transition would be
discarded in the transition system.

The notion of Knowledge and Action Base presented in [9] is inprinciple very similar to our DKB
and has been proposed to model knowledge base dynamics. Indeed, we have been inspired by that
notion, but the main difference between our definition and that one is in the way the new knowledge
base is constructed as an effect of an action. In particular,in their approach, no assertion from the
previousABoxis maintained and the newABoxis entirely constructed summing the effect of all possible
instantiationsaϑ of an actiona. Furthermore, actions have also a more general form with various possible
effects applied inparallel andat once. Therefore, that definition implements a semantics of the dynamics
which is very different form ours. In their setting, however, our semantics can be reconstructed by
explicitly adding actions that reconstruct the information that we preserve at each step. Discussions on
the appropriateness of these models are longstanding and related to the frame problem as well as to other
well known problems in the field of knowledge representation[13]. In this paper we do not address these
problems because we focus on planning and state-space reduction aspects. We leave for future work to
study how our state-space reduction technique adapt to different dynamic models.

3 Case Study

In our case study a company is interested into having a centralized control over its activities, with the aim
of minimizing the effort of maintaining the consistency of the entire set of its work-flows. In the company,
employees are organized in specific areas of competence and documents are assigned accordingly. In this
setting, we imagine that the work of an employee is assisted by a planning software, which receives as
input an high level goal and provides one or more plan to reachsuch goal. The planner should satisfy the
company ruled represented by axioms in theTBox.

Senni V. & Stawowy M. 89

Employee

Technician

Administrative

Manager

Document

TechDoc UrgentDoc

AdmDoc

funct assignedTo

canManage

canManage

DocumentState
hasStatus

Figure 1: Graphical representation of theTBox

In Fig. 1 we give an informal representation of the hierarchyof employees and of documents in the
company (identified by solid boxes and connected through solid lines). Roles involving these concepts
of individuals are represented through dashed lines. This structure has been partially formalized by
axioms discussed in examples given in Sec. 2. Now we illustrate more extensively how this structure is
formalized by using DL-Lite and Simple Join axioms. The complete specification of the case study can
be found in the Appendix.

The agents of the company are grouped in the conceptEmployee. As explained in Example 1, we
build a hierarchy by introducing the conceptsManager,Administrative andTechnician and using axioms
of the typeTechnician ⊑ Employee to denote concept containment. Disjointness between concepts is
specified using axioms likeTechnician ⊑ ¬Manager. Similarly, we categorize the documents within
the main conceptDocument, by introducingTechnicalDoc, AdministrativeDoc, andUrgentDoc, where
TechnicalDoc is disjoint fromAdministrativeDoc. We also create a conceptDocumentState which
expresses the status of a document, for examplereviewed.

For the case study we consider different numbers of employees and documents by considering differ-
ent sets of assertions likeTechnician(e002) in theABox. We discuss this aspect more in details in Sec. 5,
planning experiments and performance of the algorithms presented in Sec. 4 are discussed.

We define also roles in which instances can participate. The role hasStatus relates a document to a
working status (likereviewed). The roles (canManage andassignedTo) describe the relationship between
the employees and documents, allowing us to put some restrictions on the type of documents an employee
can deal with. In particular,canManage specifies which employees can manage which documents, while
assignedTo specifies which documents have been assigned to a specific employee.

The axiomTechnician ⊑ ∃canManage.TechnicalDoc we require that the conceptTechnician is a
subconcept of the domain ofcanManage, but restricted only to the assertions in which the range are
instances from the conceptTechnicalDoc. Consider for example the assertioncanManage(e004,d001):
if d001 is not a technical document, thene004 cannot be a technician. We define a similar restriction over
the conceptAdministrative, by using the axiomAdministrative⊑ ∃canManage.AdministrativeDoc.

On top of the simple join axiom defined in Example 3, we also introduce an axiom relative to
Administrative employees and correspondingAdministrativeDoc:

∀ x,y. (Administrative(x)∧AdministrativeDoc(y)→ canManage(x,y))

which defines that every pair of administrative employee anddocument is in the rolecanManage. The
actions available in the setΓ areappoint (defined Example 4),review, setAdmDoc, andsetTechnician.
The actionreview allows to set a document to thereviewed state if it is in a relationshipassignedTo.

review[x,y]: assignedTo(x,y) hasStatus(x, reviewed)
A manager can set a document (resp., an employee) as an administrative document (resp., a technician)
through the actionsetAdmDoc (resp.,setTechnician) given below:

setAdmDoc[x,y]: Manager(x)∧Document(y) AdministrativeDoc(y)
setTechnician[x,y]: Manager(x)∧Employee(y) Technician(y)
In this case study, the objective is to reach a state where an urgent document reaches the revised state,

90 Backward State-space Reduction for Planning

which is expressed in terms of agoal as follows:UrgentDoc(x)∧ hasStatus(x, reviewed). This goal is
provided to the planner for the construction of a plan that allows us to realize it.

4 Planning in Dynamic Knowledge Bases

We consider the classical reachability planning problem [8] in the domain of dynamic knowledge bases
and forward and backward search algorithms. We assumeuninformedalgorithms [14], as we want them
to be usable in different scenarios, where there could be no obvious heuristic function to guide the
algorithm. However, our algorithms can be easily parametrized to add an appropriate search heuristic.

Given a dynamic knowledge base〈T,A0,Γ〉, formalized in Sec. 2, we define ourplanning problem
as the tuple〈T,A0,Γ,g〉, whereg is a query representing thegoal. The queryg is evaluated against the
knowledge base〈T,Ai, whereAi represents one of the states of the DKB.

Our aim is to build aplanning graph Prepresenting all possible plans. The planning graphP is a
set of tuples〈A,a,ϑ〉 composed of anABox A, an actiona in Γ, and a substitutionϑ used to obtain the
action instanceaϑ . A tuple 〈A,a,ϑ〉 ∈ P represents the transitionA a,ϑ A′ in the system. Given a
planning graphP, a planp is a path starting from the initial stateA0 and terminating in agoal state,
which is any stateA′ such thatANS(q,T,A′) 6= /0, by using transitions (tuples〈A,a,ϑ〉) in P. So, a plan
p is a sequence (a1ϑ1, . . . ,anϑn) of actions instantiations. As discussed in Sec. 2, actionscould lead to
inconsistent states (i.e.ABox-es w.r.t. theTBox T), thus we need to take into account this aspect in the
construction of the planning algorithms.

As said before, by default we want to find all possible plans that are an answer to the planning
problem. Such choice is justified by the contest in which we want to operate, namely business rich
domains, where the decision about which plan to follow couldbe demanded to other components than
the planner itself. Another reason, more related to our implementation, is that our actions do not have
any cost function attached to them, thus making it risky to choose one plan other another basing the
decision on classic metrics like the number of actions. Anyway, the planning algorithms shown below
can be easily parametrized to find all or just one plan.

4.1 Forward Planning

Forward Planningstarts from an initial state and expands it by applying all executable actions in that
state. New states obtained in this way are added to the statesthat must be explored, except for those that
are inconsistent or are goal states. Actions are executablein a state if their guard has at least one answer
in that state. For a given state and action, we have as many outgoing edges as the number of answers.
TheForward Planning Algorithm(FP) is presented in a pseudo-code fashion in Algorithm 1.

The algorithm FP takes as input a dynamic knowledge base〈T,A0,Γ〉 and a goalg, representing the
property of state to be reached, and returns a planning graphP as output. FA operates on two sets of
states:R (the remainingstates), containing states that have to be expanded, andV (the visitedstates),
containing states that have already been expanded.R is initialized to{A0}, which is the initial state.
Recall that states are represented by mentioning explicitly only theABox, since theTBoxis constant.

The main loop of the algorithm takes one state fromR, adds it toV, checks ifA is consistent, and if
so, proceeds to expand that state. IfA is inconsistent it is simply eliminated, but kept in the set of visited
states to avoid further consistency tests over it. We assumeto have a functionConsistent, with boolean
return value, that allows us to test the consistency of anABoxw.r.t. aTBox. On elimination ofA, also
the edges inP that lead toA must be eliminated, which is done by using the auxiliary function EdgesTo,

Senni V. & Stawowy M. 91

defined as follows:

EdgesTo(P,Γ, A) = {〈A′,a,ϑ〉 | 〈A′,a,ϑ〉 ∈ P ∧ (a: q e) ∈ Γ ∧ A= A′∪{eϑ}}
This function removes fromP the edges that can cause the generation of the inconsistent stateA. On
the contrary, ifA is a consistent state and also a goal state (ANS(q,T,A′) 6= /0) it is not expanded further.
Otherwise, ifA is not a goal state, it is expanded by findingall of the outgoing edges as well as the
corresponding arrival states, which is done using the auxiliary functionNext, defined as follows:

Next(T,A,Γ) = {〈a,ϑ ,A′〉 | (a: q e) ∈ Γ∧ϑ ∈ ANS(q,T,A) ∧ A a,ϑ A′}

This function considers every actiona: q e and every action instance obtained by considering an
answerϑ in the setANS(q,T,A), whereq is the action guard. For every such actiona and answerϑ , it
expandsA into the new stateA′ by the actionA a,ϑ A′. The new states obtained through the function
Next are added toR, except for those that have already been visited (i.e. the states inV). The consistency
of these new states will be tested when they will be selected for expansion from the setR. Finally, the
Planning Graph Pis updated by adding the new edges found through the functionNext.

Algorithm 1: Forward Planning Algorithm
input : A dynamic knowledge base〈T,A0,Γ〉 and a goalg, with A0 consistent w.r.t.T
output: A planning graphP

begin
P := /0 (planning graph)
R := {A0} (remaining states)
V := /0 (visited states)
while R 6= /0 do

A∈ R
R := R\ {A}
V :=V ∪{A}
if ¬Consistent(A,T) then

P := P \ EdgesTo (P,Γ, A) (remove edges reachingA)
else if ANS(g,T,A) 6= /0 then

skip
else

R := R ∪ ({A′ | 〈a,ϑ ,A′〉 ∈ Next(T,A,Γ)}/ V) (add new states toR)
P := P ∪ {〈A,a,ϑ〉 | 〈a,ϑ ,A′〉 ∈ Next(T,A,Γ)} (update plan)

end
end

end

Note that the FP algorithms findsall possible plans, because the retrieval of a goal state does not
interrupt the execution of the loop, which terminates only when all states have been visited. The variant
of the algorithm where onlyoneplan is found can be easily obtained by replacing theskip command,
after the test on being a goal state, with abreak command, which interrupts the execution of the loop
thus skipping the visit of all of the remaining states.

In both cases the FP algorithm always terminates because theset of all possible states (ABox-es)
is finite, since (i) the set of all possible individuals is finite and consists in theADOM(A0) plus the
individuals occurring in the set of actionsΓ, (ii) the set of all possible concepts and roles is finite as well,
and (iii) actions cannot create new individuals, nor new predicate symbols.

As usual in graph search algorithms, different search strategies (such as breadth-first or depth-first)

92 Backward State-space Reduction for Planning

S1start S2 S3

S4

A0
A0 ∪

{Greeted(e002)}
A0∪

{Greeted(e002),
assignedTo(d001,e002)}

A0 ∪
{assignedTo(d001,e002)}

sayHello appoint

appoint

Figure 2: Forward Algorithm example, Planning Graph

as well as heuristics can be added by imposing a data structure on the setR and a specific extraction
strategy. Thus the algorithm FP can easily be adapted for aninformedsearch.

The forward algorithm has drawbacks due to the fact that, being uninformed, it explores all feasible
plans. In particular, it produces alsoredundant plans, that are plans containing proper sub-plans. We
define a plan (a1ϑ1). . . (anϑn) to beredundantif there exists a proper sub-sequence of (a1ϑ1). . . (anϑn)
which is itself a plan. An example of redundant plan is discussed below.

Example 5 Let us consider the Dynamic Knowledge Base〈T0,A0,Γ0〉 where:

T0 = T ′

A0 = A∪{Manager(e001),TechnicalDoc(d001),canManage(e002,d001)}

Γ0 = Γ∪{sayHello[x,y]: Manager(x)∧Technician(y) Greeted(y)}

The knowledge base〈T ′,A〉 is taken from Example 1, andΓ contains the actionappoint defined in Ex-
ample 4). We are given the goal: g← assignedTo(d001,e002)

The FA would produce the following steps:
(1) select A0 as the first state to expand (it is consistent, but it is not a goal state sinceANS(g,T0,A0) = /0),
(2) compute〈appoint,{x 7→ e001,y 7→ e002,z 7→ d001},A1〉, where A1=A0∪{assignedTo(d001,e002)},
and〈sayHello,{x 7→ e001,y 7→ e002},A2〉, where A2 = A0∪{Greeted(e002)}, using the functionNext,
(3) update the set R and the planning graph P accordingly,
(4) select from R the state A1, which is consistent and is also a goal state, thus is skipped,
(5) expand the state A2, which is consistent, butANS(g,T0,A2) = /0, so it is not a goal state),
(6) compute〈appoint,{x 7→ e001,y 7→ e002,z 7→ d001},A3}〉, where A3=A2∪{assignedTo(d001,e002)},
using the functionNext
(7) update the set R and the planning graph P accordingly,
(8) select from R the state A3, which is consistent and is also a goal state, thus it is skipped,
(9) terminate because R is empty.
We show a graphical representation of the planning graph in Fig. 2 (for simplicity, we do not mention
the substitutions). The set of plans represented by P is verysimple:{(sayHello,appoint),(appoint)}. In
particular, the plan(sayHello,appoint) is redundant, since it contains the proper sub-plan(appoint).

On large examples, the impact of redundant plans is a much larger planning graph. The backward
planning technique we are going to present in the rest of thissection has the purpose of reducing the
number of redundant plans found and, thus, the size of the planning graph. The application of the
Forward Planning Algorithm to the Case Study (Sec. 3) is discussed in Sec. 5.

4.2 Backward State-space Reduction and Planning

Backward Planning[7] is based on the idea of starting from a goal state and, analysing actions that can
lead to such state, build the set of predecessor states untileither the initial state is found or the state-space
is explored entirely, thus beinggoal-driven. In lack of specific information on the state-space structure,

Senni V. & Stawowy M. 93

backward algorithmscan have advantages over forward algorithms since they explore a smaller portion
of the state-space by considering only actions that can leadto the goal satisfaction. On the contrary,
in the forward approach and under uninformed search, all theexecutable actions are taken into account
and more states are generated. Another very common and widely used technique to make the planning
problem easier to solve is to create anabstractionof it [14]: the original planning domain is shrank
by omitting details, thus reducing the size of it (by removing superfluous states) and making it more
manageable, but without loosing the capability of finding plans.

This is also what we do in the proposedBackward State-space Reductiontechnique, where we com-
bine abstraction and backward state-search. The idea is to structure the planning in two phases (identified
jointly as ABP+FPI): first, anAbstract Planning GraphP is created by using theAbstract Backward
Planning Algorithm(ABP), then the abstract planning graphP is instantiated into a corresponding plan-
ning graphP by using theForward Plan Instantiation Algorithm(FPI), which is essentially a variant of
FP. The abstraction we apply in ABP is that the algorithm manipulates states represented byqueries
rather thanABox-es. A queryq (which we call anabstract state) represents a setconcrete(q,T) of
ABox-es such thatA ∈ concrete(q,T) iff (i) A is consistent w.r.t.T and (ii) ANS(q,T,A) 6= /0. In this
sense, the algorithm issymbolicand manipulates sets of (possible) states rather than single states. Hav-
ing the abstract planning domain, the ABP produces (througha backward search) anabstract planning
graph P, which is a set of tuples〈σ ,a〉 composed of an abstract stateσ and an actiona: q e in Γ.
The tuple〈σ ,a〉 ∈ P representsthe set of all transitions A a,ϑ A′, such that (i)A∈ concrete(σ ,T), and
(ii) ϑ ∈ ANS(q∧σ ,T,A). In other words, we interpret〈σ ,a〉 as a constraint over the guardq of actiona,
which is refined using the abstract state (i.e. query)σ .

The abstract planning graphP is then used within the FPI algorithm, which is essentially avariant of
FP, as a pattern to direct the search of the concrete planP. In particular, we force the choice of actions to
be applied and the actions have also stronger guard, as we shall discuss in the following. The advantage
of enforcing constraints over actions, w.r.t. the FP algorithm, is to significantly reduce the branching of
the planning by exploiting information propagated from thegoal condition in a backward manner. This
can be seen as a kind of informed search where the preliminaryabstract backward phase is useful to
discover properties of the state-space that can be used to direct the second phase.

We now describe the two algorithms in detail. The Abstract Backward Planning Algorithm is given
in pseudo-code in Algorithm 2. It keeps track of remaining abstract states to be explored in the setR
and of visited abstract states in the setV. For every abstract stateσ in R, the algorithm tests whether
it includes the initialABox A0, if so the abstract state is not further expanded. Otherwise, the abstract
stateσ is resolvedto a new set of abstract states by applying as much as possiblethe simple join axioms
contained in theTBox T(they are denoted bySJ(T)). This step is performed using the auxiliary function:

FullyResolve(σ ,SJ(T)) =

{σ ′ | σ ′ obtained by applyingResolve to σ as much as possible usingSJ(T) axioms}

which relies on theResolve function, that applies a form of SLD-resolution in the spirit of Logic Pro-
gramming [10]. In particular, a new abstract stateσ ′ is obtained from the abstract stateσ using an ax-
iomN1(x)∧N2(y)→ R(x,y) in SJ(T) and replacing a conjunct of the form(a1∧ . . .∧R(x,y)∧ . . .∧an)ϑ
in σ , for some substitutionϑ , with the corresponding conjunct(a1∧ . . .∧N1(x)∧N2(y)∧ . . .∧an)ϑ . In
principle, we may have many axioms with the same conclusion and this is the reason why the function
FullyResolve returns asetof possible resolved abstract states. The importance of this step is due to
the fact that atoms in the conclusions of simple axioms have disjoint predicates from atoms in the effect
of the actions: by resolvingσ w.r.t. simple join axioms we enable the (backward) application of more
actions than those applicable directly inσ . On the contrary, in forward planning we have a concrete

94 Backward State-space Reduction for Planning

Algorithm 2: Abstract Backward Planning Algorithm
input : A dynamic knowledge base〈T,A0,Γ〉 and a goalg
output: An abstract planning graphP

begin
P := /0 (abstract planning graph)
R := {g} (remaining abstract states)
V := /0 (visited abstract states)
while R 6= /0 do

σ ∈ R
R := R\ {σ}
V := V ∪{σ}

(test ifσ is satisfied in the initial state)if ANS(σ ,T,A0) 6= /0 then
skip

(apply simple join axioms)for σ ′ in FullyResolve(σ ,SJ(T)) do

R := R ∪ ({σ ′′ | 〈σ ′′,a〉∈ PrevA(σ ′,Γ)} \V) (update remaining states)

P := P ∪ PrevA(σ ′,Γ) (update plan)
end

end
end

ABox, the set of applicable actions depends on thatABox, and the simple join axioms do not compare
explicitly in the algorithm as they are used, implicitly andtogether with the other axioms in theTBox, to
test the satisfiability of the action guard.

For every resolved abstract stateσ ′ the algorithm computes the set of previous abstract states by
considering all possible actions inΓ that have an effect that is (unifiable with) an atoma in σ ′ and re-
placinga with the corresponding (unified) action guard. This is performed by the auxiliary function:

PrevA(σ ,Γ) = {〈σ ′,a〉 | (a: q e) ∈ Γ ∧ σ ′ ∈ ActPrevA(σ ,(a: q e))}

ActPrevA(σ ,(a: q e)) = {σ ′ | σ ′ obtained by applyingResolve to σ usinga: q e}

which, again, relies on theResolve function that computes the new abstract stateσ ′ by using the ac-
tion a: q eand replacing a conjunct of the form(a1∧ . . .∧e∧ . . .∧an)ϑ in σ , for some substitutionϑ ,
with the corresponding conjunct(a1∧ . . .∧q∧ . . .∧an)ϑ .

Termination of the ABP algorithm follows from the fact that we can have finitely many abstract states
(i.e. queries), for similar reasons to those discussed for termination of the FP algorithm.

Example 6 Let us consider the DKB and the goal defined in Example 5.
The ABP would produce the following steps:
(1) the goal state g is not satisfied in the initial KB (ANS(goal,T0,A0) = /0) and it is kept for expansion,
(2) the setSJ(T) of simple join axioms is empty, so the functionFullyResolve returns the state g itself,
(3) the functionPrevA computes the pair〈S2,appoint〉, where S2 =Manager(x)∧Technician(e002),
(4) the set R and the abstract planning graphP are updated accordingly,
(5) S2 is selected from R and, since it is satisfied in the initial KB (ANS(S2,T0,A0) 6= /0), it is not expanded,
(6) the set R is empty and the algorithm terminates. We show the resulting abstract graph in Fig. 3.

The Forward Plan Instantiation Algorithm is given in pseudo-code in Algorithm 3. This algorithm is
very similar to the FP algorithm: it takes as input a dynamic knowledge base, a goal, and also an abstract
planning graph. The algorithm differs from FP in the fact that actions formΓ are executed under the
constraints present inP. The plan construction starts from the initial stateA0 and each new stateA in R

Senni V. & Stawowy M. 95

S1 S2

assignedTo(d001,e002)
Manager(x)∧
Technician(e002)

appoint
S1start S2

A0
A0 ∪

{assignedTo(d001,e002)}

appoint

Figure 3: ABP+FPI example: Abstract Planning Graph (left) and Instantiated Planning Graph (right)

Algorithm 3: Forward Plan Instantiation Algorithm
input : A dynamic knowledge base〈T,A0,Γ〉, an abstract planning graphP, and a goalg
output: A planning graphP

begin
P := /0 (planning graph)
R := {A0} (remaining states)
V := /0 (visited states)
while R 6= /0 do

A∈ R
R := R\ {A}
V :=V ∪{A}
if ¬Consistent(A,T) then

P := P \ EdgesTo (P,A) (remove edges reachingA)
else if ANS(g,T,A) 6= /0 then

skip
else

R := R ∪ ({A′ | 〈a,ϑ ,A′〉 ∈ NextA(T,A,P,Γ)}/ V) (add new states toR)
P := P ∪ {〈A,a,ϑ〉 | 〈a,ϑ ,A′〉 ∈ NextA(T,A,P,Γ)} (update plan)

end
end

end

is expanded by considering pairs〈σ ,a〉 ∈P such that the abstract stateσ includesA and the actiona is
executed under the extra preconditionσ . This is performed by the following auxiliary function:

NextA(T,A,P,Γ) = {〈a,ϑ ,A′〉 | 〈σ ,a〉 ∈P ∧ A∈ concrete(σ ,T) ∧
(a: q e) ∈ Γ ∧ ϑ ∈ ANS(q∧σ ,T,A) ∧ A a,ϑ A′ }

which consider effectsA a,ϑ A′ over the current stateA with an instantiation of the actiona that is
computed in the setANS(q∧σ ,T,A) of answers restricted with the extra preconditionσ .

The termination of the FPI algorithm is granted by the same observations make for the FP algorithm.
Soundness is ensured by the fact that the algorithm find a (not-necessarily proper) subset of the plans
found by the FP algorithm. Concerning completeness, we are currently working on the notion of non-
redundant plan and on a relative completeness result, stating that the ABP+FPI algorithm is complete
w.r.t. the set of non-redundant plans computed by the FP algorithm.
Let us now show the FPI algorithm at work.

Example 7 Consider the DKB and the goal defined in Example 5 and the Abstract Planning Graph ob-
tained in Example 6. The FPI produces the following steps:
(1) A0 is taken as the first state to be expanded, since it is consistent but it is not a goal state,
(2) using the functionNextA, find the tuple〈appoint,{x 7→ e001,y 7→ e002,z 7→ d001},A1〉, where
A1 = A0∪{assignedTo(d001,e002)}
(3) the set R and the planning graphP are updated accordingly,
(4) the state A1 is selected from R, it is consistent w.r.t. T and it is a goal state (ANS(q,T0,A1)), (5) the

96 Backward State-space Reduction for Planning

S1start S2 S3 S4

A0 A0∪ {Technician(e002)}
A0∪ {Technician(e002),
assignedTo(d001,e002)}

A0∪ {Technician(e002),
assignedTo(d001,e002),

hasStatus(d001, reviewed)}

setTechnician(x,y) :
x→ e001;
y→ e002

appoint(x,y,z) :
x→ e001;
y→ e002;
z→ d001

review(x,y) :
x→ d001;
y→ e002

Figure 4: Planning Graph

set R is empty, so the algorithm terminates. We show the resulting graph in Fig. 3(for simplicity, we omit
the substitution functionϑ).

As we can see from Example 7, the ABP+FPI produces a smaller final graph if compared to Figure 2.

5 Experiments

We have implemented the algorithms presented in Sec. 4 and inthis section we report on the implemen-
tation as well as on empirical results obtained by applying the algorithms to the case study of Sec. 3. The
implementation, made with Python, provides the FP algorithm or the ABP+FPI algorithm, specifying for
each of them the strategy preferred (depth- or breadth-first, only the first solution or all of them).

Since the DKB is based on DL-Lite fragment, we need a reasonerto check consistency and querying
knowledge bases. The reasoner Mastro1 supports DL-Lite but it is still in closed beta and works mainly
as a stand alone system. Furthermore, Mastro does not support reasoning over Simple Join axioms. Since
DL-Lite is a subset of theWeb Ontology Language(OWL) [5], we resort to the the reasoner Pellet2, a
popular and freely available OWL2 reasoner, that has all thefeatures interested in. In particular, Pellet
supports SJ axioms encoded as SWRL Rules [16]. Provided the reasoner satisfies our requirements, its
choice is not crucial for our planning algorithm, since it isparametric w.r.t. the chosen reasoner.

To test the two algorithms, we created variousABox-es differing only for the number of instances and
we varied the number of instances participating in the classesManager, Employee andTechnicalDoc.
This affects the size of the planning search space and it is useful to assess how the algorithms scale.

In Fig. 4 we present the Planning Graph obtained with FP (the instantiated planning graph obtained
with ABP+FPI is identical), considering 1 manager, 1 employee and 1 technical document. For this
small problem instance the two algorithms (FP and ABP+FPI) take the same amount of time. This can
be explained by looking at the columnInc in Table 1, counting the number of inconsistent states that
each the algorithm finds. Even for such a simple example, FP finds 13 inconsistent states, while FPI,
thanks to the constrains provided by the Abstract Planning Graph, finds only 3 inconsistent states.

In Fig. 5 we show theAbstract Planning Graphobtained by the ABP (gray states are initial states).
The Simple Join axioms applications are explicitly shown tomake it easier to understand the algorithm
behaviour. The graph isconstantfor all theABox-es we created, because no matter what is the number
of instances in theABox, the abstract graph is always the same. Looking at Table 1, wecan see that the
number of states (in the Planning Graph and inconsistent ones) is greatly reduced with respect to FP.

The abstract graph may show plans that cannot be found in the instantiated planning graph. As an
example of this, consider the followingABox:

1http://www.dis.uniroma1.it/~mastro/
2http://clarkparsia.com/pellet/

http://www.dis.uniroma1.it/~mastro/
http://clarkparsia.com/pellet/

Senni V. & Stawowy M. 97

S1

S2

S3

S4 S5

S6 S7

hasStatus(x, reviewed)∧UrgDoc(x)

assignedTo(x,y)∧UrgDoc(x)

Mng(x)∧ cm(y,z)∧UrgDoc(z)

Mng(x) ∧ Tech(y) ∧
TDoc(z) ∧ UrgDoc(z)

Mng(x)∧Adm(y)∧ADoc(z)∧UrgDoc(z)

Mng(w)∧Mng(x)∧Empl(y)∧
TDoc(z) ∧ UrgDoc(z)

Mng(w)∧Adm(z)∧Mng(x)∧
Doc(y) ∧ UrgDoc(y)

review[x,y]

appoint[x,y,z] : z→ x

SJ axiom SJ axiom

setTechnician[x,y] : w→ x setAdmDoc[x,y] : y→ z,w→ x,z→ y

Figure 5: Abstract Planning Graph

{TechnicalDoc(d001),UrgentDoc(d001),Manager(e001),Administrative(e003)}
which belongs to the setconcrete(S7) and in which we can perform the actionsetAdmDoc. This would
lead, to the inconsistentABox whered001 belongs both toTechnicalDoc and toAdministrativeDoc,
which are disjoint concepts. Thus instantiated plans starting in S7cannot lead to the goal state.

Instances FP Algorithm ABP+FPI Algorithm
Mng Emp TechDoc |PFP| |VFP| Inc Time |PFPI | |VFPI | Inc Time

1 1 1 3 17 13 0.06 3 7 3 0.07
1 1 2 9 38 29 0.48 5 10 4 0.30
1 1 3 25 87 66 0.28 7 13 5 0.10
1 2 2 50 154 116 0.71 10 15 4 0.15
2 2 2 80 172 134 1.35 16 16 5 0.22
2 2 3 270 413 291 3.42 22 21 6 0.18
2 3 3 816 1802 1290 33.16 33 28 6 0.24
...

...
...

...
...

...
...

...
...

...
...

20 20 20 - - - ∞ 8800 862 41 197.40

Table 1: Empirical results, timing given in seconds,∞ means more than 200 seconds.
Table 1 summarizes the experiments over differentABox-es, where we change the number of in-

stances (shown in the columnInstances). For both algorithms we indicate: (i) the size|P| of the pro-
duced planning graphP (we do not consider the intermediate Abstract Planning Graph), (ii) the number
|V| of visited states during the creation ofP (again, we do not consider the abstract states computed in the
ABP phase), (iii) the numberInc of discarded inconsistent states, and (iv) the computationtime (mea-
sured in seconds) obtained as an average of 10 runs over the same example. The timings are note very
high because the code is just a prototype, but they can give anidea of the reduction of the state-space.

The results are promising because theABP+FPI Algorithmperforms better that the standardForward
Algorithm. In particular, the number|P| of edges in the FP algorithm and the number of inconsistent
states grows quickly with the increasing number of instances. Already 2 managers, 3 employees and
3 technical documents produce a plan with 816 edges, discarding 1,245 inconsistent states. Such a
difference between the two algorithms, can be explained by the large number of redundant plans found
by FP (as discussed in Examples 5 and 7).

98 Backward State-space Reduction for Planning

6 Conclusions and Future Work

In this paper we have presented some preliminary work on a technique for reducing the state space in
planning problems by exploiting a symbolic representationof states and reasoning techniques provided
by Description Logics. Although we have chosen to adopt the DL-Lite framework and Pellet as the
reasoner of our implementation, we developed the Backward State Space Reduction technique to be as
independent as possible from the actual reasoning mechanism of the underlying logical representation of
knowledge. The implementation of the ABP+FPI algorithm, compared to a standard Forward Planning
algorithm, shows promising results both in terms of the timetaken for finding the entire set of plans and
in terms of the actual number of explored states.

There is a number of directions in which this work can be extended. Currently, we are working
on proving the relative completeness of our ABP+FPI algorithm w.r.t. the Forward Planning algorithm,
when we restrict to non-redundant plans. In the short term, we want to study the extension of actions
that allows also toremove ABoxassertions. Afterward, we plan to study the extension of ourtechnique
to the more general Datalog± family of languages as well as to allow thecreationof new individuals as
an effect of actions, thus introducing a possibly infinite planning space.

Acknowledgments. The research presented in this paper has been partially funded by the EU project
ASCENS (nr.257414) and by the Italian MIUR PRIN project CINA(2010LHT4KM).

References

[1] Alessandro Artale, Diego Calvanese, Roman Kontchakov &Michael Zakharyaschev (2009):The DL-Lite
Family and Relations. J. Artif. Intell. Res. (JAIR)36, pp. 1–69, doi:10.1613/jair.2820.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi & Peter F. Patel-Schneider, editors
(2003):The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press.

[3] Andrea Calı̀, Georg Gottlob & Thomas Lukasiewicz (2012): A general Datalog-based framework for
tractable query answering over ontologies. J. Web Sem.14, pp. 57–83, doi:10.1016/j.websem.2012.03.001.

[4] Andrea Calı̀, Georg Gottlob & Andreas Pieris (2010):Query Answering under Non-guarded Rules in
Datalog+/-. In Pascal Hitzler & Thomas Lukasiewicz, editors:RR, Lecture Notes in Computer Science
6333, Springer, pp. 1–17, doi:10.1007/978-3-642-15918-31.

[5] Diego Calvanese, Giuseppe Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi, Mariano
Rodriguez-Muro & Riccardo Rosati (2009):Ontologies and Databases: The DL-Lite Approach5689, pp.
255–356. doi:10.1007/978-3-642-03754-27.

[6] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini & Riccardo Rosati (2007):
Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family. J. Autom.
Reasoning39(3), pp. 385–429, doi:10.1007/s10817-007-9078-x.

[7] Malik Ghallab, Dana Nau & Paolo Traverso (2004):Automated Planning: Theory & Practice.

[8] Malik Ghallab, Dana S. Nau & Paolo Traverso (2004):Automated planning - theory and practice. Elsevier.

[9] Babak Bagheri Hariri, Diego Calvanese, Marco Montali, Giuseppe De Giacomo, Riccardo De Masellis &
Paolo Felli (2013):Description Logic Knowledge and Action Bases. J. Artif. Intell. Res. (JAIR)46, pp.
651–686, doi:10.1613/jair.3826.

[10] John Wylie Lloyd (1993):Foundations of Logic Programming, 2nd edition. Springer-Verlag New York, Inc.,
NJ, USA.

http://dx.doi.org/10.1613/jair.2820
http://dx.doi.org/10.1016/j.websem.2012.03.001
http://dx.doi.org/10.1007/978-3-642-15918-3_1
http://dx.doi.org/10.1007/978-3-642-03754-2_7
http://dx.doi.org/10.1007/s10817-007-9078-x
http://dx.doi.org/10.1613/jair.3826

Senni V. & Stawowy M. 99

[11] Marco Montali (2010):Specification and Verification of Declarative Open Interaction Models. Lecture Notes
in Business Information Processing56, Springer Berlin Heidelberg, doi:10.1007/978-3-642-14538-4.

[12] Maja Pesic, Helen Schonenberg & Wil M. P. van der Aalst (2010): Declarative Workflow. In Arthur
H. M. ter Hofstede, Wil M. P. van der Aalst, Michael Adams & Nick Russell, editors: Modern
Business Process Automation, Springer, pp. 175–201, doi:10.1007/978-3-642-03121-26. Available at
http://www.yawlbook.com/home/.

[13] R. Reiter (2001):Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical
Systems. MIT Press. Available athttp://books.google.it/books?id=exa4f6BOZdYC.

[14] Stuart J. Russell & Peter Norvig (2010):Artificial intelligence: a modern approach (3rd ed.). Prentice Hall
series in artificial intelligence, Prentice Hall.

[15] Evren Sirin (2006):Combining Description Logic Reasoning with Ai Planning forComposition of Web
Services. Ph.D. thesis, College Park, MD, USA. AAI3241437.

[16] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur & Yarden Katz (2007):Pellet: A Prac-
tical OWL-DL Reasoner. Web Semant.5(2), pp. 51–53, doi:10.1016/j.websem.2007.03.004.

Appendix

The complete specification of the Case Study.
TheTBoxis the following:
Document⊑ ¬Employee

Document⊑ ¬DocumentState

DocumentState⊑ ¬Employee

Technician⊑ Employee

Administrative⊑ Employee

Manager ⊑ Employee

Technician⊑ ¬Administrative

Technician⊑ ¬Manager

Administrative⊑ ¬Manager

TechnicalDoc⊑ Document

AdministrativeDoc⊑ Document

UrgentDoc⊑ Document

TechnicalDoc⊑ ¬AdministrativeDoc

Technician⊑ ∃canManage.TechnicalDoc
Administrative⊑∃canManage.AdministrativeDoc

Document⊑ ∃canManage−

∃canManage− ⊑ Document

∃assignedTo⊑ Document

∃assignedTo− ⊑ Employee

funct assignedTo

∃hasStatus⊑ Document

∃hasStatus− ⊑ DocumentState

The SJ axioms are:
Technician(x)∧TechnicalDoc(y)→ canManage(x,y)
Administrative(x)∧AdministrativeDoc(y)→ canManage(x,y)

TheABoxis the following:
Manager(e001)
Technician(e002)

Administrative(e003)
TechnicalDoc(d001)

UrgentDoc(d001)
DocumentState(reviewed)

The available setΓ of actions is:
appoint[x,y,z]: Manager(x)∧ canManage(y,z) assignedTo(z,y)
review[x,y]: assignedTo(x,y) hasStatus(x, reviewed)
setAdmDoc[x,y]: Manager(x)∧Document(y) AdministrativeDoc(y)
setTechnician[x,y]: Manager(x)∧Employee(y) Technician(y)

The goal is:
goal : hasStatus(x, reviewed)∧UrgentDoc(x)

http://dx.doi.org/10.1007/978-3-642-14538-4
http://dx.doi.org/10.1007/978-3-642-03121-2_6
http://www.yawlbook.com/home/
http://books.google.it/books?id=exa4f6BOZdYC
http://dx.doi.org/10.1016/j.websem.2007.03.004

	1 Introduction
	2 Dynamic Knowledge Bases
	3 Case Study
	4 Planning in Dynamic Knowledge Bases
	4.1 Forward Planning
	4.2 Backward State-space Reduction and Planning

	5 Experiments
	6 Conclusions and Future Work

