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Bigraphs are an emerging modeling formalism for structures in ubiquitous computing. Besides an
algebraic notation, which can be adopted to provide an algebraic syntax for bigraphs, the bigraphical
theory introduces a visual concrete syntax which is intuitive and unambiguous at the same time; the
standard visual notation can be customized and thus tailored to domain-specific requirements. How-
ever, in contrast to modeling standards based on the Meta-Object Facility (MOF) and domain-specific
languages typically used in model-driven engineering (MDE), the bigraphical theory lacks a precise
definition of an abstract syntax for bigraphical modeling languages. As a consequence, available
modeling and analysis tools use proprietary formats for representing bigraphs internally and persis-
tently, which hampers the exchange of models across tool boundaries. Moreover, tools can be hardly
integrated with standard MDE technologies in order to build sophisticated tool chains and model-
ing environments, as required for systematic engineering of large systems or fostering experimental
work to evaluate the bigraphical theory in real-world applications. To overcome this situation, we
propose an abstract syntax for bigraphs which is compliant to the Essential MOF (EMOF) standard
defined by the Object Management Group (OMG). We use typed graphs as a formal underpinning
of EMOF-based models and present a canonical mapping which maps bigraphs to typed graphs in a
natural way. We also discuss application-specific variation points in the graph-based representation
of bigraphs. Following standard techniques from software product line engineering, we present a
framework to customize the graph-based representation to support a variety of application scenarios.

1 Introduction

Bigraphs and bigraphical reactive systems have been proposed by Milner [20] as a fundamental theory
for structures in ubiquitous computing [27]. A concise model of space, which forms the context of a
ubiquitous system, serves as a starting point in the bigraphical modeling methodology. The idea of bi-
graphs is based on two fundamental concepts of discrete spaces: locality and connectivity, called placing
and linking in bigraphical terminology. In essence, a bigraph consists of a place graph, a forest defined
over a set of nodes which is intended to represent entities and their locality in terms of a containment
structure, and a link graph, a hypergraph composed over the same set of nodes representing arbitrary
linking among those entities. Possible local reconfigurations of the space are expressed as a set of re-
action rules yielding a Bigraphical Reactive System (BRS). A reaction rule is a rewriting rule which
consists of two bigraphs, called redex and reactum. Roughly speaking, the redex specifies a bigraphical
pattern whose occurrence found in a “host bigraph” enables replacement by the reactum.

The bigraphical theory has been shown to be general enough as a meta-calculus to embed and thus
unify reasoning over a set of existing formalisms and calculi targeting different facets of computation,
such as Petri nets [18], the Ambient Calculus [5] and the pi-calculus [4]. Bigraphs have found application
in ubiquitous systems in diverse domains such as cyber-physical [25, 26] and biological systems [17].
The use of bigraphs and BRS as underlying supporting formalisms enables a spectrum of reasoning
approaches spanning from modeling to simulation and verification. However, as argued by Milner [20],
much experimental work has to be done in order to evaluate whether the idea of bigraphs serves as a
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suitable foundation for building large-scale ubiquitous systems. In this regard, the bigraphical modeling
approach shall be not only used for the purpose of analysis, but even as a language for simulation and
“programming”. Following this line of research, the theory of bigraphs actually serves as a foundation
for domain-specific languages. Besides an algebraic notation, which can be adopted to provide a textual
syntax, the bigraphical theory introduces a visual concrete syntax which can be customized to domain-
specific requirements.

Several approaches utilizing bigraphs exist, focusing on different aspects. Visual design of bigraph-
ical models has been considered [10], while facilities for simulation, verification and execution are pro-
vided by a plethora of approaches utilizing different forms of bigraphs and their dynamics. For example,
DBtk[1] targets a form of bigraphs with directed edges; SBAM [14] extends bigraphs with stochastic
semantics; finally, BigMC [21] performs model checking of matching properties.

Systematic engineering of systems using bigraphs, however, is hindered by obstacles to modeling,
integration, evaluation, and the overall development process. Bigraphical tool support is still in its in-
fancy and available research prototypes are yet poorly integrated. Methods supporting development of
large-scale models are sorely missing. This situation hampers empirical assessments with real users to
evaluate expressive power, generality, and utility of the bigraphical theory in real-world applications.
An important reason for this unfortunate situation in actual engineering of systems is that the notion of
bigraphs as a domain-specific modeling language yet lacks a precise and commonly accepted definition
of an abstract syntax. The available modeling and analysis tools use proprietary formats for representing
bigraphs internally and persistently, which hampers the exchange of models across tool boundaries and
the development of sophisticated tool chains.

Contributions. In this paper, we propose an abstract syntax for bigraphs which is compliant with the
Essential Meta-Object Facility (EMOF) standard defined by the Object Management Group (OMG) [11].
This facilitates the integration of bigraphical modeling and analysis tools with mainstream technologies
for model-driven engineering (MDE), typically based on the EMOF standard. We use typed graphs as
a formal underpinning of EMOF-based models and present a canonical mapping which maps bigraphs
to typed graphs in a natural way. Thereupon, we discuss application-specific variation points in the
graph-based representation of bigraphs. Following techniques from software product line engineering,
we present a framework to customize the graph-based representation to support a variety of applications.
We implemented the approach as an extension of the Eclipse IDE integrating a bigraph modeling tool [10]
with the Eclipse Modeling Framework [24], the de-facto reference implementation of EMOF.

Paper structure. Section 2 presents bigraphs, along with a motivating example of a cyber-physical
space which is used throughout the paper. Section 3 briefly introduces our notion of typed graphs which
is used in Section 4 for a canonical mapping of bigraphs to typed graphs. Section 5 bootstraps a set of
application-specific variation points of a bigraphical abstract syntax, aimed to support different forms
of bigraphs. Section 6 outlines how to integrate the approach into an existing MDE environment and
presents an example application. Section 7 concludes the paper along with an outlook on future work.

2 The Idea of Bigraphs: Informal Introduction and Visual Syntax

A Bigraph consists of two graphs. A place graph is a forest, a set of rooted trees defined over a set
of nodes. A link graph is a hypergraph composed over the same set of nodes and a set of edges, each
linking an arbitrary number of nodes. Connections of an edge with its nodes are called ports. Place and
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link graphs are orthogonal, and edges between nodes can cross locality boundaries. The types of nodes,
called controls in bigraphical terminology, are defined by a signature. To avoid misunderstandings,
hereafter we use the terms and definitions introduced by Milner [20], although we acknowledge that
sometimes they may sound unconventional and unintuitive.

A bigraph B is a structure (VB,EB,ctrlB, prntB, linkB) : 〈k,X〉 → 〈m,Y 〉 where VB is a set of nodes,
EB is a set of edges, ctrlB is the control map that assigns controls to nodes, prntB is the parent map
that defines the nesting of nodes, and linkB is the link map that defines a link structure. The notation
〈k,X〉 → 〈m,Y 〉 indicates that the bigraph has k sites which denote the presence of other unspecified
nodes, m roots, a set X of inner names and a set Y of of outer names. 〈k,X〉 and 〈m,Y 〉 are called the
inner and outer interfaces (or faces) of the bigraph.

The bigraphs presented here are pure (non binding) and concrete; placing and linking are inde-
pendent structures, and nodes and edges have discrete identifiers [19]. Moreover, signatures are basic
signatures abstracting from dynamic aspects, namely activeness and passiveness of controls. We present
only essential structural definitions; the interested reader can refer to [20]. Names, node-identifiers and
edge-identifiers are drawn from infinite sets, respectively X , V and E , disjoint from each other.

Definition 1 (Signature). A signature Σ is a pair (κ , ar). It consists of a set κ whose elements are
node types called controls, and a function ar : κ→N assigning a natural number representing arity (the
number of ports) to each control.

In the sequel, we will describe a signature as a set of pairs control : arity.

Definition 2 (Place Graph). A place graph BP over a signature Σ is a structure BP = (VB,ctrlB, prntB) :
k→ m having an inner face k and an outer face m, both finite ordinals k = {0,1, . . . ,k− 1} and m =
{0,1, . . . ,m−1}; these index the sites and roots of the place graph. BP has a finite set VB ⊂ V of nodes,
a control map ctrlB : VB→ κ and a parent mapping prntB : k∪VB→VB∪m which is acyclic.

Definition 3 (Link Graph). A link graph BL over a signature Σ is a structure BL = (VB,EB,ctrlB, linkB) :
X → Y with finite inner face X ⊂X and finite outer face Y ⊂X , called the names of the link graph.
B has finite sets VB ⊂ V of nodes and EB ⊂ E of edges, a control mapping ctrlB : VB → κ and a link

mapping linkB : X ∪PB→ EB∪Y where PB
de f
= {(v, i) | i ∈ ar(ctrlB(v))} is the set of ports of B; thus (v, i)

is the ith port of node v.

A bigraph is then a pair of a place graph and a link graph, called its constituents.

Definition 4 (Bigraph). A bigraph B = (VB,EB,ctrlB, prntB, linkB) : 〈k,X〉 → 〈m,Y 〉 over a signature Σ

consists of a place graph BP = (VB,ctrlB, prntB) : k→ m and a link graph BL = (VB,EB,ctrlB, linkB) :
X → Y .

Throughout the paper, we refer to the nodes, edges, roots, sites, inner names, outer names and ports
as the elements of a bigraph. Moreover, we use the rigorous visual notation introduced in [20] as concrete
syntax for bigraphs. In this notation, roots and sites are shown as dotted and shaded boxes, respectively,
with indices defined by the place graph’s outer and inner face attached to them. Nodes are represented as
ellipses with a control label attached where their containment relation is visually represented by nesting
a place graph node inside another one. Ports of nodes are represented as black bullets; they can be linked
together to form edges. Moreover, ports can be linked to outer names, and edges can be linked to inner
names of the link graph interface. By convention, outer names are drawn above a bigraph figure while
inner names are drawn below.

In the following, we introduce a sample bigraph serving as running example. Consider an instance of
a cyber-physical space that models a printing scenario, inspired by [10]; an office environment comprised
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of two rooms, where one contains a computer and a printer, while the other one contains a user who
holds a print job. A user can submit the job for printing through the computer connected to the printer.
Example 1 focuses on static aspects of this system, i.e. it shows a snapshot at a particular point of time.

jeff

Room
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Job
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Printer
Computer 0

Spool

1
v1e1

v2 v4

v5

e2 v6
v3

v7
e3

Figure 1: Bigraph model of a context-aware spooling system.

Example 1 (Snapshot of a bigraph model of a context-aware printing system). Fig. 1 shows a visual
representation of a bigraph B1 : 〈2, /0〉 → 〈1,{jeff}〉 over signature Σ1 = {Job : 0, User : 1, Room :
1, Spool : 1, Printer : 2, Computer : 1}. It consists of a single root and defines one outer name je f f .
The root contains nodes corresponding to a print Spool and two Rooms. The rooms are connected by
an edge, the ports being linked to this edge, semantically representing a connection that corresponds
to room doors. The left Room contains a Printer which is connected to the print Spool, by linking the
ports of the Printer and the print Spool with a common edge. Moreover, a node of control Computer is
connected to the Printer. The Room on the left and the Spool contain sites, which serve as placeholders
to denote the presence of unspecified nodes (representing unspecified entities). The Room on the right
contains a User, in turn containing a print Job which has not yet been submitted for printing. A link
from the user’s port to outer name jeff identifies the User. In Fig. 1, grey labels identify nodes and edges
for explanation purposes in following sections.

3 Graph-based Representation of EMOF Models

In MDE, the conceptual contents of a model are usually considered as a typed attributed graph which is
known as the abstract syntax graph (ASG) of a model. The allowed types of nodes and edges in an ASG
as well as their possible relations are typically defined by a meta-model which thus serves as an abstract
syntax specification. In the remainder of this section, we introduce our graph-based representation of
meta-models and instance models. The formalization is based on [3, 9] and is fully compatible with the
EMOF standard.

Graphs and graph morphisms. Following object-oriented modeling principles of the EMOF stan-
dard, our basic notion of a graph refers to a directed unlabelled graph G=(GN ,GE ,srcG, tgtG) which con-
sists of a set GN of nodes, a set GE of edges, as well as source and target functions srcG, tgtG : GE →GN

associating to each edge its source and target node. Given two graphs G and H, a pair of functions
( fN , fE) with fN : GN→HN and fE : GE→HE , forms a graph morphism f : G→H if it preserves source
and target, i.e. fN ◦ srcG = srcH ◦ fE and fN ◦ tgtG = tgtH ◦ fE . In other words, for each edge eG ∈ GE

there is a corresponding edge eH = fE(eG) ∈HE such that srcG(eG) is mapped to srcH(eH) and tgtG(eG)
is mapped to tgtH(eH).
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Meta-models as type graphs. A meta-model is formally treated as a distinguished graph called type
graph, whose nodes and edges represent node types and edge types, respectively. In addition, a type
graph comprises the definition of an inheritance hierarchy including abstract node types, a containment
structure, opposite edges representing bidirectional edge types, and multiplicities attached to edge types.

Definition 5 (Type graph). A type graph T G = (T, I,A,C,OE,mult) is a graph T = (TN ,TE ,srcT , tgtT ),
representing node types and edge types, equipped with the definition of a type hierarchy I ⊆ TN ×TN ,
which must be an acyclic relation, a set A⊆ TN identifying abstract node types, a containment structure
C ⊆ TE , and an anti-reflexive, symmetric and unique relation opposite edges OE ⊆ TE×TE representing
bidirectional edge types. Moreover, multiplicities can be attached to edge types by function mult : TE →
Mult. Mult denotes the set of multiplicities, and a multiplicity is a pair [lb,ub] ∈ N× (N∪{∗}) with
lb≤ ub or ub = ∗.

Given (x,y) ∈ I, x refers to the subtype and y to the supertype induced by the inheritance hierarchy.
We use function allSub : TN → 2TN with allSub(x) = {y ∈ TN | (y,x) ∈ I+} and I+ being the transitive
closure of the inheritance relation I, to refer to all subtypes of a node type.

Models as typed graphs. We formalize the typing relation between models and meta-models by a
special graph morphism, called typing morphism, relating a typed graph with its associated type graph.

Definition 6 (Typed graph and typing morphism). An instance graph G is typed over a fixed type graph
T G if there is a typing morphism typeG : G→ T which maps the nodes and edges of G to those of T in a
suitable way, i.e. for each edge eG ∈ GE there is a corresponding edge eT = typeG(eG) ∈ TE , such that:

• srcG(eG) is mapped to srcT (eT ) or any subtype x ∈ allSub(srcT (eT )), and

• tgtG(eG) is mapped to tgtT (eT ) or any subtype x ∈ allSub(tgtT (eT )).

We say that graph G typed over T G is valid if there are no containment cycles, each node has at
most one container, and all opposite edges are handled consistently. In the sequel, speaking about typed
graphs, we assume them to be valid.

Attributed graphs. Throughout this paper, we largely neglect the formal treatment of node attributes.
However, they can be handled by following the definition of attributed graphs, which can be found in
[13]. The main idea of formalizing node attributes is to consider them as edges of a special kind referring
to (i) data types in case of type graphs and (ii) data values in case of typed graphs.

Notational conventions. We adopt the syntax of UML class and object diagrams as a compact visual
notation for type and instance graphs, respectively. Visual connections between nodes without arrow-
heads denote bidirectional edges. Although formally treated as edges of a special kind, attributes are
shown as integral parts of nodes. For node types, we use the notation a : DT to denote the declaration of
an attribute a of type DT . For instance graph node attributes, we write a = v to symbolize the assignment
of value v to attribute a. For a given node x ∈ GN , we write x.a to refer to the value of its attribute a.

4 A Canonical Mapping of Bigraphs to Typed Graphs

In this section, we present a canonical mapping of bigraphs to typed graphs. We first introduce a basic
type graph T GBase which models the constituents of bigraphs in a natural way, following standard object-
oriented design principles. Subsequently, we show how to extend T GBase to a type graph T GΣ for a given
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bigraphical signature Σ. Having compatible type definitions Σ and T GΣ at hand, we we can finally define
the relation between a bigraph B over Σ and its corresponding graph G typed over T GΣ.

4.1 Basic Type Graph

A basic type graph modeling the core concepts of bigraphs is shown in Fig. 2. The left-hand side of Fig. 2
models the elements of the place graph. We have an abstract node type BPlace for representing places;
the nesting of places is represented by instances of the edge type bPrnt and its opposite bChld. There are
three concrete subtypes of BPlace, namely BRoot, BNode and BSite in order to represent the roots, nodes
and sites of a bigraph, respectively. We use attributes index:int to index the roots and sites. The right-
hand side of Fig. 2 models the elements of the link graph. An instance of BPoint is connected to exactly
one instance of BLink via an edge of type bLink. Conversely, an instance of BLink is connected to one
or more instances of type BPoint via edges of type bPoints. Edge types bLink and bPoints are opposite
to each other. Node types BPoint and BLink are abstract node types. Each of them has two subtypes,
namely BPort and BInnerName as well as BEdge and BOuterName, respectively. The containment edge
type bPorts expresses that ports are contained by nodes of type BNode; conversely, each node of type
BPort has a parent node of type BNode, expressed by edge type bNode. Edge types bPorts and bNode
are opposite to each other, thus defining a bidirectional edge type. We use attribute index:int to index
the ports in the graph-based representation of a bigraphical node. We will refer to the basic type graph
as T GBase = (TBase, IBase,ABase,CBase,OEBase,multBase) with TBase = (TBaseN ,TBaseE ,srcTBase , tgtTBase).

Figure 2: Basic type graph T GBase modeling the anatomy of bigraphs

4.2 Mapping Bigraphical Signatures to Type Graphs

The basic type graph introduced in Fig. 2 is generic, i.e., it provides no information about bigraphical
signatures: it neither models the controls nor the arities (number of ports) of nodes. To overcome this,
hereafter we extend the basic type graph for a given signature. We handle controls through a control-
compatible extension of the basic type graph w.r.t. a given signature. We then address arities via an
additional well-formedness rule defined over a control-compatible extension of the basic type graph.

Controls. Our control-compatible extension of the basic type graph w.r.t. a given signature introduces
for each control defined by the signature a corresponding subtype of the generic node type BNode.

Let Σ = (κ,ar) be a bigraphical signature and T G a type graph extending T GBase, i.e. we have
T G ⊇ T GBase. We say that T G extends T GBase in a control-compatible way w.r.t. Σ, if TN = TBaseN ∪κ ,
TE = TBaseE , srcT = srcTBase , tgtT = tgtTBase , I = IBase∪{(x,BNode) | x ∈ κ}, A = ABase, C =CBase, OE =
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OEBase, and mult = multBase. In the following, we write T Gκ to emphasize the fact that a type graph
extends the basic type graph T GBase in a control-compatible way w.r.t. to a signature Σ.

Please note that bigraphical controls defined by Σ and a subset of the identifiers of node types defined
by Tκ are drawn from the same set κ . To avoid confusion, we introduce an identity function Φ = Idκ on
set κ: given a control K ∈ κ , we use the notation Φ(K) to refer to its corresponding node type in Tκ .

Arities. To handle arities defined by a signature Σ, we introduce an additional well-formedness rule
defined over the control-compatible extension of the basic type graph w.r.t. Σ. For each node type Φ(K)
we restrict the multiplicity [0..∗] defined by the generic edge type bPorts to a fixed value ar(K). We use
first order logic to formalize the respective well-formedness rule.

Let Σ be a signature and T Gκ be an extension of T GBase, control-compatible w.r.t. Σ. For each graph
G typed over T GΣ the following condition must hold, where ran(Φ) refers to the range of function Φ:

∀n ∈ Gn : typeG(n) ∈ ran(Φ) =⇒ |{e | srcG(e) = n∧ typeG(e) = bPorts}|= ar(Φ−1(typeG(n))) (1)

Given a node Gn with typeG(n) ∈ ran(Φ), {e | srcG(e) = n∧ typeG(e) = bPorts} refers to its set of
outgoing edges of type bPorts. The cardinality of this set has to be equal to the aritiy of the corresponding
control Φ−1(typeG(n)).

Bigraphical signatures as type graphs. Given a bigraphical signature Σ and a type graph T G, we say
that T G is compatible to Σ if (i) it extends the basic type graph T GBase in a control-compatible way and
(ii) control arities are properly represented as additional well-formedness rule (1). In the following, we
write T GΣ to indicate the fact that a type graph is compatible w.r.t. to a signature Σ.

Example 2 (Bigraphical signature as type graph). Fig. 3 shows how the bigraphical signature Σ1 of our
running printer example is represented as type graph T GΣ1 . Extensions over the basic type graph T GBase

of Fig. 2 are colored in light gray. Controls Job, Printer, Room, Spool, User and Computer are modeled
as node types, each of them being a subtype of the basic node type BNode. Note that the well-formedness
rule (1) which handles the arities of a signature is generic and needs not to be adjusted.

Figure 3: Type graph T GΣ1 compatible to signature Σ1 of our running printer example

4.3 Mapping Bigraphs to Typed Graphs

Now that we have specified how a bigraphical signature Σ is mapped to a typed graph T GΣ in a com-
patible way, we can finally define the relation between a bigraph B over Σ and its corresponding typed
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graph G over T GΣ. First, we define an element mapping which bijectively maps the elements of B to the
nodes of G in a suitable way. Subsequently, a set of additional soundness criteria will be specified over
the basic element mapping.

Basic element mapping. Let us first define a basic element mapping which bijectively maps the el-
ements of a bigraph to the nodes of a typed graph in a suitable way. The domain of this mapping is
the set of elements of a bigraph, which is the union of its nodes, edges, sites, roots, inner names, outer
names and ports. To establish this mapping formally, we have to recall here that the identifiers of the sites
and roots of a bigraph are drawn from potentially overlapping sets, namely the finite ordinals {0, . . . ,k}
and {0, . . . ,m}, respectively (see Section 2). Thus, in order to distinguish the roots and sites, we in-
troduce two utility functions, namely the two substitutions σk : k→ k[σk] and σm : m→ m[σm], both
injective mappings and we have k[σk]∩m[σm] = /0. Analogously, identifiers for the inner names X and
the outer names Y are drawn from the common infinite set X and thus potentially overlapping. Again,
just to distinguish the inner names from the outer names, we introduce substitutions σX : X → X [σX ] and
σY : Y → Y [σY ], both injective mappings and we have X [σX ]∩Y [σY ] = /0.

We are now ready to define the mapping of the elements of a bigraph B to the nodes of an instance
graph G as a bijective function

φ : VB]EB]PB] k[σk]]X [σX ]]m[σm]]Y [σY ]→ GN

with

φ(x) =



IdVB(x), if x ∈VB

IdEB(x), if x ∈ EB

Idk[σk](x), if x ∈ k[σk]

IdX [σX ](x), if x ∈ X [σX ]

Idm[σm](x), if x ∈ m[σm]

IdY [σY ](x), if x ∈ Y [σY ].

Proper typing of nodes. The nodes in an instance graph G must be properly typed to correctly rep-
resent a generic bigraph and the controls. Let Σ be a signature and T GΣ its compatible type graph.
Furthermore, let B be a bigraph over Σ and G be an instance graph over T GΣ with elements of B bijec-
tively mapped to the nodes of G by the basic element mapping φ . The nodes in G are properly typed if
the following condition holds:

∀x ∈ GN : (
typeG(x) ∈ ran(Φ) =⇒ φ−1(x) ∈VB ∧ ctrlB(φ−1(x)) = Φ−1(typeG(x))

)
∧(

typeG(x) = BEdge =⇒ φ−1(x) ∈VE
)
∧(

typeG(x) = BSite =⇒ φ−1(x) ∈ k[σk]
)
∧(

typeG(x) = BInnerName =⇒ φ−1(x) ∈ X [σX ]
)
∧(

typeG(x) = BRoot =⇒ φ−1(x) ∈ m[σm]
)
∧(

typeG(x) = BOuterName =⇒ φ−1(x) ∈ Y [σY ]
)

Additional soundness criteria. A bijective element mapping is necessary for inducing a unique trans-
formation from bigraphs to typed graphs (and vice versa), however, it is obviously not sufficient. To
that end, we introduce a set of additional soundness criteria defined over the basic element mapping
satisfying typing constraints. In the following, let again Σ be a signature and T GΣ its compatible type
graph. Furthermore, let B be a bigraph over Σ and G be an instance graph over T GΣ with elements of
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B bijectively mapped to the nodes of G by the basic element mapping φ , nodes of G are properly typed.
We have the following additional soundness criteria:

(1) The nesting of places in B must coincide with the containment structure in G:

∀pB ∈VB] k :
∃eG ∈ GE : srcG(eG) = φ(pB) ∧ tgtG(eG) = φ(prntB(pB)) ∧ typeG(eG) = bPrnt

∀eG ∈ EG : typeG(eG) = bPrnt =⇒
∃pB ∈VB] k : φ(pB) = srcG(eG) ∧ φ(prntB(pB)) = tgtG(eG)

(2) The linking structure in B must coincide with the linking structure in G:

∀pB ∈ X ]PB :
∃eG ∈ GE : srcG(eG) = φ(pB) ∧ tgtG(eG) = φ(linkB(pB)) ∧ typeG(eG) = bLink

∀eG ∈ EG : typeG(eG) = bLink =⇒
∃pB ∈ X ]PB : φ(pB) = srcG(eG) ∧ φ(linkB(pB)) = tgtG(eG)

(3) The indexing of the roots in B must be consistent to the indices of their corresponding representa-
tions in G:

∀i ∈ {0, . . . ,m−1}, nG ∈ GN : (i,nG) ∈ φ ⇐⇒ nG.index = i

(4) The indexing of the sites in B must be consistent to the indices of their corresponding representa-
tions in G:

∀i ∈ {0, . . . ,k−1}, nG ∈ GN : (i,nG) ∈ φ ⇐⇒ nG.index = i

(5) The indexing of the ports in B must be consistent to the indices of their corresponding representa-
tions in G:

∀(v, i) ∈ PB, nG ∈ GN : ((v, i),nG) ∈ φ ⇐⇒ nG.index = i

Example 3 (Sample bigraph as typed graph). The sample bigraph B1 over Σ1 of Fig. 1 is mapped to the
graph G1 typed over the printing system type graph T GΣ1 shown in Fig. 4. Note that some of the nodes
of Fig. 4 have identifiers, indicated by the notation id:NodeType. They are aligned to the identifiers of
bigraphical nodes and edges used in Fig. 1 and thus symbolize parts of the bijective mapping φ from
bigraph elements in B1 to the nodes in G1. For the remaining nodes, identifiers are omitted in Fig. 4. All
nodes are properly typed and additional soundness criteria regarding the nesting of places, the linking
structure as well as the indexing of roots, sites and ports are fulfilled.

5 Application-Specific Variation Points

In general, the definition of an appropriate abstract syntax of a modeling language depends on several
design decisions, many of which are application-specific. The standard UML meta-model, for example,
mainly targets the construction of UML editors but has several drawbacks for the construction of model
differencing tools, see e.g. [16]. In this section, we address application-specific variation points of an
abstract syntax for bigraphs. In order to deal with this variability, we apply basic principles known from



Timo Kehrer, Christos Tsigkanos & Carlo Ghezzi 25

Figure 4: Sample bigraph B1 over Σ1 as typed graph G1 over T GΣ1

the field of software product line engineering (SPLE) to optimally support a wide range of applications.
In Section 5.1, we first identify variation points of an abstract syntax for bigraphs. The results of our
variability analysis are formally documented in terms of a feature model yielding the configuration space
of a bigraphical abstract syntax. Subsequently, Section 5.2 briefly discusses how to reconfigure canonical
type and instance graphs using standard variability mechanisms adopted from model-based software
product line engineering. We do not claim the presented variability model to be complete; however, the
proposed framework can be easily extended to support additional variation points and variants.

5.1 Variability Model

Feature models are a widely used method to model variability in software product line engineering.
FODA-like feature models [15] have an intuitive tree-like graphical syntax and a precise formal semantics
which can be denoted as propositional formulae over Boolean feature variables [2]. The features of Fig. 5
define common and variable parts among possible variants of a bigraphical abstract syntax. The root
feature, called Bigraphical Abstract Syntax (AS), has four sub-features constituting the main variation
points. Please note that all of these four features are abstract features (the feature names are printed in
italics in the feature diagram), i.e. they are merely used to structure the feature model along the main
variation points.

Typing: The variation point Typing (T) defines two alternatives. In the Strongly Typed (ST) variant,
the types of graph nodes representing bigraphical nodes are defined by the typing morphism. This
variant is selected for our canonical definition of an abstract syntax presented in Section 4. In
a Weakly Typed (WT) variant, controls of bigraphical nodes are simply attached as attributes to
the corresponding nodes in the typed graph, while the nodes themselves are of the generic node
type BNode. Weak typing is sensible if applications shall dynamically retype nodes representing
bigraphical nodes.

Roots: Concerning the variation point Roots (R), our canonical definition of an abstract syntax for bi-
graphs comprises the two optional sub-features ER and RI. Firstly, the feature Explicit Roots (ER)



26 An EMOF-Compliant Abstract Syntax for Bigraphs

denotes that bigraphical roots are explicitly represented as dedicated nodes in the typed graph.
Secondly, feature Root Indices (RI) means that bigraphical roots are indexed in the graph-based
representation, which requires that bigraphical roots are explicitly represented. The representation
of root indices is necessary if a graph-based representation needs to be re-transformed into a bi-
graph without the loss of any information. However, if this is not required in an application context
and if we are striving for a compact representation, optional features RI and ER can be omitted.

Sites and ports: Similar variants like the one discussed for the variation point Roots (R) exist for the
graph-based representation of sites and ports, cf. variation points Sites (S) and Ports (P) in Fig. 5.
Likewise, all optional sub-features, namely Explicit Sites (ES) and Site Indices (SI) as well as
Explicit Ports (ES) and Port Indices (PI) are present in the canonical abstract syntax.

Bigraphical Abstract Syntax
(AS)

Strongly Typed
(ST)

Weakly Typed
(WT)

Explicit Roots
(ER)

Root Indices
(RI)

Explicit Sites
(ES)

Site Indices
(SI)

Explicit Ports
(EP)

Port Indices
(PI)

Typing
(T)

Roots
(R)

Sites
(S)

Ports
(P)

requires requires requires

Mandatory AlternativeOptionalAbstractFF Concrete

Figure 5: Variability model defining common and variable parts among possible variants of a bigraphical
abstract syntax

5.2 Reconfiguring the Canonical Abstract Syntax

To reconfigure the canonical abstract syntax for bigraphs according to a selected feature configuration,
suitable variability mechanisms have to be chosen on the type and on the instance level, i.e. both type
and instance graphs have to be configured according to a selected feature combination.

Type-level variability. We adopt the idea of model templates [7], also known as 150% models, to es-
tablish a suitable variability mechanism on the type level; instead of having a fixed type graph derived
from a bigraphical signature, we use a 150% type graph which is a superimposition of all possible vari-
ants and includes variability. A 150% type graph for our running printer example is shown in Fig. 6. It
differs from the canonical type graph of Fig. 4 in that BNode has an additional attribute control:String
and is defined as a subtype of BPoint. Moreover, some of the elements of the 150% type graph are anno-
tated by propositional formulae over features, thus implicitly defining a mapping between features and
the 150% type graph. Given a desired configuration in terms of a valid feature combination, variability
is resolved as follows: Elements which are not mapped to a feature are included in any possible con-
figuration; variable elements are included in a configuration if the annotated propositional formula over
features evaluates to true. For example, the subtype relationship between BNode and BPoint will only
be included in the final “100% type graph” if ports shall be not represented explicitly (¬EP ), i.e. nodes
of type BNode can be linked to nodes of types BEdge and BOuterName directly in that case.
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Figure 6: 150% meta-model for our running printer example

Extending the canonical type graph obtained for a given bigraphical signature to a 150% type graph
is straightforward. Most of the extensions, including the respective annotations, refer to the basic type
graph and can be handled in a generic way. In addition, annotation ST refers to each node type and the
respective subtyping relationship induced by controls of the signature.

Instance-level variability. At the instance level, we use a delta-oriented approach [6, 22] as a suitable
variability mechanism. The idea is that the canonical graph representation derived from a given bigraph,
which can be referred to as core variant in the delta-oriented terminology, is transformed into an alter-
native variant by the application of a set of deltas. A delta is basically a patch removing, replacing or
adding instance graph elements related to a feature. Moreover, a delta is equipped with a delta appli-
cation condition. Similarly to the annotation in the 150% type graph, a delta application condition is a
propositional expression over features of the feature model. A delta has to be applied to the core vari-
ant if the propositional formula evaluates to true. An overview of the required deltas, their application
conditions (AC) and a brief description of each delta is presented in Table 1.

AC Description
∆(ST,WT ) WT To switch from the strongly typed variant to the the weakly typed one, each node

representing a bigraphical node has to be retyped to the generic node type BNode
and the value of the attribute control has to be set accordingly.

∆(RI,ER) ¬RI To remove the indexing of root nodes, the attribute index has to be unset for each
node of type BRoot.

∆(ER,AS) ¬ER To abstain from an explicit representation of root nodes, each node of type BRoot
together with its incident edges has to be deleted.

∆(SI,ES) ¬SI Analogous to ∆(RI,ER).
∆(ES,AS) ¬ES Analogous to ∆(ER,AS).
∆(PI,EP) ¬PI Analogous to ∆(RI,ER).
∆(EP,AS) ¬EP Analogous to ∆(ER,AS).

Table 1: Set of deltas specifying basic reconfigurations on the instance level
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6 Tool Integration and Example Application

In this section, we briefly outline how to integrate the approach into an existing MDE tool environment.
We give an example application of such an integration showcasing the benefits of the proposed approach.

Integration into an MDE environment. Type and instance graphs can be implemented as meta-
models and models using various technical MDE frameworks. In principle, any framework can be used
as long as it supports the EMOF standard defined by the OMG. Since the available bigraphical research
prototypes use tool-specific representations, input and output transformations have to be developed for
interfacing with them. The mapping of bigraphs to typed graphs presented in Section 4 serves as a for-
mal specification for this. The variability framework presented in Section 5 can be implemented using
available model transformation techniques. As a proof of concept, we implemented the approach as
an extension of the Eclipse IDE integrating the bigraph modeling tool Big Red [10] with the Eclipse
Modeling Framework [24], the de-facto reference implementation of OMG’s EMOF standard.

Example application. As an example application, we extended the bigraph modeling environment
Big Red by an additional constraint checking facility which is based on the Object Constraint Language
(OCL) [12]. This extension is motivated by the fact that the designer of a bigraphical domain-specific
modeling language might wish to add context-sensitive constraints to the language definition restricting
the set of meaningful models for the domain of interest and supporting automated constraint validation.
In our running example of a context-aware printer system, we can think of the following invariants:

(iv1) A Spool may only contain Jobs and Sites as nested places.

(iv2) Due to capacity restrictions, a Spool may contain at most a pre-defined number n of Jobs. More-
over, if the maximum capacity of n Jobs is reached, the Spool may not contain a Site representing
further unspecified Jobs.

(iv3) Rooms may be linked to each other only, i.e. they must not be linked to other nodes or outer names.

In MDE, invariants like these are typically specified using OCL expressions defined over the meta-
model and used to reason on instance structures. Having an EMOF-compliant abstract syntax for bi-
graphs at hand, we can formally capture our sample invariants in OCL as shown below. We assume OCL
expressions to be defined over the canonical meta-model of the printer example, and the capacity n of
the Spool (iv2) to be set to 100 Jobs. Existing work on bigraphs does not provide a dedicated concept
to express invariants like these. As a workaround, some invariants could be specified as bigraph patterns
which are forbidden and use bigraph matching to verify their absence, however, very inconveniently;
for invariant iv1, for instance, a bigraphical anti-pattern would consist of a Spool containing some node
having a control different from Job. An anti-pattern is required for all remaining controls in the signature.

7 Conclusion and Future Work

In this paper, we presented an abstract syntax for bigraphs and reported on ongoing work to realize
a complete framework for support of bigraph-enabled reasoning through state of the art model-driven
engineering techniques. Our effort is motivated by the lack of a precise definition of an abstract syntax for
bigraphical modeling languages, which hinders the interoperability between existing bigraphical tools,
and the need to enable development support, facilitate reasoning and evaluate the bigraphical theory
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context Spool
inv iv1:

self.bChld–>forAll(c | c.oclIsTypeOf(BSite) or c.oclIsTypeOf(Job))
inv iv2:

let n : integer = 100
self.bChld–>size() <= n and

self.bChld–>size() = n implies not(self.bChld–>exists( c | c.oclIsTypeOf(BSite)))
context Room

inv iv3:
let port : BPort = self.bPorts–>first()
port.bLink.oclIsTypeOf(BEdge) and port.bLink.bPoints–>forAll(

p | p.oclIsTypeOf(BPort) and p.oclAsType(BPort).bNode.oclIsTypeOf(Room)))

in real-world applications through MDE technologies and modeling environments. We proposed an
abstract syntax for bigraphs which is compliant with the EMOF standard defined by the OMG. We used
typed graphs as a formal underpinning of EMOF-based models and presented a canonical mapping from
bigraphs to typed graphs. Since the abstract syntax of a modeling language depends on application-
specific design decisions, we discussed variation points in the graph-based representation of bigraphs
and showed how variability can be handled based on software product line techniques.

As for future work, to realize a complete framework, we will need to better understand the relation
between bigraphical reactive systems and graph transformation systems [8]. Moreover, the mapping
previously presented can be extended to other forms of bigraphs, e.g. bigraphs with sharing [23], with
directed edges [1] or stochastic semantics [14]. From a technical point of view, we plan to provide
a reference implementation based on Eclipse to the community, facilitating interchange of bigraphical
models and enabling the integration of MDE-based techniques.
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