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thiago.alves@ifce.edu.br

Ana Teresa Martins∗

Department of Computing
Federal University of Ceará, Brazil
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We investigate the following problem: given a sample of classified strings, find a first-order sentence
of minimal quantifier rank that is consistent with the sample. We represent strings as successor string
structures, that is, finite structures with unary predicates to denote symbols in an alphabet, and a
successor relation. We use results of the Ehrenfeucht–Fraı̈ssé game over successor string structures
in order to design an algorithm to find such sentence. We use conditions characterizing the winning
strategies for the Spoiler on successor strings structures in order to define formulas which distinguish
two strings. Our algorithm returns a boolean combination of such formulas.

1 Introduction

In this paper, we explore the problem of finding a first-order formula that describes a given sample
of classified strings. This problem is meaningful because strings may be used to model sequences of
symbolic data such as biological sequences. For instance, in Table 1, we present a sample of classified
strings.

Table 1:

String Class
stviil positive
ktvive negative
stviie positive
st piie negative

The sample in Table 1 represents biological sequences which have been associated with a group of
diseases called amyloidosis [22]. The first-order sentence below represents that stv occurs in a string,
and it describes the sample. Variables range over positions in strings, Pa(i) is true if the symbol a occurs
in position i, and S represents the successor relation over positions.

∃x1∃x2∃x3(Ps(x1)∧S(x1,x2)∧Pt(x2)∧S(x2,x3)∧Pv(x3)).

An algorithm to deal with the problem of finding a formula of minimal quantifier rank consistent
with a given sample of structures over an arbitrary vocabulary is introduced in [13]. As this algorithm
works for arbitrary finite relational structures, it runs in exponential time. This algorithm is applied in a
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general system for learning formulas defining board game rules. These results are also used in finding
reductions and polynomial-time programs [11, 12]. The work in [17] investigates a variation of the
problem introduced in [13] when the class of structures is fixed. This study in [17] considers monadic
structures, equivalence structures, and disjoint unions of linear orders.

In this paper, we study the problem introduced in [13] when the sample consists of strings represented
by finite structures with a successor relation and a finite number of pairwise disjoint unary predicates.
We call such a structure a successor string structure. A sample S = (P,N) consists of two disjoint, finite
sets P,N of successor string structures. Given a sample S, the problem is to find a first-order sentence ϕS

of minimal quantifier rank that is consistent with S, i.e., it holds in all structures in P and does not hold
in any structure in N. The size of the sample is the sum of the lengths of all strings in the sample. We
intend to solve this problem in polynomial time in the size of S.

Ehrenfeucht–Fraı̈ssé games (EF games) [5] is a fundamental technique in finite model theory [3, 6]
in proving the inexpressibility of certain properties in first-order logic. For instance, first-order logic
cannot express that a finite structure has even cardinality. The Ehrenfeucht–Fraı̈ssé game is played on
two structures by two players, the Spoiler and the Duplicator. If the Spoiler has a winning strategy for
k rounds of such a game, it means that the structures can be distinguished by a first-order sentence ϕ

whose quantifier rank is at most k, i.e., ϕ holds in exactly one of these structures.
Besides providing a tool to measure the expressive power of a logic, Ehrenfeucht–Fraı̈ssé games

allow one to investigate the similarity between structures. In [14], explicit conditions are provided for
the characterization of winning strategies for the Duplicator on successor string structures. Using these
conditions, the minimum number of rounds such that the Spoiler has a winning strategy in a game
between two such structures can be computed in polynomial time in the size of the structures. This
allows one to define a notion of similarity between successor string structures using Ehrenfeucht–Fraı̈ssé
games.

An essential part of the algorithm in [13] is the computation of r-Hintikka formulas from structures.
An r-Hintikka formula is a formula obtained from a structure A and a positive integer r that describes the
properties of A on the Ehrenfeucht–Fraı̈ssé game with r rounds [3]. An r-Hintikka formula ϕr

A has size
exponential in the size of A and holds exactly on all structures B such that the Duplicator has a winning
strategy for the Ehrenfeucht–Fraı̈ssé game with r rounds on A and B. Besides, Hintikka formulas are
representative because any first-order formula is equivalent to a disjunction of Hintikka formulas.

We use results of the Ehrenfeucht–Fraı̈ssé game over successor string structures [14] in order to
design an algorithm to find a sentence which is consistent with the sample in polynomial time. Also,
as the size of a Hintikka formula is exponential in the size of a given structure, our algorithm does
not use Hintikka formulas. In our case, we define what we call distinguishability formulas. They are
defined for two successor string structures u, v and a natural number r based on conditions characterizing
the winning strategies for the Spoiler on successor strings structures [14]. In this way, we show that
distinguishability formulas hold on u, do not hold on v, and they have quantifier rank at most r. This
result is also crucial for the definition of our algorithm and to guarantee its correctness. Our algorithm
returns a disjunction of conjunctions of distinguishability formulas. We also show that any first-order
formula over successor string structures is equivalent to a boolean combination of distinguishability
formulas. This result suggests that our approach has the potential to find any first-order sentence.

Our framework is close to grammatical inference. Research in this area investigates the problem
of finding a language model of minimal size consistent with a given sample of strings [9]. A language
model can be a deterministic finite automaton (DFA) or a context-free grammar, for instance. Grammat-
ical inference has applications in many areas because strings may be used to model text data, traces of
program executions, biological sequences, and sequences of symbolic data in general.
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A recent model-theoretic approach to grammatical inference is introduced in [20]. In this approach, it
is also used successor string structures to represent strings and first-order sentences as a representation of
formal languages. Then, our approach may also be seen as a model-theoretic framework to grammatical
inference. The first main difference is that we work with full first-order logic, while the approach in [20]
uses a fragment called CNPL. Formulas of CNPL have the form

∧
w1∈W1

φw1 ∧
∧

w2∈W2
φw2 such that each

φu is a first-order sentence which defines exactly all strings w such that u is a substring of w. Also, CNPL
is less expressive than first-order logic. Second, given k, the goal of the framework in [20] is to find a
CNPL formula such that max{|w| | w ∈W1 ∪W2} ≤ k and |w| is the length of w. Our goal is to find a
first-order sentence of minimal quantifier rank.

It is well known that a language is definable in first-order logic over successor string structures if and
only if it is a locally threshold testable (LTT) language [21]. A language is LTT if membership of a string
can be tested by inspecting its prefixes, suffixes, and infixes up to some length, and counting infixes up to
some threshold. The class of LTT languages is a subregular class, i.e., a subclass of the regular languages
[19]. A grammatical inference algorithm that returns a DFA may return an automaton which recognizes
a language not in LTT. Therefore, our results can be useful when one desires to find a model of an LTT
language from a sample of strings. We believe that this is the first work on finding a language model of
LTT languages from positive and negative strings.

A recent logical framework to find a formula given a sample, also with a model-theoretic approach,
can be found in [8, 7]. In this framework, a sample consists of classified elements from only one structure.
The problem is to find a hypothesis consistent with the classified elements where this hypothesis is a
formula from some logic. Recall that, in our framework, samples consist of many classified structures.
Another logical framework for a similar problem is Inductive Logic Programming (ILP) [15, 2]. ILP
uses logic programming as a uniform representation for the sample and hypotheses. As far as we know,
our work has no direct relationship with these frameworks.

This paper is organized as follows. In Section 2, we give the necessary definitions of formal language
theory and finite model theory used in this paper. Also in Section 2, we have an EF game characterization
on strings, and, in Section 3, we translate it into first-order sentences. In Section 3, we also introduce
the concept of distinguishability formulas providing some useful properties. In Section 4, we introduce
our algorithm, give an example of how the algorithm works, and show its correctness. Furthermore, in
this section, we briefly discuss how to find a formula with the minimum number of conjunctions. We
conclude in Section 5.

2 Formal Languages and EF Games on Strings

We consider strings over an alphabet Σ. The set of all such finite strings is denoted by Σ∗, and the empty
string by ε . If w is a string, then |w| is the length of w. Let uv denote the concatenation of strings u and v.
For all u, v, w, x ∈ Σ∗, if w = uxv, then x is a substring of w. Moreover, if u = ε (resp. v = ε) we say that
x is a prefix (resp. suffix) of w. We denote the prefix (resp. suffix) of length k of w by pre fk(w) (resp.
su f fk(w)). Let i and j be positions in a string. The distance between i and j, denoted by d(i, j), is |i− j|.
A formal language is a subset of Σ∗. A language is locally threshold testable (LTT) if it is a boolean
combination of languages of the form {w | u is prefix of w}, for some u ∈ Σ∗, {w | u is suffix of w}, for
some u ∈ Σ∗, and {w | w has u as infix at least d times }, for some u ∈ Σ∗ and d ∈ N [23]. Therefore,
membership of a string can be tested by inspecting its prefixes, suffixes and infixes up to some length,
and counting infixes up to some threshold. We assume some familiarity with formal languages. See [10]
for details.
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We view a string w = a1...an as a logical structure Aw over the vocabulary τ = {S,(Pa)a∈Σ,min,max}
with domain A = {1, ...,n}, that is, the elements of A are positions of w. The predicate S is the successor
relation and each Pa is a unary predicate for positions labeled with a. The constants min and max are
interpreted as the positions 1 and n, respectively. We call these structures successor string structures.
We assume some familiarity with first-order logic (FO), and we use this logic over successor string
structures. For details on first-order logic see [3, 4]. The size of a first-order formula ϕ is the number
of symbols occurring in ϕ . By the quantifier rank of a formula, we mean the depth of nesting of its
quantifiers as in the following.

Definition 1 (Quantifier Rank). Let ϕ be a first-order formula. The quantifier rank of ϕ , written qr(ϕ),
is defined as

qr(ϕ) :=


0, if ϕ is atomic
max(qr(ϕ1),qr(ϕ2)), if ϕ = ϕ1�ϕ2 such that � ∈ {∧,∨,←}
qr(ψ), if ϕ = ¬ψ

qr(ψ)+1, if ϕ = Qxψ such that Q ∈ {∃,∀}

Given a first-order sentence ϕ over successor string structures, the formal language defined by ϕ is simply
L(ϕ) := {w ∈ Σ∗ |Aw |= ϕ}. In general, we do not distinguish between successor string structures and
strings. As an example, if ϕ = ∃xPa(x), then L(ϕ) = Σ∗aΣ∗. LTT languages can be defined in terms of
first-order logic. A language is definable by a sentence of FO over successor string structures if and only
if it is LTT [21].

Now, we can formally define the problem we are interested in. A sample S = (P,N) is a finite
number of classified strings consisting of two disjoint, finite sets P,N ⊆ Σ∗ of strings over an alphabet
Σ. Intuitively, P contains positively classified strings, and N contains negatively classified strings. The
size of a sample S is the sum of the lengths of all strings it includes. We use |S| to denote the size of
the sample S. A sentence ϕ is consistent with a sample S if P ⊆ L(ϕ) and N ∩L(ϕ) = /0. Therefore, a
sentence is consistent with a sample if it holds in all strings in P and does not hold in any string in N.
Given a sample S, the problem consists of finding a first-order sentence ϕ of minimum quantifier rank
such that ϕ is consistent with S.

It is well known that every finite structure can be characterized in first-order logic up to isomorphism,
i.e., for every finite structure A , there is a first-order sentence ϕA such that for all structures B we
have B |= ϕA iff A and B are isomorphic. Since samples are finite sets of finite structures, one can
easily build in polynomial-time a first-order sentence consistent with a given sample. For example,
let P = {bbabbb,baba} and N = {bbbb}. The sentence ϕbbabbb ∨ϕbaba is consistent with the sample.
Unfortunately, the quantifier rank of ϕA is the number of elements in the domain of A plus one. Then,
ϕ = ∃xPa(x) is also consistent with the sample and qr(ϕ) < qr(ϕbbabbb ∨ϕbaba). Therefore, ϕbbabbb ∨
ϕbaba is not a solution to the problem.

Now, we focus on Ehrenfeucht–Fraı̈ssé games and its importance in order to solve the problem we
are considering. Let r be an integer such that r ≥ 0, u and v two successor string structures. The
Ehrenfeucht–Fraı̈ssé game Gr(u,v) is played by two players called the Spoiler and the Duplicator. Each
play of the game has r rounds and, in each round, the Spoiler plays first and picks an element from
the domain A of u, or from the domain B of v. Then, the Duplicator responds by picking an element
from the domain of the other structure. Let ai ∈ A and bi ∈ B be the two elements picked by the Spoiler
and the Duplicator in the ith round. The Duplicator wins the play if the mapping (a1,b1), ...,(ar,br) is
an isomorphism between the substructures induced by a1, ...,ar and b1, ...,br, respectively. Otherwise,
Spoiler wins this play. We say that a player has a winning strategy in Gr(u,v) if it is possible for her
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to win each play whatever choices are made by the opponent. In this work, we always assume that u is
different from v. Note that if r ≥ |u|+ |v|, then the Spoiler has a winning strategy. Therefore, we assume
that r is bounded by |u|+ |v|. Now, we define formulas describing the properties of a structure in EF
games.
Definition 2 (Hintikka Formulas). Let w be a structure, a = a1...as ∈ As, and x = x1, ...,xs a tuple of
variables,

ϕ
0
w,a(x) :=

∧
{ϕ(x) | ϕ is atomic or negated atomic and w |= ϕ[a]},

and for r > 0, ϕ
r
w,a(x) :=

∧
a∈A

∃xs+1ϕ
r−1
w,aa(x,xs+1)∧∀xs+1(

∨
a∈A

ϕ
r−1
w,aa(x,xs+1)).

A Hintikka formula ϕr
w,a describes the isomorphism type of the substructure generated by a in w. We

write ϕr
w whenever s = 0. Given a string w and a positive integer r, the size of the r-Hintikka formula ϕr

w
is O(2r×|w|r). Therefore, since r is bounded by |w|, the size of ϕr

w is exponential in the size of w. The
following theorems are important to prove our main results. They are presented in [3] (Theorem 2.2.8
and Theorem 2.2.11).
Theorem 1 (Ehrenfeucht’s Theorem). Given u and v, and r ≥ 0, the following are equivalent:
• the Duplicator has a winning strategy in Gr(u,v).

• If ϕ is a sentence of quantifier rank at most r, then u |= ϕ iff v |= ϕ .

• v |= ϕr
u.

Theorem 2. Let ϕ be a sentence of quantifier rank at most r. Then, there exists structures u1, ..., uk such
that

|= ϕ ↔ (ϕr
u1
∨ ...∨ϕ

r
us
).

We use Theorem 2 in order to show that any first-order formula over successor string structures is equiv-
alent to a boolean combination of distinguishability formulas. EF games are essential in our framework
because if the Spoiler has a winning strategy in a game on strings u and v with r rounds, then there exists
a first-order sentence ϕ of quantifier rank at most r that holds in u and does not hold in v. Also, in this
case, the sentence ϕr

u is an example of such a sentence. Unfortunately, over arbitrary vocabularies, the
problem of determining whether the Spoiler has a winning strategy is PSPACE-complete [16].

However, it is possible to do better in the particular case of EF games on successor string structures.
For details see [14]. First, we need the following definitions. Let A⊆ N. A partition of A is a collection
of subsets X of A such that each element of A is included in exactly one subset. An l-segmentation of A
is a partition of A with the minimum number of subsets such that for all i, j in the same subset, d(i, j)≤ l
and if i, j are in the same subset X and i ≤ h ≤ j, then h ∈ X . Each subset X in the partition is called a
segment.

In the following, we consider substrings α over Σ such that |α| = 2qα − 1 for some qα > 0. Let
w = w1...wn be a string such that wi ∈ Σ, for i ∈ {1, ...,n}. An occurrence of α is centered on a position
i in a string w if wi−(2qα−1−1)...wi...wi+2qα−1−1 = α . An occurrence of α centered on a position i in w is
free if |minw− i|> 2qα−1 and |maxw− i|> 2qα−1. The set of free occurrences of α in w is Γ(α,w) = {i |
|minw− i|> 2qα−1, |maxw− i|> 2qα−1,wi−(2qα−1−1)...wi...wi+2qα−1−1 = α}. The free multiplicity of α in
w, denoted by γ(α,w), is the number of free occurrences of α in w, i.e., |Γ(α,w)|. The free scattering of
α in w, denoted by σ(α,w), is the number of segments in a 2qα -segmentation of Γ(α,w).
Example 1. Let w= ababababbababaaba and α = aba. Note that qα = 2. The occurrence of α centered
on position 2 in w is not free because |minw−2| ≤ 2. However, the occurrence of α centered on position
4 in w is free. The set of free occurrences of α in w is Γ(aba,w) = {4,6,11,13}. Therefore, γ(α,w) = 4.
A 2qα -segmentation of Γ(α,w) is {{4,6},{11,13}}. Then, σ(α,w) = 2.
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Now, we have a result of EF games on successor string structures.
Theorem 3. [14] Let r be a natural number, u and v be strings. The Duplicator has a winning strategy
in Gr(u,v) if and only if the following conditions hold:

1. d(minu,maxu) = d(minv,maxv) or (d(minu,maxu)> 2r and d(minv,maxv)> 2r);

2. pre f2r(u) = pre f2r(v) and su f f2r(u) = su f f2r(v);

3. σ(α,u)+qα > r and σ(α,v)+qα > r for all α such that |α| = 2qα −1 and (σ(α,u) 6= σ(α,v)
or γ(α,u) 6= γ(α,v)).

Besides the importance of EF games on strings to our framework, we also use the above result to define
the distinguishability formulas. These formulas are defined based on the conditions characterizing a
winning strategy for the Spoiler on successor string structures. In [14], this result is also used to define
a notion of similarity between successor string structures using Ehrenfeucht–Fraı̈ssé games. The EF-
similarity between strings u and v, written EFsim(u,v), is the minimum number of rounds r such that
the Spoiler has a winning strategy in the game Gr(u,v). Then, the EF-similarity between two strings can
be computed in polynomial time in the size of the strings in the following way.

EFsim(u,v) := min{simLength(u,v),simPre f (u,v),simSu f f (u,v),simSub(u,v)}, such that
simLength(u,v) = dlog2(min(|u|, |v|)−1)e,
simPre f (u,v) = min{dlog2(k)e | pre fk(u) 6= pre fk(v)},
simSu f f (u,v) = min{dlog2(k)e | su f fk(u) 6= su f fk(v)},
simSub(u,v) = min{qα +min(σ(α,u),σ(α,v)) | γ(α,u) 6= γ(α,v) or σ(α,u) 6= σ(α,v)}.

Given two strings u and v, EFsim(u,v) can be computed in O((|u|+ |v|)2log(|u|+ |v|)), that is, it can be
computed in polynomial time [14]. Our algorithm’s first step is to compute the sufficient quantifier rank
to distinguish between any two strings u ∈ P and v ∈N. Then, the fact that EFsim(u,v) can be computed
in polynomial time is important to show that our algorithm runs in polynomial time as well.

It is easy to build a first-order sentence consisting of a disjunction of Hintikka formulas of mini-
mal quantifier rank that is consistent with a given sample. For example, let P = {u1}, N = {v1,v2},
r = max{EFsim(u1,v1),EFsim(u1,v2)}, and S = (P,N). The sentence ϕr

u1
is a first-order sentence of

minimal quantifier rank that is consistent with S. Unfortunately, the size of ϕr
u1

is exponential in the size
of S. Therefore, ϕr

u1
can not be built in polynomial time in the size of the sample. This motivates the

introduction of distinguishability formulas in Section 3.

3 Distinguishability Formulas

In this section, we define distinguishability formulas for strings u, v and a natural number r. Distin-
guishability formulas are formulas that hold on u, do not hold on v and they have quantifier rank at most
r. The first step is to show that the conditions of Theorem 3 can be expressed by first-order formulas.
These formulas are defined recursively in order to reduce the quantifier rank. The recursive definitions
can all be simplified to direct definitions with higher quantifier ranks but, in this case, we can not guar-
antee that the quantifier rank is adequate. These formulas are also important to help the explanation, and
they improve readability of sentences returned by our algorithm.

First, we introduce ϕ
d(t1,t2)
≤n . It describes that the distance between terms t1 and t2 is at most n. This

can be used to represent condition 1 of Theorem 3.

ϕ
d(t1,t2)
≤n :=

{
t1 = t2∨S(t1, t2), if n = 1
∃y(ϕd(t1,y)

≤b n
2 c
∧ϕ

d(y,t2)
≤d n

2 e
), otherwise.
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We also set ϕ
d(t1,t2)
>n := ¬ϕ

d(t1,t2)
≤n , ϕ

d(t1,t2)
≥n := ϕ

d(t1,t2)
>n−1 , ϕ

d(t1,t2)
<n := ¬ϕ

d(t1,t2)
≥n , and ϕ

d(t1,t2)
=n := ϕ

d(t1,t2)
≤n ∧

ϕ
d(t1,t2)
≥n . Clearly, qr(ϕd(t1,t2)

Bn ) = dlog2(n)e and w |= ϕ
d(min,max)
Bn iff |w| B n+ 1 for B ∈ {<,>,≤,≥,=}.

Besides, the size of ϕ
d(t1,t2)
Bn is O(n). For example, for r = 3 and strings u and v such that |u| = 9 and

|v| = 12, we have that u |= ϕ
d(min,max)
≤8 , v 6|= ϕ

d(min,max)
≤8 , and qr(ϕd(min,max)

≤8 ) = 3. Then, d(minu,maxu) 6=
d(minv,maxv) and d(minu,maxu)≤ 2r. Therefore, the Spoiler has a winning strategy for G3(u,v).

Now, we turn to the cases in which substrings are important. These cases are conditions 2 and 3 from
Theorem 3. Formulas ϕt1a1...akt2 hold in a string w when the string between t1 and t2 is a1...ak. Formulas
ϕta1...ak and ϕa1...akt express that a string a1...ak occurs immediately on the right and immediately on the
left of a term t, respectively.

ϕt1a1...akt2 :=


∃z(Pa1(z)∧S(t1,z)∧S(z, t2)), if k = 1
∃z(Pa1(z)∧S(t1,z)∧ϕza2t2), if k = 2
∃z(Pad k

2 e
(z)∧ϕt1a1...ad k

2 e−1
z∧ϕzad k

2 e+1
...akt2), otherwise.

ϕta1...ak :=


∃y(S(t,y)∧Pa1(y)), if k = 1
∃y(Pa1(y)∧S(t,y)∧ϕya2), if k = 2
∃y(Pad k

2 e
(y)∧ϕta1...ad k

2 e−1
y∧ϕyad k

2 e+1
...ak), otherwise.

ϕa1...akt :=


∃y(S(y, t)∧Pa1(y)), if k = 1
∃y(Pa1(y)∧ϕya2t), if k = 2
∃y(Pad k

2 e
(y)∧ϕa1...ad k

2 e−1
y∧ϕyad k

2 e+1
...akt), otherwise.

With respect to the quantifier rank, we have qr(ϕt1a1...akt2) = qr(ϕta1...ak) = qr(ϕa1...akt) = dlog2(k+1)e.
Furthermore, the size of these formulas is O(k). Now, we define sentences to handle the prefix and suffix
of strings. These sentences express that the prefix of length k is a1...ak and the suffix of length k is a1...ak,
respectively.

ϕpre fk=a1...ak :=


Pa1(min), if k = 1
Pa1(min)∧ϕmina2...ak , if k = 2 or k = 3
Pa1(min)∧∃x(Pad k+1

2 e
(x)∧ϕmina2...ad k+1

2 e−1
x∧ϕxad k+1

2 e+1
...ak), otherwise.

ϕsu f fk=a1...ak :=


Pak(max), if k = 1
Pak(max)∧ϕa1...ak−1max, if k = 2 or k = 3
Pak(max)∧∃x(Pab k

2 c
(x)∧ϕa1...ab k

2 c−1
x∧ϕxab k

2 c+1
...ak−1max), otherwise.

We also set abbreviations ϕpre fk 6=a1...ak := ¬ϕpre fk=a1...ak and ϕsu f fk 6=a1...ak := ¬ϕsu f fk=a1...ak . Therefore,
qr(ϕpre fkIa1...ak) = dlog2(k)e and w |= ϕpre fkIa1...ak iff pre fk(w) I a1...ak, where I ∈ {=, 6=}. Analo-
gously for ϕsu f fkIa1...ak . Also, the size of ϕpre fk=a1...ak and ϕsu f fk=a1...ak is O(k). We use these formulas
to express condition 2 of Theorem 3. To see why, Let r = 2, u = bbbaabbbb and v = bbbbabbbb. Thus,
u |= ϕpre f4 6=bbbb and v 6|= ϕpre f4 6=bbbb. Then, pre f2r(u) 6= pre f2r(v) and, from condition 2 of Theorem 3, it
follows that the Spoiler has a winning strategy in G2(u,v).

Now, we need sentences regarding free multiplicity and free scattering. Let α = a1...ak be a string
such that each ai ∈ Σ, and k = 2qα − 1 for qα > 0 as in condition 3 from Theorem 3. Now, we set
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the formula ϕa1...ak(x) describing that a string a1...ak occurs centered on position x. Then, we give an
example of a formula ϕα(x).

ϕa1...ak(x) :=

{
Pa1(x), if k = 1
Pad k

2 e
(x)∧ϕa1...ad k

2 e−1
x∧ϕxad k

2 e+1
...ak , if k ≥ 3.

Example 2. Let α = abc. Then,

ϕα(x) = Pb(x)∧∃y1(S(y1,x)∧Pa(y1))∧∃y1(Pc(y1)∧S(x,y1)).

Note that qr(ϕα(x)) = qα −1 and the size of ϕα(x) is O(k). Now, we can use formulas ϕα(x) to define
ϕγ(α)≥n expressing that α has at least n free occurrences. Then, we need to use n pairwise different
variables and each variable must be in a proper distance from min and max.

ϕγ(α)≥n := ∃x1∃x2...∃xn(
∧

1≤i< j≤n xi 6= x j ∧
∧n

i=1 ϕα(xi)∧
∧n

i=1(ϕ
d(min,xi)

>2qα−1 ∧ϕ
d(xi,max)
>2qα−1 )).

Now, we need to deal with formulas ϕσ(α)≥n expressing that the scattering of α is at least n. First, in
the following, we set an auxiliary formula in order to make the presentation simpler. The formula below
indicates that α occurs centered on a position on the left of x and at least 2qα−1 distant from x. This
formula is important in ensuring a proper distance from other occurrences of α , that is, greater than 2qα .
Furthermore, the distance between α and min or max must be greater than 2qα−1 in order to α occur free.

ϕ
d(x)≥2qα−1

α := ∃y(ϕd(y,x)
≥2qα−1 ∧ϕα(y)∧ϕ

d(min,y)
>2qα−1 ∧ϕ

d(y,max)
>2qα−1 ).

With respect to the quantifier rank, we have qr(ϕd(x)≥2qα−1

α ) = qα . Now, we can define the sentence
ϕσ(α)≥n. After that, we give an example of ϕγ(α)≥n and ϕσ(α)≥n.

ϕσ(α)≥n :=
∃x1(ϕ

d(x1)≥2qα−1

α ∧∃x2(ϕ
d(x1,x2)
>2qα ∧ϕ

d(x2)≥2qα−1

α ∧ ...∧∃xn−1

(ϕ
d(xn−2,xn−1)
>2qα ∧ϕ

d(xn−1)≥2qα−1

α ∧∃xn(ϕ
d(xn−1,xn)

>2qα−1 ∧ϕα(xn)))...)).

Example 3. Let α = abc and n = 2. Thus,

ϕγ(α)≥n = ∃x1∃x2(x1 6= x2∧ϕabc(x1)∧ϕabc(x2)∧ϕ
d(min,x1)

>2qα−1 ∧ϕ
d(x1,max)
>2qα−1 ∧ϕ

d(min,x2)

>2qα−1 ∧ϕ
d(x2,max)
>2qα−1 ).

ϕσ(α)≥n = ∃x1(ϕ
d(x1)≥2qα−1

α ∧∃x2(ϕ
d(x1,x2)

>2qα−1 ∧ϕα(x2))).

We also define the following abbreviations ϕγ(α)<n := ¬ϕγ(α)≥n and ϕγ(α)=n := ϕγ(α)≥n ∧ ϕγ(α)<n+1.
Then, qr(ϕγ(α)En) = qα + n− 1 and w |= ϕγ(α)En iff γ(α,w) E n for E ∈ {≥,<,=}. It is analogous to
ϕσ(α)En. Besides, the size of ϕγ(α)En and ϕσ(α)En is O((n+ |α|)2).

Now, we can define the distinguishability formulas. Distinguishability formulas are defined from a
pair of strings u, v and a quantifier rank r. These formulas have quantifier rank at most r, and they hold
in u and do not hold in v. In what follows, α is a substring of u or v.

Definition 3 (Distinguishability Formulas). Let u, v be strings over some alphabet Σ and r be a natural
number. The set of distinguishability formulas from u, v and r is

Φ
r
u,v := Φ

r,length
u,v ∪Φ

r,pre f
u,v ∪Φ

r,su f f
u,v ∪Φ

r,sub
u,v .
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where

Φ
r,length
u,v :=

{ϕd(min,max)
≤n | |u|< |v|, |u|−1≤ n≤ min(2r, |v|−2)}∪

{ϕd(min,max)
≥n | |u|> |v|, |v| ≤ n≤ min(2r +1, |u|−1)}

Φ
r,pre f
u,v :=

{ϕpre fk=pre fk(u) | pre fk(u) 6= pre fk(v),k ≤ min(2r, |u|, |v|)}∪
{ϕpre fk 6=pre fk(v) | pre fk(u) 6= pre fk(v),k ≤ min(2r, |u|, |v|)}

Φ
r,su f f
u,v :=

{ϕsu f fk=su f fk(u) | su f fk(u) 6= su f fk(v),k ≤ min(2r, |u|, |v|)}∪
{ϕsu f fk 6=su f fk(v) | su f fk(u) 6= su f fk(v),k ≤ min(2r, |u|, |v|)}

Φ
r,sub
u,v :=

{ϕσ(α)≥n | σ(α,u)> σ(α,v),σ(α,v)< n≤ min(r−qα +1,σ(α,u))}∪
{ϕσ(α)<n | σ(α,u)< σ(α,v),σ(α,u)< n≤ min(r−qα +1,σ(α,v))}∪
{ϕγ(α)≥n | γ(α,u)> γ(α,v),γ(α,v)< n≤ min(r−qα +1,γ(α,u))}∪
{ϕγ(α)<n | γ(α,u)< γ(α,v),γ(α,u)< n≤ min(r−qα +1,γ(α,v))}.

Observe that, given u, v, and r, the size of a formula ϕ ∈ Φr
u,v is O((|u|+ |v|)2), and the number of

elements |Φr
u,v| in Φr

u,v is O((|u|+ |v|)3). This is crucial in order to guarantee that our algorithm runs
in polynomial time in the size of the sample. Also, by the definition of distinguishability formulas
and Theorem 1, it follows that the Spoiler has a winning strategy in Gr(u,v) if and only if there exists
ϕ ∈Φr

u,v. In what follows, we give examples of distinguishability formulas.
Example 4. Let u = aaacbbb, v = aaabbbbb, and r = 2. Therefore, ϕpre f4=aaac, ϕpre f4 6=aaab ∈ Φr

u,v.
Furthermore, ϕpre f3=aaa,ϕpre f3 6=aaa 6∈ Φr

u,v because pre f3(u) = pre f3(v). Also, ϕγ(c)≥1 ∈ Φr
u,v because

γ(c,u)> γ(c,v) and γ(c,v)< 1≤min(2,1). Besides, ϕγ(bbb)<1 ∈Φr
u,v because γ(bbb,u)< γ(bbb,v) and

γ(bbb,u)< 1≤ min(1,1). With respect to the length, Φ
r,length
u,v = /0 because n > min(2r,6).

Example 5. Now, let u = bbaaaaaaaabb, v = bbaaaaaabb, and r = 4. Then, ϕsigma(aaa)≥2 ∈ Φr
u,v as

σ(aaa,u)= 2, σ(aaa,v)= 1, and σ(aaa,v)< n≤min(3,2). Besides, ϕ
d(min,max)
≥10 ∈Φr

u,v because |u|> |v|
and 9≤ 10≤ min(16,11).
Now, we show results ensuring adequate properties of distinguishability formulas.
Lemma 1. Let u,v be strings and r be a natural number. Let ϕ ∈Φr

u,v. Then, u |= ϕ and v 6|= ϕ .

Proof. First, suppose ϕ = ϕ
d(min,max)
≤n . Then, |u|< |v| and |u|−1≤ n≤ min(2r, |v|−2). As |u|−1≤ n,

then d(minu,maxu) ≤ n. Therefore, u |= ϕ . Clearly, n ≤ |v| − 2 because n ≤ min(2r, |v| − 2). Then,
n≤ d(minv,maxv)−1. Therefore, v 6|= ϕ . The case in which ϕ = ϕ

d(min,max)
≥n is similar.

Now, let ϕ = ϕpre fk=pre fk(u). Then, pre fk(u) 6= pre fk(v). It also holds that k ≤ min(2r, |u|, |v|). As
k ≤ |u|, k ≤ |v|, and pre fk(u) 6= pre fk(v), then u |= ϕ and v 6|= ϕ . The cases in which ϕ = ϕpre fk 6=pre fk(v),
ϕ = ϕsu f fk=su f fk(v), and ϕ = ϕsu f fk 6=su f fk(v) are similar.

Next, let ϕ = ϕγ(α)≥n. Thus, γ(α,v)< γ(α,u) and γ(α,v)< n≤min(r−qα +1,γ(α,u)). Therefore,
γ(α,v) < n ≤ γ(α,u). Then, u |= ϕ and v 6|= ϕ . The cases in which ϕ = ϕγ(α)<n, ϕ = ϕσ(α)≥n, and
ϕ = ϕσ(α)<n are analogous.

Lemma 2. Let u,v be strings and r be a natural number. Let ϕ ∈Φr
u,v. Then, EFsim(u,v)≤ qr(ϕ)≤ r.

Proof. From Lemma 1, it follows that EFsim(u,v)≤ qr(ϕ). Now, we need to show that qr(ϕ)≤ r.
If ϕ = ϕ

d(min,max)
En where E ∈ {≤,≥}, then n ≤ 2r. Hence, qr(ϕ) = dlog2(n)e. It follows that

qr(ϕ)≤ dlog2(2r)e= r.
Let ϕ ∈ {ϕpre fkIw,ϕsu f fkIw} where I ∈ {=, 6=}. Then, k ≤ 2r. Therefore, qr(ϕ) = dlog2(k)e ≤ r.
Finally, if ϕ ∈ {ϕγ(α)Bn,ϕσ(α)Bn} where B ∈ {<,≥}, then n≤ r−qα +1. Thus, qr(ϕ) = qα +n−

1≤ r.
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Distinguishability formulas consist of a boolean combination of sentences ϕ
d(min,max)
≤n , ϕpre fk=a1...ak ,

ϕsu f fk=a1...ak , ϕγ(α)≥n, and ϕσ(α)≥n. Then, the following result ensures an important property of distin-
guishability formulas.

Proposition 1. Given a string w and ψ a boolean combination of distinguishability formulas, one can
check if w |= ψ in polynomial time.

Proof. We need to show that given a string w and a distinguishability formula ϕ , we can check if w |= ϕ

in polynomial time. From that, it follows directly that it also holds for any boolean combination of such
formulas.

First, let ϕ = ϕ
d(min,max)
≤n . It is possible to check in linear time in the size of w whether |w| ≤ n+1.

Next, let ϕ = ϕpre fk=a1...ak . Clearly, it is also possible to check in linear time in the size of w whether
pre fk(w) = a1...ak. The case in which ϕ = ϕsu f fk=a1...ak is analogous.

Now, let ϕ = ϕγ(α)≥n. At each position of w, it is necessary to check if α occurs free and centered in
that position. Then, it takes polynomial time in the size of w.

Finally, let ϕ = ϕσ(α)≥n. First, it is necessary to compute a 2qα -segmentation of the set of free
occurrences of α . This takes polynomial time in the size of w. Then, it suffices to compare the number
of partitions with n. Thus, it takes polynomial time to check whether w |= ϕσ(α)≥n.

Therefore, if ψ is a boolean combination of distinguishability formulas, then it takes polynomial to
check whether w |= ψ .

Distinguishability formulas are also representative for the set of first-order sentences over successor
string structures. For example, let ϕ = ∃x(Pa(x)∧∀y(x 6= y→¬Pa(y))). Also let u = bbabb, v1 = bbbbb,
v2 = bbabbabb, and r = 2. Therefore, ϕγ(a)≥1 ∈ Φr

u,v1
and ϕγ(a)<2 ∈ Φr

u,v2
. Thus, ϕ is equivalent to

ϕγ(a)≥1 ∧ ϕγ(a)<2. Now we will show that this holds for any first-order sentence over strings in our
setting. First, we define formulas equivalent to Hintikka formulas.

ϕ
r,length
w :=

{
ϕ

d(min,max)
=d(minw,maxw), if |w| ≤ 2r +1

ϕ
d(min,max)
>2r , otherwise.

ϕ
r,pre f
w := ϕpre f2r=pre f2r (w)

ϕ
r,su f f
w := ϕsu f f2r=su f f2r (w)

ϕ
r,α
w :=

{
ϕσ(α)=σ(α,w)∧ϕγ(α)=γ(α,w), if qα +σ(α,w)≤ r
ϕσ(α)≥r−qα+1, otherwise.

ϕ
r,sub
w :=

∧
{ϕr,α

w | |α|= 2q−1,q > 0}.

Lemma 3. |= ϕr
w↔ (ϕr,length

w ∧ϕ
r,pre f
w ∧ϕ

r,su f f
w ∧ϕ

r,sub
w ).

Proof. Let u |= ϕr
w. Then, the Duplicator has a winning strategy in Gr(w,u) and the conditions of Theo-

rem 3 hold. Then, d(minw,maxw) = d(minu,maxu) or d(minw,maxw)> 2r and d(minu,maxu)> 2r. We
have two cases depending on the size of w:
1. |w| ≤ 2r +1. Then, d(minw,maxw) = d(minu,maxu) and it follows that u |= ϕ

r,length
w .

2. |w|> 2r +1. Then, d(minw,maxw)> 2r and d(minu,maxu)> 2r. Therefore, u |= ϕ
r,length
w .

From Theorem 3, it also holds that pre f2r(w) = pre f2r(u) and su f f2r(w) = su f f2r(u). Then, u |=
ϕ

r,pre f
w ∧ϕ

r,su f f
w .
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From condition 3 of Theorem 3, it holds that σ(α,w)+qα > r and σ(α,u)+qα > r for all α such
that |α| = 2qα −1 and σ(α,w) 6= σ(α,u) or γ(α,w) 6= γ(α,u). Let α such that |α| = 2q−1. We have
two cases:
1. q+σ(α,w)≤ r. Then, σ(α,w) = σ(α,u) or γ(α,w) = γ(α,u). Therefore, u |= ϕ

r,α
w .

2. q+σ(α,w) > r. If σ(α,u)+ q ≤ r, then σ(α,w) 6= σ(α,u). Therefore, σ(α,u)+ q > r. Hence,
u |= ϕ

r,α
w . Finally, u |= ϕ

r,sub
w .

Conversely, let u |= ϕ
r,length
w ∧ ϕ

r,pre f
w ∧ ϕ

r,su f f
w ∧ ϕ

r,sub
w . We have that pre f2r(w) = pre f2r(u) and

su f f2r(w) = su f f2r(u) because u |= ϕ
r,pre f
w ∧ ϕ

r,su f f
w . We also have that u |= ϕ

r,length
w . We have two

cases:
1. |w| ≤ 2r +1. Then, d(minw,maxw) = d(minu,maxu).
2. |w|> 2r +1. Then, d(minw,maxw)> 2r and d(minu,maxu)> 2r.
It also holds that u |= ϕ

r,sub
w . Let α such that |α| = 2q−1 and σ(α,w) 6= σ(α,u) or γ(α,w) 6= γ(α,u).

Then, u |= ϕ
r,α
w . We have that σ(α,w)+ q > r, otherwise, σ(α,w) = σ(α,u) and γ(α,w) = γ(α,u).

Therefore, σ(α,u)+q > r. Then, for all α such that |α| = 2q−1 and σ(α,w) 6= σ(α,u) or γ(α,w) 6=
γ(α,u), we have that σ(α,w)+q > r and σ(α,u)+q > r. All the conditions of Theorem 3 hold. Then,
the Duplicator has a winning strategy in Gr(w,u). It follows that u |= ϕr

w.

Now, we need the following lemmas.
Lemma 4. Let r be a natural number and w a string. There is a set of strings Vlength such that ϕ

r,length
w is

equivalent to a boolean combination of sentences in
⋃

v∈Vlength
Φr

w,v.

Proof. If ϕ
r,length
w = ϕ

d(min,max)
>2r , then let Vlength = {v} such that |v| = 2r + 1. Then, d(minv,maxv) = 2r.

Observe that |=ϕ
r,length
w ↔ϕ

d(min,max)
≥2r+1 and ϕ

d(min,max)
≥2r+1 ∈Φr

w,v because |w|> |v| and |v| ≤ 2r+1≤min(2r+

1, |u|−1). If ϕ
r,length
w =ϕ

d(min,max)
=d(minw,maxw), then let Vlength = {v1,v2} such that |v1|= |w|−1 and |v2|= |w|+1.

Thus, |v1|< |w| and |v1| ≤ d(minw,maxw)≤ |w|−1. It follows that ϕ
d(min,max)
≥d(minw,maxw) ∈Φr

w,v1
. We also have

that |v2| > |w| and |w| − 1 ≤ d(minw,maxw) ≤ |v2| − 2. Therefore, ϕ
d(min,max)
≤d(minw,maxw) ∈ Φr

w,v2
. Obviously,

ϕ
r,length
w is equivalent to ϕ

d(min,max)
≥d(minw,maxw)∧ϕ

d(min,max)
≤d(minw,maxw).

Lemma 5. Let r be a natural number and w a string. There is a set of strings Vpre f su f f such that
ϕ

r,pre f
w ∧ϕ

r,su f f
w is equivalent to a boolean combination of sentences in

⋃
v∈Vpre f su f f

Φr
w,v.

Proof. Let v1 such that |v1| = |w| and v1 6= w. If |w| ≤ 2r, then it follows that |= ϕpre f2r=pre f2r (w) ↔
ϕpre f|w|=w. Hence, ϕpre f|w|=w ∈ Φr

w,v1
. If |w| > 2r, then ϕpre f2r=pre f2r (w) ∈ Φr

w,v1
. Obviously, the case for

ϕsu f f2r=su f f2r (w) is analogous. Let v2 such that ϕsu f f2r=su f f2r (w) ∈ Φr
w,v2

. Therefore, Vpre f su f f = {v1,v2}.

Lemma 6. Let r be a natural number and w,α strings. There is a set of strings Vα such that ϕ
r,α
w is

equivalent to a boolean combination of sentences in
⋃

v∈Vα
Φr

w,v.

Proof. If ϕ
r,α
w = ϕσ(α)≥r−qα+1, then σ(α,w) ≥ r− qα + 1. Let Vα = {v} such that σ(α,w) > σ(α,v)

and σ(α,v) < r− qα + 1. Thus, ϕσ(α)≥r−qα+1 ∈ Φr
w,v. If ϕ

r,α
w = ϕσ(α)=σ(α,w) ∧ ϕγ(α)=γ(α,w), then

σ(α,w) ≤ r− qα . For ϕσ(α)=σ(α,w), let v1 such that σ(α,w) > σ(α,v1). Then, ϕσ(α)≥σ(α,w) ∈ Φr
w,v1

.
Let v2 such that σ(α,v2) > σ(α,w). Note that σ(α,w) < σ(α,w) + 1 ≤ min(r− qα + 1,σ(α,v2)).
Then, ϕσ(α)<σ(α,w)+1 ∈ Φr

w,v1
. Clearly, the case for ϕγ(α)=γ(α,w) is analogous. Let v3 and v4 such that

ϕγ(α)≥γ(α,w) ∈Φr
u,v3

and ϕγ(α)<γ(α,w)+1 ∈Φr
u,v4

. Therefore Vα = {v1,v2,v3,v4}.
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Lemma 7. Let r be a natural number and w a string. There is a set of strings V such that ϕr
w is a boolean

combination of sentences in
⋃

v∈V Φr
w,v.

Proof. By Lemma 3, |= ϕr
w↔ (ϕr,length

w ∧ϕ
r,pre f
w ∧ϕ

r,su f f
w ∧ϕ

r,sub
w ). Let V =

⋃
{α||α|=2q−1,q>0} Vα ∪Vlength

∪Vpre f su f f ∪ as in Lemma 4, Lemma 5, and Lema 6. From these lemmas, it follows that, ϕr
w is equivalent

to a boolean combination of sentences in
⋃

v∈V Φr
w,v.

The next result is related to Theorem 2. It suggests that our approach is likely to find any first-
order sentence given a suitable sample of strings. Recall that, by Theorem 2, any first-order sentence is
equivalent to a disjunction of Hintikka formulas. Thus, we have the following result.

Theorem 4. Let ϕ be a first-order sentence over successor string structures. Then, ϕ is equivalent to a
boolean combination of distinguishability formulas.

Proof. Let r such that qr(ϕ) = r. From Theorem 2 it follows that |= ϕ ↔ ϕr
u1
∨ ...ϕr

us
. Let U =

{u1, ...,us}. In accord to Lemma 7, let Vi be such that ϕr
ui

is equivalent to a boolean combination of
sentences in

⋃
v∈Vi

Φr
ui,v. Therefore, the sentence ϕ is equivalent to a boolean combination of sentences

in
⋃s

i=1(
⋃

v∈Vi
Φr

ui,v).

4 The Algorithm and Its Analysis

In this section, we define an algorithm for finding a first-order sentence ϕS from a sample of strings
S. Subformulas of ϕS are distinguishability formulas from sets of the form Φr

u,v such that u ∈ P and
v ∈ N. We also give an example of how the algorithm works. We guarantee that our algorithm runs in
polynomial time in the size of the input sample S. The size of the sample S is the sum of the lengths of
all strings it includes. We use |S| to denote the size of the sample S. We also show that ϕS returned by
our algorithm is consistent with S. Furthermore, we also prove that ϕS is a sentence of minimal quantifier
rank consistent with S. The pseudocode of our algorithm is in Algorithm 1.

Algorithm 1
Input: Sample of strings S = (P,N)
r← max{EFsim(u,v) | u ∈ P,v ∈ N}
ϕS←

∨
u∈P

∧
v∈N choose ϕ ∈Φr

u,v
return ϕS

First, the algorithm finds the minimum value r such that there exists a sentence of quantifier rank r
that is consistent with the input sample S. After that, the algorithm constructs ϕS. It goes through all
strings in P∪N, and, for u ∈ P,v ∈ N, it chooses a formula ϕ ∈Φr

u,v. For each u ∈ P, Algorithm 1 builds
a conjunction of sentences in

⋃
v∈N Φr

u,v. Finally, it returns a disjunction of such conjunctions. In the
following, we show an example of how this algorithm works on a simple instance.

Example 6. Let S be the sample in Table 1. Note that max{EFsim(u,v) | u ∈ P,v ∈ N}= 1 as witnessed
by σ(p,stviie)+ 1 ≤ 1 and σ(p,st piie)+ 1 > 1. Clearly, ϕpre f1=s ∈ Φ1

stviil,ktvive, ϕsu f f1 6=e ∈ Φ1
stviil,st piie,

ϕpre f1=s ∈Φ1
stviie,ktvive, and ϕσ(p)<1 ∈Φ1

stviie,st piie. Therefore, Algorithm 1 returns ϕS below. Observe that
ϕS is consistent with S and qr(ϕS) = 1.

ϕS = (ϕpre f1=s∧ϕsu f f1 6=e)∨ (ϕpre f1=s∧ϕσ(p)<1).
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In the following, we prove the correctness and the time complexity of our algorithm. First, we show that
it returns a sentence that is consistent with the sample. After that, we show that it returns a sentence of
minimal quantifier rank. Then, we prove that the running time of our learning algorithm is polynomial
in the size of the given sample.

Theorem 5. Let S be a sample and ϕS returned by Algorithm 1. Then, ϕS is consistent with S.

Proof. Let u ∈ P. Then, ϕu = ϕ1 ∧ ...∧ϕk such that, for all i, ϕi ∈ Φr
u,v, for some v ∈ N. In this way,

u |= ϕi, for all i and then u |= ϕS. Now, let v ∈ N and assume that v |= ϕS, i.e, v |= ϕu, for some
u ∈ P. Therefore, ϕu has a conjunct ϕ ∈Φr

u,v. This is an absurd because, from Lemma 1, it follows that
v 6|= ϕ .

Theorem 6. The sentence ϕS returned by Algorithm 1 is a first-order sentence of minimal quantifier rank
that is consistent with S.

Proof. Suppose a first-order sentence ψ consistent with S such that qr(ψ)< qr(ϕS) =max{EFsim(u,v) |
u ∈ P,v ∈ N}. Let u′ ∈ P and v′ ∈ N such that EFsim(u′,v′) = max{EFsim(u,v) | u ∈ P,v ∈ N}. Then,
u′ and v′ are satisfied by the same first-order sentences of quantifier rank q such that q < EFsim(u′,v′).
Then, u′ |= ψ iff v′ |= ψ . Therefore, ψ is not consistent with S. This is a contradiction.

Theorem 7. Given a sample S, Algorithm 1 returns ϕS in time O(|S|7).

Proof. First, the algorithm computes max{EFsim(u,v) | u∈ P,v∈N} in order to use a suitable quantifier
rank. This takes time O(|S|4× log(|S|)) because, for a given u ∈ P,v ∈ N, |u|+ |v| < |S|, to compute
EFsim(u,v) takes time O(|S|2× log(|S|)), and this procedure is executed |S|2 times. Then, our algorithm
loops over strings in the sample and, in each loop, it chooses a formula ϕ ∈ Φr

u,v. As the size of each
ϕ ∈ Φr

u,v is O(|S|2) and |Φr
u,v| is O(|S|3), one iteration of the loop runs in time O(|S|5). This loop is

executed O(|S|2) times, then, this loop takes time O(|S|7). The first step runs in time O(|S|4log(|S|)) and
the rest takes time O(|S|7). Therefore the overall complexity of Algorithm 1 is O(|S|7).

Therefore, our algorithm is an improvement over the work in [13], for this particular problem on
successor string structures. However, observe that the sentence returned by Algorithm 1 is a disjunction
of |P| conjunctions of distinguishability formulas. The algorithm in [13] also returns formulas which
are long and hard to read. Then, they greedily remove subformulas that are not necessary. Now, we
also consider the number of conjunctions in our approach. Let ΦS :=

⋃
u∈P,v∈N Φ

max{EFsim(u,v)|u∈P,v∈N}
u,v .

We say that a first-order formula is in m-DDF (Disjunctive Distinguishability Form) over ΦS if it is
a disjunction of m conjunctions of distinguishability formulas in ΦS. Therefore, we can also define a
problem where the goal is to find a formula ϕS in m-DDF such that m is minimum. This formula ϕS

improves interpretability. Given a sample S, the problem consists of finding a first-order sentence ϕS in
m-DDF over ΦS such that ϕS is consistent with S, and m is minimum.

An algorithm to return a first-order sentence given a sample of strings and a set of first-order sentences
is presented in [18]. Formally, given a sample of strings S and a set of first-order sentences Φ, the goal
is to find a first-order sentence ϕ such that ϕ is consistent with S, ϕ is a disjunction of conjunctions
of sentences in Φ, and the number of conjunctions is minimum. This problem is NP-complete. It is
easy to polynomially reduce our problem of distinguishability formulas to this problem in [18]. Then,
our problem of distinguishability formulas is in NP, and it is still a better approach than the one in [13],
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for the particular case of successor string structures. In this new setting, the formula for the sample of
Table 1 is below. This formula is smaller than the formula of Example 6.

ϕS = ϕpre f1=s∧ϕγ(v)≥1.

5 Conclusions and Future Work

Motivated by the framework defined in [13] and results of the Ehrenfeucht–Fraı̈ssé Game over successor
string structures in [14], we introduced an algorithm that returns a first-order sentence of minimal quan-
tifier rank that is consistent with a given sample of strings. Our algorithm runs in time O(|S|7) where
|S| is the size of the input sample. Then, our algorithm runs in polynomial time in the size of S. The
algorithm in [13] runs in exponential time as it works for arbitrary structures.

We designed our algorithm using distinguishability formulas which are defined based on the con-
ditions characterizing a winning strategy for the Spoiler on successor string structures. Our algorithm
returns a disjunction of conjunctions of distinguishability formulas. The size of a distinguishability for-
mula is polynomial in the length of two given strings. The algorithm in [13] uses Hintikka formulas
which have size exponential in the size of a given string. Therefore, our proposed algorithm is an im-
provement over the one in [13], for successor string structures. We also show that any first-order sentence
is equivalent to a boolean combination of distinguishability formulas. Then, our approach has the poten-
tial to find any first-order sentence given the right sample. We also showed how to find a formula with
the minimum number of conjunctions. A small formula is preferable for explaining a sample of strings.

Our results are also relevant to grammatical inference, where the goal is to find a language model
of minimal size that describes a given sample of strings. In our framework, the language model is the
first-order logic over successor string structures, and we use the quantifier rank as a natural measure of
first-order sentences. As strings may be used to model sequences of symbolic data, our results can be
applied in the analysis of biological sequences [22]. A recent model-theoretic approach to grammatical
inference [20] uses a fragment of first-order logic which is less expressive than full first-order logic in
our approach.

As future work, we intend to explore the problem of finding a first-order sentence over strings with
the linear order relation. First-order logic over strings with the linear order defines the class of star-
free languages [21], and it is more expressive than first-order logic over successor string structures.
Finally, we plan to extend our approach to monadic second-order logic. Regular languages are exactly
the languages definable in monadic second-order logic [1]. An algorithm which returns monadic second-
order sentences can be used in the problem of finding a finite automaton consistent with a given sample
of strings.
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