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We propose an extension of Hybrid I/O Automata (HIOAs) to model agent systems and their implicit
communication through perturbation of the environment, like localization of objects or radio signals
diffusion and detection. To this end we decided to specialize some variables of the HIOAs whose
values are functions both of time and space. We call them world variables. Basically they are treated
similarly to the other variables of HIOAs, but they have the function of representing the interaction
of each automaton with the surrounding environment, hence they can be output, input or internal
variables. Since these special variables have the role of simulating implicit communication, their
dynamics are specified both in time and space, because they model the perturbations induced by the
agent to the environment, and the perturbations of the environment as perceived by the agent. Parallel
composition of world variables is slightly different from parallel composition of the other variables,
since their signals are summed. The theory is illustrated through a simple example of agents systems.

1 Introduction

Many modern complex systems represent agents interacting to achieve a common goal, but reacting in
an independent way to external stimuli, following an autonomous decision policy and coordinating using
communication. When and where communication fails, the agents need to feel the environment reacting
to its stimuli. This is the case, for example, of agents performing a search mission, such as UAVs [8] or
autonomous underwater vehicles [5], but also of road traffic problems [14, 15] and autonomous straddle
carriers in harbours [11]. These multi-agents problems have been case studies of the European Project
CON4COORD (EU FP7 223844) and have motivated the modeling formalism presented in this paper.
Indeed what is common to each case study is the presence of a collection of agents that communicate and
coordinate to achieve a common goal. Moreover the agents move within an environment that changes
dynamically and detect each other’s presence not necessarily via direct communication but rather by
observations of the environmental changes.

We focus on automata-based representations of hybrid systems [2, 1], adding features to a model,
in order to keep as much as possible of the underlying theory. Since the motivating case studies need
to satisfy some compositionality properties, we choose to start from Hybrid I/O Automata (HIOAs) of
[10], for which strong results on compositionality exist. We add features to represent faithfully situations
where a hybrid automaton exists within an environment and derives information about other automata
by observing the environment itself, rather than by using any form of direct communication. We will
call the exchange of information through observation implicit communication. Indeed groups of agents
usually need to know the environment where they live and move to collect and elaborate data and react
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2 Modelling Implicit Communication in Multi-Agent Systems with Hybrid Input/Output Automata

in a coordinated way. To do this, they need to exchange stimuli with the surrounding environment, by
observation and using sensors. Usually the communication between agents acting in a certain area is
achieved using artificial machineries, such as supervisors or broadcasting signals. Our aim is to avoid
any kind of artificial machinery to model communication between agents and their interaction with the
environment, using a more natural method, based on the human perception, i.e. through observation of
the changes in the surroundings of each agent. Moreover direct communication is not always possible,
since signals are subject to noise and environmental hostilities, or sometimes it is not the best policy,
because sending signals means being intercepted, not considering faults and failures in senders and
receivers. Autonomy in making decisions and exchanging information based on the sensing of the reality
can be used as a redundant and a faster way of communication. To achieve implicit communication, we
extend the HIOAs by specializing some variables, called world variables. They take values both in space
and time, i.e. their values are indeed functions of time and space, as occurs in diffusion equations and
they represent all the information exchanged between the environment and the agents. World variables
represent maps of the changes in the environment as perceived by the agents: at each point in the space
and each instant of time their values show the situation that can be sensed by agents standing in that
area. To this end, world variables are partitioned into input and output variables: input world variables
represent the observations made by the agents sensing the environment, output world variables represent
stimuli given by the agents to the environment. To keep the theory consistent with HIOAs, all the results
on semantics are preserved. Moreover we introduce parallel composition using rules similar to the ones
for HIOAs, i.e., automata are synchronized on common actions and shared variables, except for output
world variables, whose stimuli are summed because their effect on the environment is common.

At the best of our knowledge, there are only a couple of approaches to the presented problem. One
has been introduced in [6] where dynamic networks of hybrid automata are studied. The introduced
programming language focuses on dynamical interfaces. Another method has been presented in [13]
where a compositional interchange format (CIF) defined in terms of an interchange automaton is used
as a common language to describe objects from the different models for hybrid systems existing in
literature. None of these two languages is based on the idea of implicit communication coded by world
variables. Our approach is a starting point to solve the problem of dynamical interfaces in a simpler
way than the ones proposed. Nevertheless at the current status of our work the presented approach does
not solve this problem, even though we started from it. We choose to extend HIOAs because of the
underlying compositionality theory and because of the input/output distinction of the variables, which
we keep in our description. Many other representations of hybrid automata could be used as basis and
extended similarly looking at the main theoretical results they have been introduced for. As an example
the cited hybrid automata in [1] are more focused in reachability issues, but have been studied also for
decidability in [7]. As stated in [10] Hybrid Automata (HA) presented in [1] are similar to HIOAs in
their combined treatment of discrete and continuous activity, but their theory does not address system
decomposition issues such as external behavior, implementation relationships and composition. These
issues have been addressed in [3] by using hybrid reactive modules, but they still differ from the way
they are faced by HIOAs, because reactive modules still communicate via shared variables, not via shared
actions. Summarizing, the choice of the HIOA model has been motivated by the fact that their application
is more suited for the kind of agent systems and scenarios under study. Indeed the communication via
explicit actions, similarly to discrete event automata, is used to model signals communication, while the
possibility to trace an external behavior catches the interaction with the environment, which is the basic
aim of extending the original formalism with world variables.

The paper is organized as follows: in Section 2 we introduce the modeling framework; in Section 3
we show and recall the main results on semantics of the proposed model; in Section 4 parallel compo-
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sition of the presented automata is described, showing the main results on composability. The theory is
illustrated throughout the paper with a simple example, the interested reader can find a more complex
and realistic application in [11]. All the results presented in the paper use the notation of [10].

2 HIOAs with world variables

Example 1. Consider a sandy area where two cars move, as in Fig. 1(a). We subsume an underline
metric space R2. When a car takes a certain position, its pressure provokes a depression of the ground
(fig. 1(b)). Hence the car changes the characteristics of the environment in a permanent way, since sand
retains the shape. The other car is, then, able to see where a car has moved (fig. 1(c)). We aim at avoiding

(a) A sandy area with cars. (b) Level of the ground. (c) A car moving from a point to an-
other in the sandy area.

Figure 1: Characteristics of the scenario

collisions between the two cars. This might be done by equipping each car with some tools to send signals
to the other vehicle when approaching, or adding to the system a supervisor knowing at each instant of
time the position of both cars. We will call this kind of communication explicit. Another solution would
be to think each car as an intelligent agent that senses the surrounding environment and is able to
understand if the other car is too near. We call this kind of communication implicit. In other words each
vehicle should use its sensors to catch the changes in its neighborhood and to calculate the possibility
of another car to be in collision risk. The implicit communication is more natural to us, it does not need
artificial machinery, it can be used even in case of hostile environments, where explicit communication
is difficult or even impossible, but also when there is need to communicate without sending data through
a network. Moreover implicit communication can be used as a redundant mean of communication, when
the tools involved in explicit communication fail.

The scenario described in Example 1 is a typical problem of coordination of agents, even though
simplified to enlighten only the main challenges the designer has to face in finding a suitable model for
this situation. As stated in the Introduction, we decided to use the well known framework of Hybrid
I/O Automata (HIOAs) of [10] to keep the underlying composability theory, very useful in multi-agent
problems.

Definition 1. Hybrid I/O Automaton (HIOA) [10]
A HIOA A is a tuple ((U,X ,Y ),(I,H,O),Q,Θ,D,T) where

• (U,X ,Y ) are disjoint sets of input, internal, and output variables, respectively. Let V denote the
set U ∪X ∪Y of variables.

• (I,H,O) are disjoint sets of input, hidden, and output actions, respectively. Let A denote the set
I∪H ∪O of actions.
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• Q⊆ vals(X) is the set of states.

• Θ⊆ Q is a nonempty set of initial states.

• D⊆ vals(X)×A× vals(X) is the discrete transition relation.

• T is a set of trajectories on V that satisfy the following axioms

T1 (Prefix closure) For every τ ∈ T and every τ ′ ≤ τ , τ ′ ∈ T.
T2 (Suffix closure) For every τ ∈ T and every t ∈ dom(τ), τ D t ∈ T.
T3 (Concatenation closure) Let τ0,τ1,τ2, . . . be a sequence of trajectories in T such that, for each

nonfinal index i, τi is closed and τi.lstate = τi+1.fstate. Then τ0
_ τ1

_ τ2 · · · ∈ T.

Notation: For each variable v, we assume both a (static) type, type(v), which gives the set of values it
may take on, and a dynamic type, dtype(v), which gives the set of trajectories it may follow. A valuation
v for a set of variables V is a function that associates with each variable v ∈ V a value in type(v). We
write vals(V ) for the set of valuations for V . Let J be a left-closed interval of T (the time axis) with
left endpoint equal to 0. Then a J-trajectory for V is a function τ : J → vals(V ), such that for each
v ∈ V , τ ↓ v ∈ dtype(v). A trajectory for V is a J-trajectory for V , for any J. Trajectory τ is a prefix of
trajectory τ ′, denoted by τ ≤ τ ′, if τ can be obtained by restricting τ ′ to a subset of its domain. We define
τ D t ∆

= (τ d[t,∞))− t. The concatenation _ of two trajectories is obtained by taking the union of the first
trajectory and the function obtained by shifting the domain of the second trajectory until the start time
agrees with the limit time of the first trajectory; the last valuation of the first trajectory, which may not
be the same as the first valuation of the second trajectory, is the one that appears in the concatenation.
Prefix, suffix and concatenation operations return trajectories. We define τ.fval, the first valuation of
τ , to be τ(0), and if τ is closed (J is a closed interval), we define τ.lval, the last valuation of τ , to
be τ(τ.ltime). Given a trajectory τ ∈ T we denote τ.fvaldX by τ.fstate and, if τ is closed, we denote
τ.lvaldX by τ.lstate. We write f dP for the restriction of function f to set P, that is, the function g with
dom(g) = dom( f )∩P such that g(c) = f (c) for each c ∈ dom(g). If f is a function whose range is a
set of functions and P is a set, then we write f ↓ P for the function g with dom(g) = dom( f ) such that
g(c) = f (c)dP for each c ∈ dom(g). For more detail the interested reader can refer to [10].

The reader can notice that the main difference with respect to the model introduced by [2, 1] is that
locations are not explicit, indeed they are given by state variables, trajectories and transitions. Moreover
transitions from one state to another do not occur by crossing guards or leaving invariants, but they occur
because of actions arising (see executions definition in Section 3).

Example 2. Imagine now to describe the scenario in example 1 using hybrid automata. To represent
HIOAs we use a variant of the TIOA language [9], with some extensions for hybrid systems [12]. The
HIOA of a car is reported in fig. 2. It has an output variable K representing the ground pressure provided
by the car and an output variable P representing the car position. The input variables are: the level of
the ground groundlevel as a boolean saying if the level is low (1) or high (0); the collisionrisk saying if
another car is in collision risk (1) or not (0). A function f is defined, giving the surface of the ground
occupied by the car area starting from its position pT and its orientation angle φ . We can imagine
that f returns a rectangle centered in pT with orientation φ . The pressure variable is updated with a
function z depending on the mass m and area of the car. The velocity vel of the car is 0 if collisionrisk
is true. Similarly the car slows down when groundlevel is true. For the sake of simplicity we used a
boolean variable to represent the ground level changes, but any other function can be used, such as
more general and complex diffusion equations. Note that we need to provide the system with an external
supervisor which, taking as input the position and pressure of each car in the area at each instant of time,
calculates the collision risk and the ground level around it. Basically the supervisor needs to know each
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type Rad = R|2π

hioa Car
variables

input collisionrisk: Bool, groundlevel: Bool
internal φ : Rad, pT : Real2, m: Real, vel:Real
output P: Real2, K: Real

trajectories
K(t) = z(m, f (φ , pT ));

vel(t) =


0 if collisionrisk
0.5 if groundlevel
1 otherwise.

;

P(t) = pT (t).

Figure 2: HIOA representing a car.

car direction and position at each instant of time for calculating the possibility of a collision with other
cars moving in the same area and the level of the ground along the trajectory the car is following. We do
not present the design of such a supervisor because it is out of the scope of this paper. Note also that this
is just a possible representation of the scenario described in example 1. We used this simple way to show
the need of using some external machinery (e.g. a supervisor) to model the interaction of agents with the
environment.

In example 2 we are not able to represent implicit communication without adding some artificial
machinery (in this case we used an external supervisor). Since our aim is to represent the system in a
more natural way, we extend HIOA modeling framework to catch this aspect. To do this we specialize
some variables of the HIOA, calling them world variables. The name is due to the fact that we want them
to represent the connection between the agents and the surrounding world. Moreover world variables
represent the changes in the environment as might be perceived by the agents. Hence the set of variables
V is partitioned in a set W of world variables and a set S of standard automaton variables. The set
W is partitioned in sets (Uw,Xw,Yw) of world input, internal, and output variables, respectively, such
that: Uw ⊆U,Xw ⊆ X ,Yw ⊆ Y . To avoid confusion, we will add to automaton variables the subscript a:
Ua,Xa,Ya.

The main difference between world and automaton variables is that the type of world variables is a
function of time and space, not only of time as in standard automaton variables. Hence world variables
values (and trajectories) will depend both on the instant of time and the position in the underlying space.
Formally, if we assume an underlying topological space M, w : (T×M)→ B for every w ∈W , where T

is the time axes and B is a set. For simplicity the reader may think of M as a metric space, e.g. R3. An
automaton A will use its world inputs Uw to receive stimuli from the world it lives in. Analogously it will
use its world outputs Yw to give stimuli to the world it lives in. Finally internal world variables Xw are
used to represent the world characteristics of A. To keep the theory consistent with previous descriptions
of automata, all the X variables represent persistent characteristics of the system. We will call HIOAs
with world variables HIOAWs.

Example 3. We now represent the car in fig. 2 with a HIOAW, extending the TIOA language to include
world variables. Note that world variables are always described using their trajectories in time and
space, i.e. they are described for any instant of time t and any point in space p. Each car is represented
by a HIOAW as in fig. 3. It has an output world variable k representing the ground pressure provided by
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the car and an output world variable representing the car color ξ . The input world variables are: the
level of the ground g and its color c. Each car perceives the ground level through a boolean variable g
saying if the ground is low (1) or high (0). We used the boolean representation for the sake of simplicity.
Of course any other function, like diffusion equations, may be used. Each car can check the color of
the ground at each point of the area by the variable c, which represents a kind of colored map of the
area. We assume that the color variable ξ takes the value black for all the points inside the car area
given by f and white outside. The pressure variable k is updated with a function h depending on the
mass m and area of the car, associating to each point in the area of the car the value of its pressure in
time, and to each point outside the area of the car a 0 value. Two actions collision, level represent the
possibility that another car is in the neighborhood and that the level of the ground in the neighborhood
is low, respectively. Action collision activates a boolean variable stop if there is any black point p∗ in the
neighborhood of the car, which is calculated by the function q returning a circle of radius r (bigger than
the semi-diagonal of the rectangle representing the area of the car) and centered in pT , but excluding
the area of the car given by function f . Action level activates a boolean variable slow if there is any
point p∗ in the neighborhood of the car for which the ground level variable g is true, i.e. the level of the
ground is low. Hence the velocity vel of the car is 0 if stop is true. Similarly the car slows down when
slow is true. All the presented equations describing the car dynamics are very simple, but the description
of the motion is out of the scope of this paper. Indeed they can be substituted by any other equations. The
reader can notice that in fig. 2 the position of the car is explicit in variable P, which is an output that
must be collected by the supervisor at each instant of time to check where the automaton is in the space.
In the HIOAW of fig. 3 the position is embedded in the world variables and does not need to be explicitly
put in an automaton variable. Indeed both color and pressure world variables carry the information
about the position of the automaton in the space, due to their nature.

The reader can notice that the automaton in fig. 3 has some input world variables. Here we considered
the environment as an abstract entity, modifying and being modified by the agents living in it. As in the
human sensing, the agents moving in an environment can catch these modifications as changes with
respect to the nominal conditions of the surrounding area and interact with them. In the same way the
agents change the environment. World variables aim at representing this exchange of implicit information
because they give a map of environmental changes at each point of the space and each instant of time,
without need of artificial machineries such as a supervisor.

3 Semantics

Executions of HIOAWs are defined as executions of HIOAs: an execution fragment of a HIOAW A is
an (A,V )-sequence α = τ0a1τ1a2τ2 . . ., where ai ∈ A, τi ∈ T; if τi is not the last trajectory of α , then
τi.lstate

ai+1→ τi+1.fstate. An execution fragment α is defined to be an execution if α.fstate is a start state,
that is, α.fstate ∈Θ. Results on executions of HIOAs are valid also for HIOAWs.

A trace of an execution fragment α captures the external behavior of a HIOAW, i.e. what it is needed
to identify an automaton from outside. Calling E = I∪O, Z =U ∪Y , a trace of a HIOAW A is then the
(E,Z)-restriction of α . All the results on traces on HIOAs are still valid and exactly stated for HIOAWs.
We say that a low-level specification A implements a high-level specification B if any behavior of A is
also an allowed behavior of B.

Definition 2. Automata A1 and A2 are comparable if they have the same external interface, that is, if
world and local input and output sets of variables of A1 are equal to the corresponding sets of A2 and
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type Rad = R|2π

hioaw Car
world variables

input g: Bool, c: Color;
output k: Real, ξ : Color;

automaton variables
internal φ : Rad, pT : Real2, m: Real, vel:Real, r:Real, stop: Bool, slow: Bool;

actions
hidden collision, level;

transitions
hidden collision
pre ∃p∗ ∈ q(pT ,r, f (φ , pT )) s.t. c(t, p∗) = black
eff stop = true;
hidden level
pre ∃p∗ ∈ q(pT ,r, f (φ , pT )) s.t. g(t, p∗) = true
eff slow = true;

trajectories

ξ (t, p) =
{

black if p ∈ f (φ , pT )
white otherwise

;

k(t, p) = h(m, f (φ , pT ));

vel(t) =


0 if stop
0.5 if slow
1 otherwise.

Figure 3: HIOAW representing a car.

E1 = E2 at all levels. If A1 and A2 are comparable then we say that A1 implements A2, denoted by
A1 ≤A2, if traces(A1)⊆ traces(A2).

Simulation relations between HIOAWs are defined as for HIOAs in Section 4.3 of [10]. We report
here the definition:

Definition 3. Let A and B be comparable automata. A simulation from A to B is a relation R⊆QA×QB

satisfying the following conditions, for all states xdQA , xA and xdQB , xB of A and B, respectively:

1. If xA ∈ΘA then there exists a state xB ∈ΘB such that xA R xB.

2. If xA R xB and α is an execution fragment of A consisting of one action surrounded by two point
trajectories, with α.fstate = xA, then B has a closed execution fragment β with β .fstate = xB,
trace(β ) = trace(α), and α.lstate R β .lstate.

3. If xA R xB and α is an execution fragment of A consisting of a single closed trajectory, with
α.fstate = xA, then B has a closed execution fragment β with β .fstate = xB, trace(β ) = trace(α),
and α.lstate R β .lstate.

Results on trace inclusion for simulation of HIOAs are valid also for HIOAWs. We also report here
an important corollary on simulation relations which will be used in the rest of the paper.

Corollary 1. Let A and B be comparable automata and let R be a simulation from A to B. Then
traces(A)⊆ traces(B).
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3.1 Padding of executions

We introduce now the notion of padding of executions that will be used in the following proofs.

Definition 4. A padded execution of a HIOAW A is an (A∪{ε},V )−sequence γ = τ0a1τ1a2τ2a3 . . . such
that if ai = ε then τi−1.lstate = τi.fstate.

Definition 5. Padding.
We call padding of an execution α any padded execution obtained by α by extending the actions set with
ε .

For example a padded execution of an execution α = τ0a1τ1a2τ2a3 . . . is γ = τ ′0ετ ′′0 a1τ1a2τ2a3 . . .,
where τ ′0

_ τ ′′0 = τ0.

Definition 6. The restriction of a padded execution γ to a set of actions A′ and a set of variables V ′ is
the (A′,V ′)-restriction of γ .

Lemma 1. Let γ be a padded execution of A. Then there exists α , execution of A, for which γ is a
padding.

Proof. Let A,V be the sets of actions and variables of A, respectively. Then, by definition of restriction
of padded executions and by definition of executions, α = γ d(A,V ) is an execution of A. By definition
of padding γ is a padding of α .

Lemma 2. Let α be an execution of A defined in (A,V ) and γ a padding of α . Let A′ ⊆ A,V ′ ⊆V , then
α d(A′,V ′) = γ d(A′,V ′).

Proof. Straightforward by definition of restriction of a padded execution and of an execution and by
definition of padding.

Definition 7. A trace of a padded execution γ is defined as γ d(E,Z).
Lemma 3. Let α be an execution of A and γ a padding of α , then trace(α) = trace(γ).

Proof. Straightforward by lemma 2 and definition of trace of a padded execution.

Lemma 4. Let γ be a padding of α , execution of A, and let γ ′ be a prefix of γ . Then γ ′ d(A,V ) is a prefix
of α .

Lemma 5. Given n executions, it is always possible to find n paddings of these executions such that all
corresponding trajectories have the same length.

4 Parallel composition

In this section we introduce parallel composition for HIOAWs. First of all some compatibility conditions
have to be stated.

Definition 8. Two HIOAWs A1 and A2 are compatible if

1. (Uw1∪Uw2)∩ (Yw1∪Yw2) = /0.

2. H1∩A2 = H2∩A1 = /0,

3. X1∩V2 = X2∩V1 = /0,

4. O1∩O2 = /0,
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5. Y1∩Y2 = /0.

The reader may notice that conditions 2 to 5 are the classical compatibility conditions for HIOAs.
The first condition states that no explicit communication between the two HIOAWs is possible via world
variables. Indeed, by definition, explicit communication between HIOAWs occurs only via automaton
I/O variables, whereas world variables are used for implicit communication. These conditions, when not
satisfied by the HIOAWs, can be obtained by changing variables names.

Definition 9. Parallel composition
If A1,A2 are two compatible HIOAWs, then their composition A1‖A2 is defined as the structure A where:

1. Uw =Uw1∪Uw2, Xw = Xw1∪Xw2, Yw = Yw1∪Yw2

2. Ya = Ya1∪Ya2, Xa = Xa1∪Xa2, Ua = (Ua1∪Ua2)\Ya

3. O = O1∪O2, I = (I1∪ I2)\O and H = H1∪H2

4. Q = {x ∈ vals(X) | xdX1 ∈ Q1∧xdX2 ∈ Q2}

5. Θ = {x ∈ Q | xdX1 ∈Θ1∧xdX2 ∈Θ2}

6. D = {(x,a,x′) | for each i∈ {1,2} either a∈ Ai and xdXi
a−→ x′ dXi, or a /∈ Ai and xdXi = x′ dXi}.

7. T = {τ | there exists τ1 ∈ T1,τ2 ∈ T2 such that τ ↓ (Vi \ (Yw1 ∩Yw2)) = τi ↓ (Vi \ (Yw1 ∩Yw2)), i ∈
{1,2} and τ ↓ (Yw1∩Yw2) = τ1 ↓ (Yw1∩Yw2)+ τ2 ↓ (Yw1∩Yw2)}

This definition of parallel composition is very similar to the one for HIOAs. The only two differences
are given by the first and the last conditions. The first condition depends on compatibility: there is no
communication between the two HIOAWs via world variables. The last condition indeed is the main
difference with HIOAs composition. It might be that the two composing automata have some output
world variables with the same kind of information for the external world. These output world variables
will have the same name and then their intersection is not empty. For those variables it is necessary
to sum the trajectories as defined in the following. We call sum any generic operator with the same
characteristics of the sum in R. In the following we will define the sum as an additive operator in a
group. Let τ0,τ1 be two trajectories with the same time domain, such that: τ0 : [0, t]→ (V0 → D) and
τ1 : [0, t]→ (V1→D), where V0,V1 are sets of variables. Let D be a domain of values for variables in
V0,V1 (e.g. R), such that its structure is a (commutative) group G, with an operator +G and an identity
element called 0G. Note that the subscript G will be omitted when it is clear from the context.

Definition 10. The sum of τ0,τ1 is defined as:

(τ0 + τ1)(t)(v) =
{

τi(t)(v) if v ∈Vi \V1−i

τ0(t)(v)+ τ1(t)(v) if v ∈V0∩V1

For the sake of simplicity in the following we will consider the operation of sum in R. But all
the results presented in this paper are still valid using any other operator with the same mathematical
characteristics.

We report here some lemmas on trajectories that will be used in the following proof.

Lemma 6. Let τ be a trajectory in V . Let I ⊆ dom(τ) and V ′ ⊆V . Then (τ d I) ↓V ′ = (τ ↓V ′)d I.

Lemma 7. Let τ be a trajectory in V . Let V ′ ⊆V . Then (τ D t) ↓V ′ = (τ ↓V ′)D t.

Lemma 8. Let τ be a trajectory in V such that τ = τ0
_ τ1

_ τ2
_ . . .. Let V ′ ⊆V . Then (τ0

_ τ1
_ τ2

_

. . .) ↓V ′ = (τ0 ↓V ′)_ (τ1 ↓V ′)_ (τ2 ↓V ′)_ . . ..
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Proposition 1. The composition of two HIOAWs is a HIOAW.

Proof. We show that A1‖A2 satisfies the properties of a HIOAW. Disjointness of the U,X ,Y sets follows
from disjointness of the same sets in A1 and A2 and compatibility. Similarly for the actions. Nonempti-
ness of starting state follows from nonemptiness of starting states of A1 and A2 and disjointness of X1
and X2. We verify the T properties of trajectories (see definition 1). Let C12 be Yw1∩Yw2.

T1 We want to prove that for every τ ∈ T and every τ ′ ≤ τ , τ ′ ∈ T. Let τ be a trajectory in T. Let
i ∈ {1,2}. By the definition of parallel composition there exists τ1 ∈ T1,τ2 ∈ T2 such that τ ↓
(Vi \C12) = τi ↓ (Vi \C12), and τ ↓C12 = τ1 ↓C12 +τ2 ↓C12. Let τ ′ ≤ τ . By definition of prefix we
have that τ ′ = τ d I with I = dom(τ ′)⊆ dom(τ). Hence we can state that τ ′ ↓ (Vi \C12) = (τ d I) ↓
(Vi\C12). By lemma 6 (τ d I) ↓ (Vi\C12) = (τ ↓ (Vi\C12))d I. By definition of parallel composition
and again by lemma 6 (τ ↓ (Vi \C12))d I = (τi ↓ (Vi \C12))d I = (τi d I) ↓ (Vi \C12). Let τ ′1 = τ1 d I
and τ ′2 = τ2 d I, then (τi d I) ↓ (Vi \C12) = τ ′i ↓ (Vi \C12). Analogously, for the second statement
of parallel composition of trajectories we have that τ ′ ↓C12 = (τ d I) ↓C12 = (τ ↓C12)d I = (τ1 ↓
C12)d I +(τ2 ↓C12)d I = (τ1 d I) ↓C12 +(τ2 d I) ↓C12 = τ ′1 ↓C12 + τ ′2 ↓C12. Hence τ ′ ∈ T.

T2 We want to prove that for every τ ∈ T and every t ∈ dom(τ), τ D t ∈ T. Let τ be a trajectory in
T. Let i ∈ {1,2}. By the definition of parallel composition there exists τ1 ∈ T1,τ2 ∈ T2 such that
τ ↓ (Vi\C12) = τi ↓ (Vi\C12), and τ ↓C12 = τ1 ↓C12+τ2 ↓C12. Hence, since dom(τ1) = dom(τ2) =
dom(τ), by lemma 7 we have that (τ Dt) ↓ (Vi−C12) = (τ ↓ (Vi−C12))Dt = (τi ↓ (Vi−C12))Dt =
(τi D t) ↓ (Vi−C12). Moreover (τ D t) ↓ C12 = (τ ↓ C12)D t = (τ1 ↓ C12)D t +(τ2 ↓ C12)D t =
(τ1 D t) ↓C12 +(τ2 D t) ↓C12. Recall that by the properties of trajectories τ D t is still a trajectory.
Hence τ D t ∈ T.

T3 We want to prove that set T is closed under concatenation. Let τ0,τ1,τ2, . . . be a sequence of trajec-
tories in T, such that, for each nonfinal index j, τ j is closed and τ j.lstate = τ j+1.fstate. Let τ be
τ0

_ τ1
_ τ2

_ . . .. Let i ∈ {1,2}. By definition of parallel composition for each τ j, ∃τ1 j,τ2 j such
that τ j ↓ (Vi\C12) = τi j ↓ (Vi\C12), and τ j ↓C12 = τ1 j ↓C12+τ2 j ↓C12. Let τi be τi0

_ τi1
_ τi2

_ . . ..
Hence by lemma 8 τ ↓ (Vi \C12) = (τ0 ↓ (Vi \C12))

_ (τ1 ↓ (Vi \C12))
_ (τ2 ↓ (Vi \C12))

_ . . . =
(τi0 ↓ (Vi \C12))

_ (τi1 ↓ (Vi \C12))
_ (τi2 ↓ (Vi \C12))

_ . . . = (τi0
_ τi1

_ τi2
_ . . .) ↓ (Vi \C12) =

τi ↓ (Vi \C12). Moreover τ ↓C12 = (τ0 ↓C12)
_ (τ1 ↓C12)

_ (τ2 ↓C12)
_ . . . = (τ10 ↓C12 + τ20 ↓

C12)
_ (τ11 ↓ C12 + τ21 ↓ C12)

_ (τ12 ↓C12 + τ22 ↓ C12)
_ . . . = ((τ10 ↓ C12)

_ (τ11 ↓ C12)
_ (τ12 ↓

C12)
_ . . .)+((τ20 ↓C12)

_ (τ21 ↓C12)
_ (τ22 ↓C12)

_ . . .) = (τ10
_ τ11

_ τ12
_ . . .) ↓C12 +(τ20

_

τ21
_ τ22

_ . . .) ↓C12 = τ1 ↓C12 + τ2 ↓C12. Hence τ ∈ T.

Example 4. Consider again example 1. Suppose to have a HIOAW representing a car as in fig. 3 in the
sandy area, called B1. Another car represented by B2 (again of type represented in fig. 3) enters the
sandy area. We want to compose the two cars. Variables and actions of B1 are labelled by the subscript
1, the ones of B2 by the subscript 2. The obtained HIOAW B1‖B2 is represented in fig. 4. Notice that the
effect of the output world variables are summed: the ground pressure k of B1‖B2 represents a sort of a
map of the values taken by the pressures given by the cars in the considered area, the same for the color
ξ . Indeed here we did not make any constraints of two cars being at the same point at a time, because
the model can take into account also collisions.

We now show that simulation relation and trace inclusion are preserved by composition. The main
difficulty compared to the analogous results in [10] is that output world variables sum their effects. This
means that it is not possible anymore to project executions of a composite system to obtain executions
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of the components. Rather we have to show that for each execution of the composite system there are
executions of the components that can be pasted together.

hioaw B1‖B2
world variables

input g: Bool, c: Color;
output k: Real, ξ : Color;

automaton variables
internal φ1: Rad, pT 1: Real2, m1: Real, vel1:Real, r1:Real, φ2: Rad, pT 2: Real2, m2: Real, vel2:Real,

r2:Real, stop1: Bool, stop2: Bool, slow1: Bool, slow2: Bool;
actions

hidden collision1, collision2, level1, level2;
transitions

hidden collision1
pre ∃p∗ ∈ q(pT 1,r1) s.t. c(t, p∗) = black
eff stop1 = true;
hidden collision2
pre ∃p∗ ∈ q(pT 2,r2) s.t. c(t, p∗) = black
eff stop2 = true;
hidden level1
pre ∃p∗ ∈ q(pT 1,r1) s.t. g(t, p∗) = true
eff slow1 = true;
hidden level2
pre ∃p∗ ∈ q(pT 2,r2) s.t. g(t, p∗) = true
eff slow2 = true;

trajectories

ξ (t, p) =
{

black if p ∈ f (φ1, pT 1)∨ p ∈ f (φ2, pT 2)
white otherwise

;

k(t, p) = h(m1, f (φ1, pT 1))+h(m2, f (φ2, pT 2));

vel1(t) =


0 if stop1
0.5 if slow1
1 otherwise.

vel2(t) =


0 if stop2
0.5 if slow2
1 otherwise.

Figure 4: HIOAW representing parallel composition of B1 and B2.

Lemma 9. Let A=A1 ‖A2 and let α be an execution fragment of A. Then ∃α1,α2 execution fragments
of A1 and A2 respectively, such that

1. α d(Ai,Vi \C12) = αi d(Ai,Vi \C12), i = 1,2, and

2. α d( /0,C12) = α1 d( /0,C12)+α2 d( /0,C12),

with C12 = (Yw1∩Yw2).

Proof. Let α = τ0a1τ1a2τ2a3 . . . ∈ fragsA. By definition of parallel composition, since each τ j ∈ T there
exists τ j1 ∈ T1,τ j2 ∈ T2 such that: τ j ↓ (V1 \C12) = τ j1 ↓ (V1 \C12), τ j ↓ (V2 \C12) = τ j2 ↓ (V2 \C12)
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and τ j ↓C12 = τ j1 ↓C12 +τ j2 ↓C12. Hence by definition of padding we can build two padded executions
γ1 = τ01a′1τ11a′2τ21a′3 . . . ,γ2 = τ02a′′1τ12a′′2τ22a′′3 . . . of A1 and A2 respectively, where

a′j =
{

a j if a j ∈ A1
ε otherwise

a′′j =
{

a j if a j ∈ A2
ε otherwise

Let i ∈ {1,2}. By construction of γi it is α d(Ai,Vi \C12) = γi d(Ai,Vi \C12). By lemma 1 it is possible
to define the execution αi of Ai for which γi is a padding. Then by lemma 2 it holds: γi d(Ai,Vi \C12) =
αi d(Ai,Vi \C12) which proves point 1 of this lemma. Moreover, since the projection of an execution
on an empty set of action gives a trajectory, we have that α d( /0,C12) = γ1 d( /0,C12) + γ2 d( /0,C12) =
α1 d( /0,C12)+α2 d( /0,C12). By definition 10 the last statement proves point 2 of this lemma.

The following lemma from HIOAs applies directly to HIOAWs. The proof is reported in [10].

Lemma 10. Let A=A1‖A2, and let α be an execution fragment of A. Then, for i= 1,2, trace(α)d(Ei,Zi)=
trace(α d(Ai,Vi)).

The following proposition relates the set of traces of a composite automaton to the sets of traces of
the component automata.

Proposition 2. Let A=A1‖A2 and β a trace of A. Then ∃β1,β2 traces of A1,A2 respectively, such that

1. β d(Ei,Zi \C12) = βi d(Ei,Zi \C12), i = 1,2 and

2. β d( /0,C12) = β1 d( /0,C12)+β2 d( /0,C12),

with C12 = (Yw1∩Yw2).

Proof. Let β be a trace of A. By definition of trace ∃α ∈ execs(A) such that β = trace(α). By Lemma 9,
∃α1,α2 execution fragments of A1 and A2 respectively, such that α d(Ai,Vi \C12) = αi d(Ai,Vi \C12), i =
1,2, and α d( /0,C12) = α1 d( /0,C12)+α2 d( /0,C12). Let β1 = trace(α1) and β2 = trace(α2). We want to
prove that β d(Ei,Zi \C12) = βi d(Ei,Zi \C12), i = 1,2 and β d( /0,C12) = β1 d( /0,C12)+ β2 d( /0,C12). By
Lemma 10, β d(Ei,Zi) = trace(α d(Ai,Vi)). Moreover by the properties of projection of executions, we
have that β d(Ei,Zi \C12) = trace(α d(Ai,Vi \C12)) and β d( /0,C12) = trace(α d( /0,C12)). Furthermore
by the properties of projection of executions we have that (αi d(Ai,Vi \C12))d(Ei,Zi \C12) = αi d(Ai ∩
Ei,(Vi∩Zi)\C12). Since by definition Ai∩Ei =Ei and Vi∩Zi = Zi, we obtain αi d(Ai∩Ei,(Vi∩Zi)\C12)=
trace(α)d(Ei,Zi \C12). Similarly for projections on C12.

The next two theorems prove the results on substitutivity for implementation and simulation relations.

Theorem 1. Let A1 and A2 be comparable HIOAWs with A1 ≤A2. Let B be a HIOAW compatible with
each of A1 and A2. Then A1‖B and A2‖B are comparable and A1‖B≤A2‖B.

Proof. Let α be an execution of A1 ‖ B. By lemma 9, two executions α1,αB exist, such that α1 ∈
execs(A1), αB ∈ execs(B) and: α d(A1,V1 \C1B) = α1 d(A1,V1 \C1B), α d(AB,VB \C1B) = αB d(AB,VB \
C1B), α d( /0,C1B) = α1 d( /0,C1B)+αB d( /0,C1B), with C1B =Yw1∩YwB. By lemma 5 we can take paddings
of α,α1,αB such that the jth trajectory has the same length for all j. Let these paddings be γ,γ1,γB

respectively with γ = τ0a1τ1a2τ2a3 . . ., γ1 = τ01a′1τ11a′2τ21a′3 . . . and γB = τ0Ba′′1τ1Ba′′2τ2Ba′′3 . . .. Since
A1 ≤ A2 and by compatibility, we can find an execution α2 of A2 with the same trace of α1 and a
padding of α2 following lemma 5. We write γ2 = τ02a′′′1 τ12a′′′2 τ22a′′′3 . . .. By the definition of composition
the execution of A2 ‖B obtained by γ2 and γB will be γ ′ = τ ′0b1τ ′1b2τ ′2b3 . . ., where τ ′j ↓ (V2 \C2B) = τ j2 ↓
(V2\C2B), τ ′j ↓ (VB\C2B) = τ jB ↓ (VB\C2B), τ ′j ↓C2B = τ j2 ↓C2B+τ jB ↓C2B, where C2B =Yw2∩YwB. This
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is valid even if the trajectories in the padded executions have not the length of the original trajectories,
by definition of prefix of a trajectory and prefix closure of trajectories in a HIOAW. Actions bi might be
different, but by construction, compatibility and lemma 3 we have that γ ′ has the same trace of γ hence
of α . Indeed the (padded) executions can differ only in their internal variables (state), but they do not
influence the traces (external variables). For this reason we can state that traces(A1 ‖ B)⊆ traces(A2 ‖
B), hence, by definition 2 of implementation, A1‖B≤A2‖B.

Corollary 2. Let A1 and A2 be compatible HIOAWs, and let R be a simulation relation between A1 and
A2. Let B be a HIOAW compatible with each of A1 and A2. Then A1‖B≤A2‖B.

Proof. Since A1 R A2, by corollary 1, traces(A1) ⊆ traces(A2). By definition 2 of implementation,
A1 ≤A2. By theorem 1 this implies that for any B, A1‖B≤A2‖B.

Theorem 2. Let A1 and A2 be compatible HIOAWs, and let R be a simulation relation between A1 and
A2. Let B be a HIOAW compatible with each of A1 and A2. Then ∃ R′ such that (A1‖B) R′ (A2‖B).

Proof. Let R′ be a relation between A1‖B and A2‖B such that for each x1 ∈ Q1, x2 ∈ Q2, xB,x′B ∈ QB,
(x1,xB) R′ (x2,x′B) iff (x1 R x2)∧ (xB = x′B). We prove that R′ is a simulation relation by proving that R′

satisfies each point of definition 3.

1. Since for each x1 ∈ Θ1, x2 ∈ Θ2, x1 R x2, then by definition of R′, for each initial state (x1,xB) of
A1‖B and each initial state (x2,xB) of A2‖B, (x1,xB) R′ (x2,xB), with xB ∈ΘB.

2. Let α be an execution fragment of A1‖B consisting of one action surrounded by two point trajecto-
ries, with α.fstate = (x1,xB). Let α.lstate = (x′1,x

′
B). Since x1 R x2 then ∃x′2 ∈Q2 such that x′1 R x′2.

Since A1 R A2, by corollary 2, A1‖B ≤ A2‖B. Then there exists β execution fragment of A2‖B
with the same trace of α and β .fstate = (x2,xB). By definition of parallel composition there exists
an action bringing the state to (x′2,x

′
B). Hence by definition of R′ we have that (x′1,x

′
B) R′ (x′2,x

′
B).

3. Let α be and execution fragment of A1‖B such that α = τ ∈ T closed and with α.fstate = (x1,xB).
Let β be an execution fragment of A2‖B such that β .fstate = (x2,xB). Let α.lstate = (x′1,x

′
B) and

β .lstate = (x′2,x
′
B). Since x1 R x2, by definition of R′ it is (x1,xB) R′ (x2,xB). By corollary 2, there

exists an execution fragment β of A2‖B with the same trace of α .

5 Conclusions

In this paper we have proposed an extension of the Hybrid I/O Automaton model of [10] to provide a
natural representation of the fact that objects move in a world that they can observe and modify. We
started from the analysis of the case studies of the C4C project, representing agents that move in a
dynamical environment and have to achieve a goal by coordination. Besides the classical signals that
automata send to each other either via discrete communication events or shared continuous variables, we
specialized some variables of HIOAs to let them communicate implicitly by affecting their surrounding
world and observing the effects on the worlds of the activity of other automata. This mechanism for
interaction turns out to be adequate for compositional analysis, which is one of the main features of
HIOAs that we wanted to keep in an extended model. Indeed we introduced the notion of parallel
composition, and proved compositionality results. The natural extension of this formalism to model
environment has been reported in [4], leading to a hierarchical representation of automata and introducing
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the ability of composing them vertically into nested worlds. We presented in this paper a toy example to
show the application of the theory, but a more complex and reality-based application can be found in [11].
The simulation tools are under study. Future research directions include the ability to describe scenarios
where automata are created and destroyed and where communication links change dynamically.
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