Can Nondeterminism Help Complementation?

Yang Cai
Ting Zhang
(Iowa State University)

Complementation and determinization are two fundamental notions in automata theory. The close relationship between the two has been well observed in the literature. In the case of nondeterministic finite automata on finite words (NFA), complementation and determinization have the same state complexity, namely Theta(2^n) where n is the state size. The same similarity between determinization and complementation was found for Buchi automata, where both operations were shown to have 2^Θ(n lg n) state complexity. An intriguing question is whether there exists a type of omega-automata whose determinization is considerably harder than its complementation. In this paper, we show that for all common types of omega-automata, the determinization problem has the same state complexity as the corresponding complementation problem at the granularity of 2^Θ(.).

In Marco Faella and Aniello Murano: Proceedings Third International Symposium on Games, Automata, Logics and Formal Verification (GandALF 2012), Napoli, Italy, September 6-8, 2012, Electronic Proceedings in Theoretical Computer Science 96, pp. 57–70.
Published: 7th October 2012.

ArXived at: bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to:
For website issues: