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We present a formal model of a distributed consensus algorithm in the executable specification lan-
guage Promela extended with a new type of guards, called counting guards, needed to implement
transitions that depend on majority voting. Our formalization exploits abstractions that follow from
reduction theorems applied to the specific case-study. We apply the model checker Spin to automat-
ically validate finite instances of the model and to extract preconditions on the size of quorums used
in the election phases of the protocol.

1 Introduction

Distributed algorithms are a challenging class of case-studies for automated verification methods (see
e.g. [12, 1, 24, 12, 13, 17, 25, 18, 10, 4]). The main difficulties come from typical assumptions taken
in these algorithms such as asynchronous communication media, topology-dependent protocol rules,
and messages with complex structure. In the subclass of fault tolerant distributed protocols there are
additional aspects to consider that often make their validation task harder. Indeed, fault tolerant protocols
are often based on dynamic leader elections in which quorums may change from one round to another.
When modeling these protocols, one has to deal with a very fast growth of the search space for increasing
number of processes.

Following preliminary evaluations described in [4], in this paper we apply Promela/Spin to spec-
ify and validate a fault tolerant distributed consensus protocols for asynchronous systems caled Paxos
[19, 20] used in the implementation of distributed services in the Google File System [3]. Promela is a
specification language for multithreaded systems with both shared memory and communication capabil-
ities. Promela provides a non-ambiguous executable semantics that can be tested by using a simulator
and the Spin model checker. Spin applies enumerative techniques for validating finite-automata repre-
sentation of Promela models.

In the paper we give a formal Promela specification of the Paxos protocol that is modular with
respect to roles, rounds, and communication media inspired to the presentation given by Marzullo, Mei
and Meling in [20] via three separate roles (proposer, acceptor, and learner). The resulting specification
is closer to a possible implementation than sequential models with non-deterministic assignments used
in other approaches such as [26].

Via a formal analysis extracted from the correctness requirements, which are specified using auxiliary
variables and assertions, we give reduction theorems that can be used to restrict the number of processes
instances for some of the protocol roles, namely proposers and learners. Finally, we design code to code
Promela transformations that preserve the interleavings from one model to the other while optimizing the
state exploration process required in the model checking phase. For this purpose, we introduce a special
type of atomic transitions, called quorum transition, that can directly be applied to model elections via
majority voting. The transitions are defined on top of a special guard that counts the number of messages
in a channel embedded into Promela code using the deterministic step constructor d step.
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2 Paxos: An Informal Specification

The consensus problem requires agreement among a number of agents for some data value. Initially,
each agent proposes a value to all other ones. Agents can then exchange their information. A correct
agent must ensure that when a node takes the final choice, the chosen value is the same for all correct
agents. In the asynchronous setting, it is assumed that messages can be delayed arbitrarily. Furthermore,
a subset of processes may crash anytime and restore their state (keeping their local information) after an
arbitrary delay. Fisher, Lynch and Patterson have shown that, under the above mentioned assumptions,
solving consensus is impossible [14].

In [19] Lamport proposed a (possibly non terminating) algorithm, called Paxos, addressing this prob-
lem. Lamport later provided a simpler description of the protocol in [20] in terms of three separate agent
roles: proposers that can propose values for consensus, acceptors that accept a value among those pro-
posed, and learners that learn the chosen value. Marzullo, Mei and Meling give a pseudo-code presenta-
tion of the algorithm in [22].

The Paxos protocol for agreement on a single value works as follows. In a first step the proposer
selects a fresh round identifier and broadcasts it to a (subset of) acceptors. It then collects votes for
that round number from acceptors. Acceptor’s replies, called promises, contain the round number, and
a pair consisting of the last round and value that they accepted in previous rounds (with the same or
a different proposer). When the proposer checks that majority is reached, it selects a value to submit
again to the acceptors. For the selection of the value, the proposer inspects every promise received in
the current round and selects the value with the highest round. It then submits the current round and the
chosen value to the acceptors. Acceptors wait for proposals of round identifiers but accept only those
that are higher than the last one they have seen so far. If the received round is fresh, acceptors answer
with a promise not to accept proposals with smaller round numbers. Since messages might arrive out-of-
order, even different proposals with increasing rounds of the same proposer might arrive with arbitrary
order (this justifies the need of the promise message). Acceptors also wait for accept messages: in that
case local information about the current round are updated and, if the round is fresh, the accepted pair
(round,value) is forwarded to the learner. A learner simply collects votes on pairs (round,value) sent
by acceptors and waits to detect majority for one of them.

The protocol is guaranteed to reach consensus with n acceptors up to f = b(n−1)/2c simultaneous
failures, but only if learners have enough time to take a decision (i.e. to detect a majority). If proposers
indefinitely inject new proposals the protocol may diverge. Under the above mentioned condition on f
and in absence of byzantine faults, correctness can be formulated as follows.

Property 1 When a value is chosen by a learner, then no other value has been chosen/accepted in
previous rounds of the protocol.

This means that, whenever a value is chosen by the learner, any successive voting always select the same
value (even with larger round identifiers), i.e., the algorithm stabilizes w.r.t. the value components of
tuples sent to the learner. To ensure this property, in the first part of the protocol the proposer does not
immediately send its proposal for the value but only its round number. The proposer selects a value only
after having acquired knowledge on the values accepted in previous rounds. Among them the choice
is done by taking the value of the highest round. Its own proposal comes into play only if all values
received by acceptors are undefined (equal to −1). Other safety requirements are that chosen values are
among those proposed and that chosen values (by the whole system) are the same as those learned by
learners.



G. Delzanno, M. Tatarek, and R. Traverso 133

3 A Formal Model in Promela

In this section we present a formal specification of Paxos given in Promela, a specification language
for multithreaded and distributed programs. Promela thread templates are defined via the proctype

construct. The body of the template (a sequence of commands) defines the behavior of its instances. The
language has a C-like syntax for shared and local data structures and instructions. Guarded commands are
used to model non-deterministic choices in the body of process templates. For instance, the command
if :: g1 → c1; . . . :: gn → cn; fi specifies a non-deterministic conditional: only one command ci

among those for which the guard gi is enabled is selected for execution. The guarded command do ::
g1 → c1; . . . :: gn → cn; od is the iterative version of the conditional. Data structures include basic
data types (byte, bool, int) as well as arrays and structures. Furthermore, channels can be used for the
specification of inter-process communications. For instance, chan c[MAX ], where MAX is a constant,
defines a channel with at most MAX places. A message 〈m1, . . . ,mn〉 is sent by using the command
c!m1, . . . ,mn, where c is a channel and m1, . . . ,mn are expressions whose current values are sent on the
channel. Reception is defined via the capability c?x1, . . . ,xn, where c is a channel and x1, . . . ,xn are
variables used to store the data from the incoming message. Channels can be viewed as global arrays.
The selector ? provides FIFO access, whereas ?? provides random access. To restrict reception to a
given pattern, it is possible to put either a constant value in a reception or an expression like eval(x) that
evaluates to the current value of x. We describe next our first Promela model for Paxos.

A round is defined via a proposer process running in parallel with the other processes (other pro-
posers, acceptors and learners). The proposer proctype takes in input two parameters: a unique round
identifier (a number) and the proposed value. Round identifiers must be unique for the algorithm to work.
Roles can be viewed as threads definitions within the same process situated in a location. Asynchronous
communication is modeled via global channels with random receive actions. We model the majority test
via conditions on counters that keep track of the number of received messages (we do not model message
duplication). Since the protocol assumes that each round is associated to a unique proposer we can use
a local counter for votes received by a given proposer. Rounds are also used as a sort of time-stamps
by acceptors. Indeed they are required in order to fix an order on incoming prepare and accept mes-
sages, i.e., enforce some order in a chaotic flow of messages. We manipulate messages inside atomic
actions. A special learner process is used to observe the results of the handshaking between proposers
and acceptors, and to choose pairs round,value. The algorithm guarantees that once a value is chosen,
such a choice remains stable when other (old/new) proposals are processed by the agents. The learner
keeps a set of counters indexed on rounds to check for majority on a value. We discuss next the Promela
specification in full detail. First of all, we use the constants:

# d e f i n e ACCEPTORS 3
# d e f i n e PROPOSERS 5
# d e f i n e MAJ (ACCEPTORS / 2 + 1 ) / / m a j o r i t y
# d e f i n e MAX (ACCEPTORS∗PROPOSERS)

The former defines an upper bound on the size of channels. The latter defines the size of quorums. By
changing MAJ we can infer preconditions on the number of faulty processes.

Using a thread-like style, we consider four shared data structures that represent communication chan-
nels. They correspond to different phases of the protocol. The message signature is defined as follows.

chan p r e p a r e = [MAX] of { byte , byte } ;
chan a c c e p t = [MAX] of { byte , byte , s h o r t } ;
chan promise = [MAX] of { mex } ;
chan l e a r n = [MAX] of { short , short , s h o r t } ;
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The proposer of round r sends messages prepare(i,r) and accept(i,r,v) to acceptor i. Acceptor i
sends the message promise(r,hr,hval) to the proposer of round r and learn(i,r,v) to the learner.
All channels are treated as multiset of messages using the random receive operations ??.

The protocol makes use of broadcast communication (from proposers to acceptors). We implement
a derived broadcast primitive using Promela macro definition via the inline declaration. Specifically,
we add the baccept and bprepare primitives defined as follows, where i is an integer index local to a
process proctype.
i n l i n e b a c c e p t ( round , v ){

f o r ( i : 1 . . ACCEPTORS){
a c c e p t ! ! i , round , v ;

}
i =0 ;

}

i n l i n e b p r e p a r e ( round ){
f o r ( i : 1 . . ACCEPTORS){

p r e p a r e ! ! i , round ;
}
i =0 ;

}

In the above listed definitions for each process identifiers we insert the message specified in the parameter
resp. in the accept and prepare channels. The typedef mex will be used later to inspect the content of
a channel using a for-loop (Promela allows this kind of operations on channels in which messages have
a predefined type).

We now move to the specifications of the protocol roles.

Proposer Role A single round of a proposer is defined via the proctype proposer. defined as
follows:
proctype p r o p o s e r ( i n t round ; s h o r t myval ) {

s h o r t hr = −1, h v a l = −1, tmp ;
s h o r t h , r , v ;
byte c o u n t ;
b p r e p a r e ( round ) ;
do

: : r e c p ( round , count , h , v , hr , h v a l ) ;
: : s e n d a ( round , count , hva l , myval , tmp ) ;
od }

where the atomic transition rec_p is defined as
r e c p ( round , count , h , v , hr , h v a l )=

d s t e p {
promise ?? e v a l ( round ) , h , v −>
i f : : c o u n t < MAJ −> c o u n t ++;

: : e l s e f i ;
i f : : h > hr −>

hr = h ;
h v a l = v

: : e l s e f i ;
h = 0 ; v = 0 ;

}

and the atomic transition send_a is defined as
s e n d a ( round , count , hva l , myval , tmp )=

d s t e p {
c o u n t >= MAJ −>
i f : : hva l<0 −> tmp = myval
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: : e l s e −> tmp = h v a l f i ;
}
b a c c e p t ( round , tmp ) ;
break

The round is identified by a unique value passed as a parameter to the proctype. The other parameter,
myval, is the proposed text/value of the proposer. To generate several proposals, it is necessary to create
several instances of the proposer proctype running in parallel. Together with the use of unordered
channels, our definition models arbitrary delays among the considered set of proposals (old proposals
can overtake new ones). We assume here that proposers are instantiated with distinct round values.
Inside the proctype we use different local variables. In particular, count is used to count votes (i.e.
promise messages) and to check if a majority has been reached in the current round. hr and hval are
local variables used to store resp. the max round identifier seen so far in promise messages and the
associated value. Variables h,r,v are used to store values of received messages. The subprotocol starts
with a bprepare invocation. It is used to broadcast prepare messages to all other processes (or to a
quorum). The broadcast is followed by a non-deterministic loop consisting of two options. In the first
option on receipt of a promise(r,h,v) message, the proposer updates count (the message counts as a
vote), and hr and hval so that they always keep the max round identifier and the corresponding value of
all received promise messages. We remark again that ?? models random channel access. In the second
option we non-deterministically check if a majority has been reached in the current round. If so, we
select the value to send to acceptors for a second votation (done by the learner). The chosen value is that
associated to the maximal round seen so far, i.e., hval, if such a value is defined. If no value has been
established yet, i.e. hval==-1, the proposer sends its proposed value myval to the acceptors. In the
former case an old value is propagated from one round to another bypassing the value stored in myval

(it gets lost). This is needed in order to ensure stability of the algorithm after a choice has been made.
The current round and the selected value are sent to the acceptors using the baccept command.

Acceptor Role An acceptor is defined via the following proctype:
proctype a c c e p t o r ( i n t i ) {

s h o r t rnd = −1, vrnd = −1, v v a l = −1;
s h o r t t , t1 , j , v , p rnd ;
do

: : r e c a ( i , j , v , rnd , vrnd , v v a l ) ;
: : r e c p ( i , rnd , prnd , vrnd , v v a l ) ;
od }

where the atomic transition rec_ais defined as
r e c a ( i , j , v , rnd , vrnd , v v a l )=

atomic {
a c c e p t ?? e v a l ( i ) , j , v −>
i f : : ( j>=rnd ) −>

rnd = j ;
v rnd = j ;
v v a l =v ;
l e a r n ! i , j , v

: : e l s e f i ;
j = 0 ; v = 0 /∗ r e s e t ∗ /

}

and the atomic transition rec_pis defined as
r e c p ( i , rnd , prnd , vrnd , v v a l )=

atomic {
p r e p a r e ?? e v a l ( i ) , p rnd −> p r i n t f ( ”\nREC\n ” ) ;
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i f : : ( prnd>rnd ) −>
promise ! prnd , vrnd , v v a l ;
rnd = prnd ;

: : ( prnd<=rnd ) −> p r i n t f ( ”\nSKIP ” ) ; f i ;
p rnd = 0 /∗ r e s e t ∗ /

}

We use here the following local variables: rnd contains the current round, vrnd, vval contain resp. the
maximal round identifier and the associated value seen in previous accept messages. Valid values must
be greater or equal than zero. The template consists of a non-deterministic loop with two options. In the
first option on receipt of a prepare message containing a round identifier larger than the current one,
the acceptor updates rnd and answers to the proposer with a promise message. The promise contains
the values rnd,vrnd,vval used by the proposed to select a value. In the second option, on receipt
of an accept message containing a round identifier larger than the current one, the acceptor updates
rnd,vrnd,vval and sends a notification to the learner containing a proposal vrnd,vval for the second
votation.

Learner Role The learner role is defined by the following proctype
proctype l e a r n e r ( ) {

s h o r t i , j , v ;
byte mcount [MAX] ;

do
: : r e c l ( i , j , v , mcount ) ;

od
}

where the transition rec_l is defined as
r e c l ( i , j , v , mcount )=

d s t e p {
l e a r n ?? i , j , v −>
i f : : mcount [ j ] < MAJ −> mcount [ j ]++

: : e l s e f i ;
i f : : mcount [ j ] >= MAJ −> p r i n t f ( ”\nLEARN\n ” ) ;

: : e l s e f i ;
i = 0 ; j = 0 ; v = 0 /∗ r e s e t ∗ /

}

A learner keeps track, in the array mcount, of the number of received proposals values in each round (the
counter mcount[r] is associated to round r). We assume that in each round there is a unique accepted
value selected by the proposer (no byzantine faults). This is the reason why we can just count the number
of received message in a given round.

Initial Configuration For a fixed number of processes the initial configuration of the system is defined
using Promela as in the following init command:
i n i t
{ atomic{

run p r o p o s e r ( 1 , 1 ) ; run p r o p o s e r ( 2 , 2 ) ;
run a c c e p t o r ( 0 ) ; run a c c e p t o r ( 1 ) ; run a c c e p t o r ( 2 ) ;
run l e a r n e r ( ) ; } ; }

The atomic construct enforce atomic execution of the initial creation of process instances. In this exam-
ple we consider three possible proposals that are sent in arbitrary order (proposers run in parallel). Their
round identifiers are 1 and 2 and the associated values are 1 and 2, respectively. The system has three
acceptors with identifiers 0−2 and a single learner.
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4 Formal Analysis

We consider here the property of Def. 1, which requires that learners always choose the same values.
Before discussing how to encode the property, we make some preliminary observations. Since messages
are duplicated and seen by any process, we observe that we can restrict our model in order to consider
a single learner process that is always reacting to incoming learn messages. The parallel execution of
several learners is then modeled via several rounds of a single learner.

Theorem 1 The safety property of Def. 1 holds for the model with multiple learners if and only if there
exist no execution that violates the safety assertion in the model with a single instance of the learner

proctype.

Proof Assume that the property is violated in the model containing a single instance of learner. This
implies that the instance of the learner performs k iterations in which the learned value is always the
same and an additional iteration in which the value is distinct from the previous one. Since the learner
only observes incoming messages, we can run the same execution of the protocol with distinct instances
of the learner process. To make the proposition stronger let us assume that each learner learns a single
value.

We observe that we just need two distinct instances of the learner process to get a violation of the
safety requirement. We can then run the same instance of the protocol with the single learner. Since
communication is asynchronous, we can assume that the messages needed in the first k−1 are delayed
arbitrarily, and just consider the pairs (r,v) and (r′,v′) learned in steps k and k+1, respectively. The two
instances of the learner will learn such pairs and the safety requirement will be violated in the resulting
system.

We now assume that safety is violated in the model with multiple learners. This implies that there
exist two distinct pairs (r,v) and (r′,v′) with v 6= v′ learned by two distinct learners (again we assume
that each learner learns a single pair). Again we can run the same execution of the protocol, delay all
messages not involving such pairs, and let the learner process execute two iterations learning them.
Clearly, the safety assertion will be violated after the votation in the second iteration. 2

Another important observation is that, since we do not consider byzantine faults, it is not possible that
two distinct values are proposed in the same round. Thus, in order to detect a majority we keep an array
of counters (one for each round). The counter for round r is incremented when a message for that round
is observed in the learn channel. Under this assumption we need to show that, once the learner has
detected a majority vote for a given value, then the chosen value cannot change anymore. We define then
the active proctype for the following single learner proctype.
a c t i v e proctype l e a r n e r ( ) {

s h o r t l a s t v a l = −1, id , rnd , l v a l ;
byte mcount [PROPOSERS ] ;

do
: : r e a d l ( id , rnd , l v a l , l a s t v a l , mcount ) ;
od
}

where read_l is defined as follows
r e a d l ( id , rnd , l v a l , l a s t v a l , mcount )=

d s t e p {
l e a r n ?? id , rnd , l v a l −>
i f

: : mcount [ rnd −1] < MAJ −>
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mcount [ rnd −1]++;
: : e l s e

f i ;
i f

: : mcount [ rnd −1] >= MAJ −>
i f : : ( l a s t v a l >= 0 && l a s t v a l != l v a l ) −>

a s s e r t ( f a l s e ) ;
: : ( l a s t v a l == −1) −> l a s t v a l = l v a l ;
: : e l s e

f i
: : e l s e
f i ;

i d = 0 ; rnd = 0 ; l v a l = 0
}

The idea is to add an auxiliary variable lastvalue in which we store the last learned value. Every
time a new majority is detected the learner compares the corresponding value to lastvalue. An alarm
is raised if the two values are not the same. The alarm is modeled via the assertion assert( f alse) (or
assert(lastval == v)). Since we consider a single learner process that abstracts the behavior of a collec-
tion of learners, we tag the proctype as active, i.e., the corresponding process will start together with
those specified in the initial configuration (we remove run learner() from run).

Apart from the reduction of the number of learners, we can also reduce the number of proposers.
Indeed, to expose violations we just need two proposers proposing distinct values. This property is
formalized in the following statement.

Theorem 2 If for a given value of the parameter MAJ the safety property of Def. 1 holds for two
proposers (with distinct values), then it holds for any number of proposers.

Proof Assume a given k ≥ 0. By contraposition, we show that if there exists an execution of k > 2
proposers that violates the assertion in the single_learner code, then there exists an execution with
2 proposers (distinct rounds and values) that violates the assertion. We consider the first round r that
violates the assertion, i.e., such that the pair (r,v′) obtains a majority observed by the learner for a value
v′ distinct from the value v stored in last_val (i.e. the value learned in all previous observed votations).
We now have to show that we can construct another execution in which we just need two rounds rv

and rv′ , namely the rounds in which values v and v′ have been proposed. Let us assume that rv < rv′ .
The other case is also possible, e.g., for two independent executions involving distinct majorities. For
simplicity we focus on the former case. To prove that we can define an execution involving rounds rv′

and rv that violates the property, we need to reason on the history of the protocol phases that produces the
necessary majorities. We start by inspecting a node n that sent the learn message for the pair (r,v′). More
specifically, we consider the status of its local variables before the accept message containing (r,v′):

• if they are both undefined, i.e., n did not participate to previous handshakes, n can be reused for an
execution involving only rv′ and v′;

• if they contain round r1 and value v, with r1 < r, then we have to show that the history of node n
is independent from votations involving round r for the value v′.

– If n has never voted for value v′ (i.e. the value v′ has never been stored in its local state), then
we can inspect the history until the first vote done by n for the value v. If the associated round
is rv, we can simply build an execution in which node n sends the learned message (rv,v). If
the round number is different from rv, then the previous local state has undefined values for
the variables (since we assume that this is the first votation). Thus, we can build an execution
in which node n receives the proposal (rv,v) directly from the proposer rv.
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Prop Acc Max Maj Time (sec) App States Unsafe OutOfMem
2 2 3 1 0.006 346 X
2 2 3 2 0.007 824
2 2 4 2 0.006 790
2 3 3 1 0.014 2195 X
2 3 6 2 0.285 65091
2 4 3 1 0.087 20045 X
2 4 3 2 0.3 52281 X
2 4 3 3 4.06 979118
2 4 6 3 5.81 794775
2 4 7 3 5.81 754072
2 4 8 3 5.97 744224
2 4 9 3 6.00 744224
2 5 3 1 0.995 151550 X
2 5 3 2 2.55 377295 X
2 5 3 3 57.20 7807712 X
2 5 10 3 61.5 5186311 X
2 5 12 3 57.2 4708912 X
2 5 15 3 56.1 4152603 X
2 5 20 3 56 3476531 X
2 5 10 3 317 X 53*106

2 6 12 2 17 X 3*106 X
2 6 12 3 35 X 7*106 X

Table 1: Experimental results with finite protocol instances.

– If n has voted for value v′ in a round r1 < r but the value has not reached a majority, i.e., the
learner never observed a majority for (r1,v′), then the vote of node n plays no role for the
election of v′. Thus, we can apply the same reasoning as in the previous point, in order to
move back to a state from which we can extract an execution involving only rv and v.

2

We conjecture that a similar finite-model result holds, for the considered model, even for defining a
bound on the number of acceptor. Namely, we believe that studying the protocol for a small number
of acceptors defining a potential partitioning is sufficient for proving the protocol correct. We leave the
proof of this claim for an extended version of the paper.

Reducing the Search Space Apart from finite-model properties, it is also possible to apply a number
of heuristics to reduce the state space of the automata associated to the protocol roles. The first heuristics
consists in resetting all locally used variables at the end of atomic steps. This, we increase the probability
that the automaton rule associated to the atomic step returns to an existing state (unless global variables
have been updated by the rule).

The second heuristics is strictly related to the channel representation. Since we always use the
random read ?? for message reception, we can use the ordered insertion !! to send messages instead
of the FIFO version !. Conceptually, there is no difference (read operations remain unordered), however
we reduce the number of state representation by keeping only representative elements in which channel
contents are always ordered lists.

5 Experimental Analysis

In our experiments we consider the number of proposer and acceptors as distinct parameters, the other
parameters being the maximum size of channels (communication is asynchronous), and the maximum
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number of faulty processes allowed in the system. We use Spin as back-end solver to explore the values
of the parameters and to extrapolate the minimal constraints for ensuring the correctness of the protocol.
In a first series of experiments (with ordered send operation !! instead of !) we considered the parameters
in Table 1. With two proposers and two acceptors we detect a violation with majority 1 and verify the
safety property with full state exploration with majority 2. Similarly, we detect a violation with three
acceptors and majority 1 and no violations with majority 2. Here we consider increasing size channels.
The state space stabilizes, as expected, for buffer of size 6. With 4 acceptors we prove correctness
for majority 3 and the state space stabilizes, as expected, with channel of size 8. We remark that we
obtain almost a half reduction with respect to a model with FIFO send operation ! (e.g. for 3 acceptors
and channel size 6, the reachable states are 172868 with ! and 65091 with !!). With 5 acceptors the
state space becomes unmanageable with full state exploration. We can still apply approximated search
(bitstate hashing) to get violations for quorums with less than 3 processes and have an estimation of
the correctness for larger quorums. The experiments confirm the hypothesis for the correctness of the
protocol. From the minimal constant MAJ that show no violation we can extrapolate the number of
admitted faulty processes. Interestingly, Spin is still very effective in finding counterexamples as shown
by the experiments in Fig. 1.

6 Optimizations via Model Transformations

In this section we present two optimizations, given in form of model transformations, that help in reduc-
ing the search space of our models.

The first optimization can be applied in the intial phase of the protocol of a proposer. Specifically,
we can send prepare messages atomically to all processes, i.e., perform an atomic broadcast transition
instead of interleaving send of prepare messages with actions of other processes.

The second optimization is related to the method used to detect a majority by proposers. Counting up
messages using counters on reception of promise messages has a major drawback, i.e., the introduction
of a number of intermediate states proportional to the steps needed to reach a majority (every time we
receive a message we increment a counter). To eliminate these auxiliary states, we need a new type of
guards that are able to count the occurrences of a given message in a channel. We will refer to them
as counting guards. When used in a conditional statement they would allow us to atomically check if a
quorum has been reached for a specific candidate message, i.e., to implement atomic a sort of quorum
transitions.

If we apply the two transformations to our Promela specification of proposers, we obtain a much
simpler process skeleton in which an atomic broadcast is followed by a do loop consisting of a single
rule that models a quorum transition. To implement these steps we use derived Promela rules built via the
atomic and d_step construct. The d_step construct is particularly useful in that it transforms a block
of transitions into a single not interruptible step, i.e., it can be used to add new instructions to Promela.
Only the first instruction of a d_step block can be a blocking operation, e.g., a read from a channel. We
discuss the new Promela model in the rest of the section.

Atomic Broadcast and Quorum Transitions In the new specification we introduce a new type for
messages mex used to inspect the content of the channel prepare.
t y p e d e f mex{

byte rnd ;
s h o r t prnd ;
s h o r t p v a l ;
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}

The new proposer definition is structured as follows.
proctype p r o p o s e r ( s h o r t c rnd ; s h o r t myval ) {

s h o r t aux , h r = −1, hv = −1;
s h o r t rnd ;
s h o r t prnd , p v a l ;
byte c o u n t =0 , i =0 ;
mex pr ;

d s t e p { b p r e p a r e ( c rnd ) ; }
do
: : q t ( i , pr , count , hr , hv , myval , crnd , aux ) ;
od
}

As mentioned before, the first step consists in atomically broadcasting prepare messages. The process
then enters a loop in which it only executes the derived qt rule. The qt rule is defined via the atomic

construct and two additional subrules as follows.
q t ( i , pr , count , hr , hv , myval , crnd , aux ) =

atomic{
occ ( i , pr , count , hr , hv , c rnd ) ;
t e s t ( count , hr , hv , myval , crnd , aux ) ;
hv= −1; h r = −1; c o u n t =0 ; aux =0;
}

occ is a rule that counts the number of occurrences of messages with round identifier equal to rnd. test
is used to detect a majority and broadcast accept messages.

The occ procedure on a generic channel ch and message m is based on the following idea. We
consider the ch channel as a circular queue. We then perform a for-loop as many times as the current
length of the channel. At each iteration we read message m by using the FIFO read operation ? and
reinsert it at the end of the channel so as to inspect its content without destroying it. We then increment
an occurrence counter count if the message m contains the proposed round identifier. The other fields of
the messages are inspected as well in order to search for the value of the promise containing the maximal
round identifier. At the end of the for-loop we can test the counter to fire the second part of the transition
in which we test if the majority has been reached. The promela code for the occ subrule is defined then
as follows.
occ ( i , pr , count , hr , hv , c rnd ) =

d s t e p {
do
i =0 ;
: : i < l e n ( p romise ) −>

promise ? p r ; p romise ! p r ;
i f

: : p r . rnd == crnd−>
c o u n t ++;
i f

: : p r . prnd>hr−>
hr = pr . p rnd ; hv= pr . p v a l ;

: : e l s e
f i ;
: : e l s e

f i ;
i ++;

: : e l s e −>
pr . p rnd =0; p r . p v a l =0 ; p r . rnd =0; i =0 ;
break ;

od ;
}
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The instructions in the outermost else branch are just resets of local variables.
An accept message is broadcasted to the acceptors when majority is detected. This is implemented

in the testprocedure defined as follows.

t e s t ( count , hr , hv , myval , crnd , aux ) =
i f

: : count>=MAJ −>
aux =( hr<0 −>myval : hv ) ; /∗ c o n d i t i o n a l e x p r e s s i o n ∗ /
b a c c e p t ( crnd , aux ) ;
break ;

: : e l s e
f i ;

We remark that the quorum transition rule is executed in a single deterministic step, i.e., it does not
introduce any intermediate state. If the proposer detects a majority then the effect is to update the accept
channel.

We note that we still consider possible interleaving between different quorums since acceptors are
free to reply to proposers in any order. More specifically, the reason why the transformation preserves
all interleavings of the original model is explained by the following proposition.

Proposition 1 The model obtained by applying the transformation based on atomic broadcast and quo-
rum transitions is equivalent to the original model with respect to set of messages exchanged by proposers
and acceptors.

Proof In the first model a proposer broadcasts requests non-atomically and then moves to a control state
in which it waits for replies and for detecting a majority on some round. At each reply a proposer updates
the local variables until majority is reached and then updates the accept channels. We now show that
the modified model has the same effect on the channels in terms of read and write operations. We prove
the claim in two steps. We first show how to consider only atomic broadcast and then how to replace
receptions with quorum transitions.

• Let us consider a computation γ1RiS jγ2 of the first model in which Ri is a reception performed by
proposer Pi and S j is a send issued by proposer j. Since the communication model is asynchronous,
reception Ri can be permuted with S j. Indeed, S j cannot disable Ri and S j does not depend on
Ri. Thus, γ1RiS jγ2 has the same effect on channels. By iterating this permutation rule, we can
group all sends issued by a given process in a contiguous subsequence of actions and then replace
them with an atomic broadcast step. Restricting the interleavings to the above mentioned types of
interleavings does not change the effect on the channels.

• We now consider the second type of transformation. We first note that, in general, receive opera-
tions cannot be grouped together. Indeed, in the first model each receive operation could modify
the current state of a proposer by updating count. We observe however that the effect of a sin-
gle receive operation followed by an update and a test on count is the same as the effect of a
quorum transition applied directly on the channel. In other words a computation of the form
γ1R1γ2R2 . . .γkRkγk+1 where Ri is a receive operated by proposer Pi as specified in the first model,
is mimicked by an equivalent computation of the form γ1Qtγ2Qt . . .γkQtγk+1 in which a reception
with local state and accept channel updates is replaced by an application of a quorum transition
Qt whose update is limited to the accept channel. This property is ensure by the fact that, in case
of failure, a quorum transition goes back to the beginning of the do loop and can be fired again in
any other step.
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Prepare Channels as Read-only Registers Another fundamental optimization can be applied in the
acceptor specification. The key point here is to consider the propose channel as a sort of message store
instead of a standard channel, i.e., a channel in which message are persisent. To obtain this effect,
it is enough to turn the read operation prepare??eval(id),rnd that removes the message from the
channel into the read command prepare??<eval(id),rnd> that does not remove the message from
the channel. The new acceptor specification is defined next.

proctype a c c e p t o r ( i n t i d ) {
s h o r t c rnd = −1, prnd = −1, p v a l = −1;
s h o r t ava l , rnd ;
do

: : d s t e p {
p r e p a r e ??< e v a l ( i d ) , rnd> −>
i f

: : ( rnd>c rnd ) −> c rnd = rnd ;
: : e l s e

f i ;
rnd = 0
}
: : d s t e p {

a c c e p t ?? e v a l ( i d ) , rnd , a v a l −>
i f

: : ( rnd>=crnd ) −>
c rnd = rnd ;
prnd = rnd ;
p v a l = a v a l ;
l e a r n ! ! id , crnd , a v a l ;

: : e l s e
f i ;
rnd = 0 ; a v a l = 0 ;

}
od
}

It is important to notice that, by definition, acceptors never process more than once messages with a
certain round identifier. Therefore, leaving the messages in the channel does not modify the traces of
acceptors. This optimization can be pushed forward by letting proposer to put a single message for each
round in the prepare channel instead of one message per process. In other words, prepare messages can
be viewed as read-only registers accessible to acceptors.

7 Experimental Analysis of the Optimized Model

In this section we discuss the experimental results obtained on the optimized model with the parameters
shown in Table 2. As their number of processes increases we observe a fast growing number of states
due to the asynchronous nature of the model. When our PC revealed to be not sufficiently powerful to
exhaustively look for the correctness of the system in every single possible state and an out-of-memory
error was generated, an approximate search option was used (App stands for -DBITSTATE option given
for compilation process along with 3 bits per state and default hash-table size chosen for the verification
phase). In that case Spin bitstate hashing turned out to be useful when quorums where not enough to
reach a majority and a counterexample was given almost in any case. The correct approximate case
instead has little meaning because, even increasing the internal hash table size and using more bits to
represent a state, the hash factor remains well below a good states coverage target. In any case, the
abstractions used to reduce the state-space proved to be successful to analyse a few processes and to
tackle the complexity of distributed system verification. When approximate search was not needed we
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Prop Acc Max Maj Time (sec) App States Unsafe OutOfMem
2 2 4 2 <0.01 61
2 3 6 2 <0.01 926
2 4 8 3 0.02 4421
2 5 10 3 0.4 91956
2 6 12 4 2.74 473261
2 7 14 4 71.9 9762358
2 8 16 5 799 28208534 X
2 8 16 5 52.3 X 7525860
2 8 16 4 60.3 X 8550176
3 2 6 2 0.01 987
3 3 9 2 0.35 104761
3 4 12 3 7.3 1339802
3 5 15 3 940 30813015 X
3 5 15 3 49 X 8090684
2 5 15 2 48.2 X 7383348 X
4 2 8 2 0.07 16457
4 3 12 2 48.1 9547976
4 4 16 3 657 29450661 X
4 4 16 3 51.8 X 8128276
4 4 16 2 49.1 X 7870336 X
5 2 10 2 1.43 270237
5 3 15 2 >3600 >1.22*108 X
5 3 15 2 50 X 7949467
5 3 15 1 2.17 X 340445 X
6 2 12 2 25.9 4397176
7 2 14 2 558 71298752
8 2 16 2 2370 1.4984*108 X
8 2 16 2 70.4 X 8045888
8 2 16 1 17.4 X 2189799 X

Table 2: Experimental results with finite protocol instances.

compressed the state descriptors using the appropriate Spin option to fully verify more effectively. Spin
was run on a 16GB machine using a presetting of 4GB for the state vector. All experiments have been
done with a PC equipped with an Intel i7-4700HQ quad-core with hyper-threading enabled by default.
We remark that we obtain almost a half reduction with respect to a model with FIFO send operation !
With 8 acceptors the state space becomes unmanageable with full state exploration. We can still apply
approximated search (bitstate hashing) to get violations for quorums with less than 3 processes and have
an estimation of the correctness for previously unmanageable configurations. The experiments confirm
the hypothesis about the correctness of the protocol. From the minimal constant MAJ that show no
violation we can extrapolate the number of admitted faulty processes. We also increased step by step the
MAX parameter to get to its stabilization to confirm our hypothesis about its size. Interestingly, Spin is
still very effective in finding counterexamples as shown by the experiments in Fig. 2. Our models are
available here: http://www.disi.unige.it/person/DelzannoG/PAXOS/GANDALF_14/.

8 Related Work

Formal specification in temporal and first order logic, TLA, of Paxos and its variants together with
automatically checked proofs are given in [21]. Differently from the TLA-based approach, our analysis
is based on a software model checking approach based on automata combined with abstractions and
heuristics (e.g. counting guards). The efficiency of model checking message passing protocols is studied
in [2], which compares different semantics for asynchronous communication (e.g. one in which special

http://www.disi.unige.it/person/DelzannoG/PAXOS/GANDALF_14/
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delivery events are used to move messages from output to input buffers and another in which messages are
directly placed in input buffers). The authors conclude the article with some results obtained by applying
the discussed message passing models to Paxos, with two proposers and up to four acceptors. Depending
on the specific model and property being considered, the state space varies from about 5×104 states up to
1.7×106. An approach for bounded model checking asynchronous round-based consensus protocols is
proposed in [26], where the authors exploit invariants and over-approximations to check agreement and
termination properties on two variants of Paxos. In [16, 15], the authors consider (parameterized models
of) fault tolerant distributed algorithms. They propose an approach specific to this class of protocols and
consider more types of faulty processes than we do, like Byzantine failures. Differently from [16, 15],
we focus our attention on optimisations and code-to-code transformations that can help in reducing state
space for finite-state instances of protocols in the same class. Reduction theorems and abstractions for
other examples of distributed systems (e.g. mutual exclusione protocols) are considered in [11, 23].
Automata-based models of broadcast communication has recently been studied in [7, 8, 6, 9, 5].

Concerning other model checking approaches, in [4], we focused our attention on the comparison of
the model checkers Spin and Groove, based on graph transformation systems, taking Paxos as a common
case-study. In this paper we focus our attention on the design choices and protocol properties that we
applied to obtain the Promela specification. The Groove model studied in [4] can be viewed as a declar-
ative specification of Paxos that require a preliminary abstraction step in the modeling phase. We apply
here code to code transformations and optimizations to reduce the state space generated by exhaustive
analysis via Spin. This method, that requires human ingenuity, yields results that are comparable, in
terms of matched states and execution time, to those obtained with Groove.

9 Conclusions

In this paper we presented a formal model for the Paxos algorithm given in terms of finite state automata
described in the high level language Promela. Reasoning on the size of the automata and reachability
states produced by Spin, we managed to define different types of optimizations, e.g., based on a new type
of guards that atomically inspect the content of a channel (counting guards). We also consider two reduc-
tion properties that can be used to limit some of the unbounded dimension of the specification (number
of proposers and learners). Our experiments show that the combination of abstractions, heuristics, and
model checking can be used to analyze challenging examples of distributed algorithms even for large
number of process instances. As future work, it would be interesting to generalize the transformation
patterns (based on atomic broadcast and quorum transitions) to a more general class of systems and to
provide a complete cut-off result to reduce parameterized verification to finite-state verification.
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