
Adriano Peron and Carla Piazza (Eds.):
Proceedings of the Fifth International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 2014)
EPTCS 161, 2014, pp. 147–160, doi:10.4204/EPTCS.161.14

c© A. Kuusisto
This work is licensed under the
Creative Commons Attribution License.

Infinite Networks, Halting and Local Algorithms

Antti Kuusisto∗

Institute of Computer Science
University of Wrocław

Poland

antti.j.kuusisto@uta.fi

The immediate past has witnessed an increased amount of interest in local algorithms, i.e., constant
time distributed algorithms. In a recent survey of the topic(Suomela, ACM Computing Surveys,
2013), it is argued that local algorithms provide a natural framework that could be used in order
to theoretically control infinite networks in finite time. Westudy a comprehensive collection of
distributed computing models and prove that if infinite networks are included in the class of structures
investigated, then every universally halting distributedalgorithm is in fact a local algorithm. To
contrast this result, we show that if only finite networks areallowed, then even very weak distributed
computing models can define nonlocal algorithms that halt everywhere. The investigations in this
article continue the studies in the intersection of logic and distributed computing initiated in (Hella
et al., PODC 2012) and (Kuusisto, CSL 2013).

1 Introduction

This work is a study of deterministic distributed algorithms for arbitrary networks, including infinite
structures in addition to finite ones. In the recent survey article [13], Suomela points out that distributed
constant-time algorithms are a reasonable choice for theoretically controlling infinite networks in finite
time. In this article we show that for a rather comprehensivecollection of models of distributed comput-
ing, constant-time algorithms are in a sense theonly choice. We define a framework—based on a class
of message passing automata and relational structures—that contains a comprehensive variety of models
of distributed computing inanonymous networks, i.e., networks without ID-numbers. We then show that
if infinite networks are allowed, thenall universally halting algorithmsdefinable in the framework are in
fact local algorithms, i.e., distributed constant-time algorithms.

The widely studiedport-numbering model(see [2, 8, 9]) of distributed computing can be directly
extended to a framework that contains infinite structures inaddition to finite ones. In the port-numbering
model, a node of degreek ≤ n, wheren is a globally known finite degree bound, receives messages
throughk input ports and sends messages throughk output ports. The processors in the nodes can send
different messages to different neighbours, and also see from which port incoming messages arrive.
There are no ID-numbers in this framework. The omission of ID-numbers is well justified when infinite
networks are studied: in most natural theoretical frameworks for the modelling of computation in infinite
networks,even the reading of all localIDs in the beginning of computation would take infinitely long.
Thus typical synchronized communication using ID-numberswould be impossible.

There are several fields of study outside distributed computing where the objects of investigation
can be regarded as infinite distributed anonymous communication networks.Cellular automataprovide

∗The author acknowledges that this work was carried out during a tenure of the ERCIM “Alain Bensoussan” Fellowship
Programme. The reported research has received funding fromthe European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 246016.

http://dx.doi.org/10.4204/EPTCS.161.14
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

148 Infinite Networks, Halting and Local Algorithms

probably the most obvious and significant example of such a framework. But of course there are various
others. Crystal lattices and the brain, for example, are massive network systems often modelled by
infinite structures.

Below we define ageneral distributed computing modelbased on relational structures and synchro-
nized message passing automata. The port-numbering model VVc of [8, 9] and all its subclasses can be
directly simulated in our framework by restricting attention to suitable classes of structures and automata.
We establish (Theorem 4.3) that ifH is a class of communication networks definable by afirst-order
theory, then all universally halting algorithms overH are local algorithms. For example, the classes of
networks for the VVc model are easily seen to be definable by first-order formulae,as long as infinite
structures are allowed. In fact, when the requirement of finiteness is lifted, all classes of structures in the
comprehensive study in [8, 9] can easily be seen to be first-order definable.

The proof of Theorem 4.3 makes acrucial use of logic, thereby extending the work initiated in
[8, 9] and developed further in [11]. The articles [8, 9, 11] extend the scope ofdescriptive complexity
theory (see [7, 10, 12]) to the realm of distributed computing by identifying a highly canonical one-
to-one link betweenlocal algorithms and formulae of modal logic. This link is based onthe novel
idea of directly identifyingKripke modelsand distributed communication networks with each other.
Under this interpretation, arrows of the accessibility relations of Kripke models are considered tobe
communication channels between processors in distributednetworks. This idea has turned out to be
fruitful because it enables the transfer of results betweenmodal logic and distributed computing. For
example, in [8, 9] a novel separation argument concerning distributed complexity classes is obtained by
applying thebisimulation method(see [4, 5, 6]) of modal logic to distributed communication networks.

In this article we adapt the link between modal logic and distributed computing for the purpose of
proving Theorem 4.3. We first obtain a characterization of halting behaviour in terms of modal formulae.
This facilitates the use of thecompactness theorem(see [7]), which is the final step in our proof.

To contrast Theorem 4.3, we investigate halting behaviour of distributed message passing automata
in the finite. We establish that even extremely weak subsystems of the port-numbering model can define
nonlocal halting algorithms when attention is restricted to finite networks: Theorem 3.1 shows that even
if message passing automata in the port-numbering model have absolutely no access to port numbers
whatsoever, nonlocal but universally halting behaviour ispossible.

In order to prove Theorem 3.1, we employ tools fromcombinatorics on words, namely, the infinite
Thue-Morse sequence(see [1]). This infinite binary sequence is known to be cube-free, i.e., it does not
have a prefix of the typetuuu, whereu is a nonempty word. This lack of periodicity allows us to design
an appropriate algorithm that is halting but nonlocal in thefinite.

2 Preliminaries

Let Π be a finite set ofunary relation symbols P∈ Π andR a finite set ofbinary relation symbols R∈R.
These symbols are also calledpredicate symbols. The set of(Π,R)-formulaeof modal logicML(Π,R)
is generated by the grammar

ϕ ::= ⊤ | P | ¬ϕ | (ϕ1∧ϕ2) | 〈R〉ϕ ,

whereP is any symbol inΠ, Rany symbol inR, and⊤ is a logical constant symbol. Let VAR= { xi | i ∈
N } be a set ofvariable symbols. The set of(Π,R)-formulaeof first-order logicFO(Π,R) is generated
by the grammar

ϕ ::= ⊤ | x= y | P(x) | R(x,y) | ¬ϕ | (ϕ1∧ϕ2) | ∃xϕ ,

A. Kuusisto 149

wherex andy are symbols in VAR,P a symbol inΠ, Ra symbol inR, and⊤ a logical constant symbol.
For both logics, we define the abbreviation⊥ := ¬⊤. We also use the abbreviation symbols∨, → and
↔ in the usual way. Themodal depth md(ϕ) of a formula is defined recursively such thatmd(⊤) =
md(P) = 0, md(¬ψ) = md(ψ), md(ψ ∧ χ) = max{md(ψ),md(χ)}, andmd(〈R〉ψ) = md(ψ)+1.

Let Π = {P1, ...,Pn} andR = {R1, ...,Rm}. A (Π,R)-modelis a structure

M := (W,PM
1 , ...,PM

n ,RM
1 , ...,RM

m),

whereW is an arbitrary nonempty set (thedomainof the modelM), eachPM
i is a unary relationPM

i ⊆W,
and eachRM

i a binary relationRM
i ⊆ W×W. The semantics of ML(Π,R) is defined with respect to

pointed(Π,R)-models(M,w), whereM = (W,PM
1 , ...,PM

n ,RM
1 , ...,RM

m) is a(Π,R)-model andw∈W a
point or anodeof (the domain of)M. For eachPi ∈ Π, we define(M,w) |= Pi iff w∈ PM

i . We also define
(M,w) |=⊤. We then recursively define

(M,w) |= ¬ϕ ⇔ (M,w) 6|= ϕ ,

(M,w) |= (ϕ ∧ψ) ⇔ (M,w) |= ϕ and(M,w) |= ψ ,

(M,w) |= 〈Ri 〉ϕ ⇔ ∃v∈W
(

(w,v) ∈ RM
i and(M,v) |= ϕ

)

.

The semantics of FO(Π,R) is defined in the usual way with respect to(Π,R)-interpretations(M, f),
where

M = (W,PM
1 , ...,PM

n ,RM
1 , ...,RM

m)

is a (Π,R)-model andf is anassignment function f: VAR → W giving an interpretation to the vari-
ables in VAR. We define(M, f) |= x= y ⇔ f (x) = f (y), (M, f) |= Pi(x) ⇔ f (x) ∈ PM

i , and(M, f) |=
Ri(x,y) ⇔ (f (x), f (y)) ∈ RM

i . We also define(M, f) |=⊤. We then recursively define

(M, f) |= ¬ϕ ⇔ (M, f) 6|= ϕ ,

(M, f) |= (ϕ ∧ψ) ⇔ (M, f) |= ϕ and(M, f) |= ψ ,

(M, f) |= ∃xϕ ⇔ ∃v∈W
(

(M, f [x 7→ v]) |= ϕ
)

,

where f [x 7→ v] is the functiong : VAR →W such that

g(y) =

{

v if y= x,

f (y) if y 6= x.

It is well known that modal logic can be directly translated into first-order logic. We define thestandard
translationfrom ML(Π,R) into FO(Π,R) in the following way. We letStx(⊤) := ⊤, Stx(Pi) := Pi(x),
Stx((ϕ ∧ψ)) :=

(

Stx(ϕ)∧Stx(ψ)
)

, Stx(¬ϕ) := ¬Stx(ϕ), andStx(〈Ri 〉ϕ) := ∃y
(

Ri(x,y)∧Sty(ϕ)
)

. Here
y is a fresh variable distinct fromx. It is easy to see that(M,w) |= ϕ iff (M, f [x 7→ w]) |= Stx(ϕ). Due to
the standard translation, modal logic is often considered to be simply afragmentof first-order logic.

We next fix some conventions concerningsetsof formulae. We only discuss formulae of first-order
logic, but analogous definitions hold for modal logic.

If Φ is a set of formulae of FO(Π,R), then
∨

Φ and
∧

Φ denote thedisjunctionandconjunctionof
the formulae inΦ. The setΦ can be infinite, but then of course neither

∨

Φ nor
∧

Φ is a formula of
FO(Π,R). We define(M, f) |=

∨

Φ if there exists at least one formulaϕ ∈ Φ such that(M, f) |= ϕ . We
define(M, f) |=

∧

Φ if (M, f) |= ϕ for all ϕ ∈ Φ. A setof formulae of FO(Π,R) is called atheory(over
the signature(Π,R)).1 If T is a theory over the signature(Π,R), then(M, f) |=T means that(M, f) |=ϕ

1A theory does not have to be closed under logical consequence. A theory is simply a set of formulae, and can be infinite or
finite.

150 Infinite Networks, Halting and Local Algorithms

for all ϕ ∈ T. When we writeT |= ϕ , we mean that the implication(M, f) |= T ⇒ (M, f) |= ϕ holds
for all (Π,R)-interpretations(M, f). As usual, two FO(Π,R)-formulaeϕ andψ areequivalentif the
equivalence(M, f) |= ϕ ⇔ (M, f) |= ψ holds for all(Π,R)-interpretations(M, f).

Let H be a class ofpointed(Π,R)-models, and letK ⊆ H . A modal formulaϕ definesthe class
K with respect toH , if for all (M,w) ∈ H , we have(M,w) |= ϕ ⇔ (M,w) ∈ K . If some formulaψ
defines a classJ of pointed(Π,R)-models with respect to the class of all pointed(Π,R)-models, we
simply say thatψ definesJ .

If ϕ is a sentenceof FO(Π,R) andM a (Π,R)-model, we writeM |= ϕ if (M, f) |= ϕ for some
assignmentf . (Trivially, whether(M, f) |= ϕ holds or not, does not depend onf whenϕ is a sentence.)
If T is a theory consisting of FO(Π,R)-sentences, we writeM |= T iff M |= ψ for all ψ ∈ T. Let J
be a class ofpointed(Π,R)-models andT a theory consisting of FO(Π,R)-sentences. We say that the
first-order theory T defines the classJ of pointed modelsif for all pointed (Π,R)-models(M,w), we
haveM |= T ⇔ (M,w) ∈ J . Notice indeed that accoring to this convention, ifT defines a classJ
of pointed models and ifw is a point in the domain ofM and(M,u) a pointed model inJ , then we
have(M,w) ∈ J . If a first-order theoryT defines a classH of pointed models, then we say thatH is
definableby the first-order theoryT. If H is definable by a theory{ϕ} containing a single first-order
(Π,R)-sentenceϕ , we say thatH is definable by the first-order sentenceϕ .

Let Π andR = {R1, ...,Rk} be finite sets of unary and binary relation symbols, respectively. A
message passing automaton Aover the signature(Π,R), or a(Π,R)-automaton, is a tuple

(Q,M ,π,δ ,µ ,F,G)

defined as follows.Q is a nonempty set ofstates. Q can be finite or countably infinite.M is a nonempty
set ofmessages. M can be finite or countably infinite. For a setS, we letPow(S) denote the power set of
S. π : Pow(Π)→ Q is aninitial transition functionthat determines the beginning state of the automaton
A. δ : ((Pow(M))k ×Q) → Q is a transition functionthat constructs a new stateq∈ Q when given a
k-tuple(N1, ...,Nk) ∈ (Pow(M))k of received message sets and the current state.µ : (Q×R)→ M is a
message construction functionthat constructs a message for the automaton to send forward when given
the current state of the automaton and acommunication channel Ri ∈ R. F ⊆ Q is the set ofaccepting
statesof the automaton.G⊆ Q\F is the set ofrejecting statesof the automaton.

LetR = {R1, ...,Rk} andΠ= {P1, ...,Pm}. Let(M,w) be a(Π,R)-model. The set ofRi-predecessors
of w is the set of nodesu in the domain ofM such thatRi(u,w), and the set ofRi-successorsof w is the
set of nodesu such thatRi(w,u). The set ofRi-successors ofw is denoted bysucc(Ri ,w).

A message passing(Π,R)-automatonA is run on a (Π,R)-model M =
(

W,R1, ...,Rk,P1, ...,Pm
)

,
considered to be a distributed system. We first give an intuitive description of the computation of the dis-
tributed system defined by the automatonA and the modelM, and then define the computation procedure
more formally.

On the intuitive level, we place a copy(A,w) of the automatonA to each nodew∈W. Then, each
automaton(A,w) first scans thelocal informationof the nodew, i.e., finds the set of unary relation
symbolsPi ∈ Π such that(M,w) |= Pi, and then makes a transition to abeginning statebased on the
local information. The local information atw can be considered to be anm-bit stringt of zeros and ones
such that thei-th bit of t is 1 iff (M,w) |= Pi. After scanning the local information, the automata(A,w),
wherew∈W, begin running insynchronized steps. During each step, each automaton(A,w) sends, for
eachi ∈ {1, ...,k}, a messagemi to theRi-predecessorsof w.2 The automaton(A,w) also receives a

2Therefore information flows opposite to the direction of thearrows (i.e., ordered pairs) ofRi . The reason for this choice is
technical, and could be avoided. The choice is due to the relationship between modal logic and message passing automata.A

A. Kuusisto 151

tuple (N1, ...,Nk) of message setsNi such that setNi is received from theRi-successors ofw. Then the
automaton updates its state based on the received messages and the current state.

More formally, a(Π,R)-model
(

W,R1, ...,Rk,P1, ...,Pm
)

and a(Π,R)-automaton

A :=
(

Q,M ,π,δ ,µ ,F,G
)

define a synchronized distributed computation system whichexecutescommunication roundsdefined as
follows. Each roundn∈N defines aglobal configuration fn : W → Q. The configurationf0 of the zeroth
round is the functionf0 such thatf0(w) = π({ P∈ Π | w∈ PM }) for all w∈W. Recursively, assume
that we have definedfn, and let(N1, ...,Nk) be a tuple of message sets

Ni =
{

m∈ M | m= µ(fn(v),Ri), v∈ succ(Ri ,w)
}

.

Then fn+1(w) = δ
(

(N1, ...,Nk), fn(w)
)

.
When we talk aboutthe state of the automaton A at the node w in round n, we mean the statefn(w).

We define that an automatonA acceptsa pointed model(M,w) if there exists somen ∈ N such that
fn(w) ∈ F, and furthermore, for allm< n, fm(w) 6∈ G. Similarly, A rejects(M,w) if there exists some
n∈ N such thatfn(w) ∈ G, and for allm< n, fm(w) 6∈ F . Notice thatA may keep passing messages and
changing state even after it has accepted or rejected. Automata that stop sending messages after accepting
or rejecting can be modelled in this framework by automata that begin sending only the message “I have
halted” once they have accepted or rejected. (Notice that the behaviour of the distributed system does
not have to be Turing computable in any sense.)

Let C be the class of all pointed(Π,R)-models. LetH ⊆ C . We say thatA accepts (rejects)H if
the class of pointed models inC thatA accepts (rejects) isH . LetJ ⊆ K ⊆ C . We say thatA accepts
(rejects)J in K if the class of pointed models inK thatA accepts (rejects) isJ . A (Π,R)-automaton
A convergesin the classK if for all (M,w) ∈ K , the automatonA either accepts or rejects(M,w). A
(Π,R)-automatonA=

(

Q,M ,π,δ ,µ ,F,G
)

halts in K if A converges inK , and furthermore, for each
stateq∈ F ∪G that is obtained byA at some(M,w) ∈ K , the state ofA at (M,w) will be q forever once
q has been obtained for the first time. We say that the automatonA specifies a local algorithmin K
if there exists somen ∈ N such that for all(M,w) ∈ K , the automatonA accepts or rejects(M,w) in
some roundm≤ n. The smallest such numbern is called theeffective running timeof A in K . For the
sake of curiosity, note that even ifA specifies a local algorithm, it does not necessarily halt. However, a
corresponding halting automaton of course exists.

Let K be a class of pointed(Π,R)-models. When we say that an algorithmA (or more rigorously, a
(Π,R)-automatonA) is strongly nonlocalin K , we mean that there exists no(Π,R)-automatonB that
specifies a local algorithm inK and accepts exactly the the same pointed models inK asA.

Our framework with(Π,R)-automata operating on(Π,R)-models is rather flexible and general. For
example, each system in the comprehensive collection ofweak models of distributed computingstudied
in [8, 9] can be directly simulated in our framework by restricting attention to suitable classes of(Π,R)-
structures and(Π,R)-automata. Let us have a closer look at this matter.

Let R = {R} and letΠ be any finite set. IfM is (Π,R)-model, whereRM is a symmetric and
irreflexive binary relation, thenM is an SB(Π)-model. The letter S stands for the wordsetand the letter
B for broadcast. The intuition behind the framework provided by SB(Π)-models is that message passing
automata seeneither input port numbers nor output port numbers. This means that the state transition

possible alternative approach would be to consider modal logics with the truth of〈Ri 〉ϕ defined such that(M,w) |= 〈Ri 〉ϕ iff
∃v∈W

(

(v,w) ∈ RM
i and(M,v) |= ϕ

)

.

152 Infinite Networks, Halting and Local Algorithms

of an automaton depends only on the current state and theset of messages received—rather than the
multiset for example—and an automaton mustbroadcastthe same message toeachof its neighbours
during a communication round. It is not possible to send different messages to different neighbours
during the same communication round.

The framework provided by SB(Π)-models is similar to the weakest (in computational capacity)
computation model SB studied in [8, 9]. In fact, the framework of SB(Π)-models in the current paper is
a canonical generalization of the model SB in [8, 9]. In the article [8, 9], allclassesof structures studied
are always associated with a finite maximum degree bound, andfurthermore, all structures are assumed to
be finite. In the current article, such restrictions need notapply. Also, we allow arbitrary interpretations
of the unary relation symbols inΠ, while in the SB model of [8, 9], unary relation symbols always
indicate the degree of a node in a network (and nothing else).3 The reason for generalizing the definition
of [8, 9] is that in the current paper we opt for generality as well as increased mathematical simplicity.
The philosophy in [8, 9] is more application oriented.

Let n∈ N\{0} andS= {1, ...,n}. Let Π = {P0, ...,Pn} andR = {R(i, j) | (i, j) ∈ S×S}. A pointed
(Π,R)-model(M,w) is ann-port-numbering structure, or a PN(n)-structure, if it satisfies the following
(admittedly long and technical, and for the current paper rather unimportant) list of conditions.

1. The unionR of the relationsRM
(i, j) is a symmetric and irreflexive relation.

2. For any two distinct pairs(i, j),(k, l) ∈ S×S, if RM
(i, j)(u,v), thenRM

(k,l)(u,v) does not hold.

3. For each(i, j) ∈ S×S, if RM
(i, j)(u,v), thenRM

(j,i)(v,u).

4. For each(i, j) ∈ S×S, the out-degree and in-degree ofRM
(i, j) is at most one at each node.

5. If R(i, j)(u,v) for some nodesu andv and somei, j ∈ S, then, ifk< i, there exists somel ∈ Sand
some nodev′ such thatRM

(k,l)(u,v
′).

6. Similarly, if RM
(i, j)(u,v) for some nodesu andv and somei, j ∈ S, then, ifk< j, there exists some

l ∈ Sand some nodeu′ such thatRM
(l ,k)(u

′,v).

7. Finally, for each nodeu and eachi ∈ {0, ...,n}, we haveu∈ PM
i if and only if the out-degree (or

equivalently, in-degree) of the unionRof all the relations inR is i at u.
It is straightforward to show that there exists a first-order(Π,R)-sentenceϕPN(n) that defines the class

PN (n) of all PN(n)-structures. This piece of information will be used in the very end of the current
article when we discuss concrete applications of Theorem 4.3. The class offinite PN(n)-structures is
exactlythe collection of communication networks of maximum degreeat mostn used in the framework
of the port-numbering model VVc of [8, 9]. The related collection of VVc-algorithmscorresponds to
the class of algorithms that can be specified by(Π,R)-automata that halt in all finite PN(n)-structures.
Therefore the classPN (n) of exactly all PN(n)-structures, together with(Π,R)-automata, defines
a generalization of the port-numbering model to the contextwith infinite structures in addition to finite
ones. Theorem 4.3 shows that all halting algorithms forPN (n) are constant-time algorithms. There are
no nonlocal halting algorithms in the framework of the port-numbering model when infinite structures
are included in the picture.

The port numbering model VVc has been studied extensively since the 1980s. The related investiga-
tions were originally initiated by Angluin in [2]. Section 3of [9] gives a brief and accessible introduction
to the port-numbering model and its relation to other modelsof distributed computing.

3We do not need the to define the SB model used in [8, 9] for the purposes of the current article. For the precise definition,
see [8, 9]. It is worth mentioning here once more, however, that all systems studied in [8, 9] can be directly simulated in our
framework by simply restricting attention to suitable automata and suitable classes of pointed models.

A. Kuusisto 153

3 Halting in the Finite

In this section we prove that when attention is restricted tofinite structures, halting and strongly nonlocal
algorithms exist even when the model of computing is defined by SB(Π)-models. While the existence
of such algorithms may not be surprising, it is by no means a trivial matter. Indeed, as we shall see in
Section 4, no such algorithms exist when infinite structuresare included in the picture.

Let Π = {P0,P1,Q1,Q2,Q3} and R = {R}. We will show that there exists a strongly nonlocal
algorithm that halts in the class of finite SB(Π)-models.

We begin by sketching arough intuitive description of the algorithm. The unary relationsymbolsP0

andP1 will be used in order to define binary words in{0,1}∗ that correspond tofinite walksin (Π,R)-
models.4 Each pair(A,w), whereA is an automaton andw a node, will store a dynamically growing
set of increasingly long finite binary words that correspondto walks that originate fromw. The walks
will be oriented by the relation symbolsQ1, Q2 andQ3 such that if a nodeu is labelled byQi , then its
successor is labelled byQp(i), wherep : {1,2,3} → {1,2,3} is the cyclic permutation 17→ 2 7→ 3 7→ 1.
A pair (A,w) will halt if it records some words∈ {0,1}∗ that contains acubeas a factor, i.e., a word
s = tuuuv, whereu is anonemptyword in{0,1}∗ andt,v∈ {0,1}∗.

Upon halting,(A,w) will send an instruction to halt to its neighbours, who will then pass the message
on and also halt. Thus the halting instruction will spread out in the connected component ofw, causing
further nodes to halt. In addition to detecting a word with a cube factor, a globally spreading halting
instruction can also be generated due to the detection of an undesirable labelling pattern defined by the
unary predicates inΠ. For example, if a nodew satisfies both predicatesP0 andP1, then the labelling
pattern atw is undesirable. The intuition is that thenw does not uniquely specify an alphabet in{0,1},
and thereby destroys our intended labelling scheme. Similarly, a halting instruction is generated if a
violation of the cyclic permutation scheme of the predicates Q1,Q2,Q3 is detected.

A node accepts iff it halts in a roundn∈N for some positive even numbern. Otherwise it rejects upon
halting. We shall see that the algorithm is halting and strongly nonlocal in the finite. Strong nonlocality
will follow from the existence of arbitrarily long cube-free finite words. Indeed, there exists an infinite
cube-free word, known as theThue-Morse sequence(see [1] for example).

We then define the algorithm formally. Let us say that a nodew is aQ1-nodeif (M,w) |= Q1∧¬Q2∧
¬Q3. Similarly,w is aQ2-node if(M,w) |=Q2∧¬Q1∧¬Q3 and aQ3-nodeif (M,w) |=Q3∧¬Q1∧¬Q2.
A nodew is properly orientedif w is aQi-node for somei ∈ {1,2,3}, and furthermore,w has aQ j -node
as a neighbour if and only ifj ∈ {1,2,3}\{i}. A nodew is properly labelledif it is properly oriented,
and furthermore, either(M,w) |= P0∧¬P1 or (M,w) |= P1∧¬P0.

Let {0,1}+ denote the set{0,1}∗ \ {λ }, whereλ is the empty word. LetL be the set of finite
subsets of{0,1}+. The set of states of the automatonA that defines our algorithm is the set

S := L ×{0,1}×{Q1,Q2,Q3}×{ run,halt}×{0,1}

of quintuples, together with an extra finite setH of auxiliary states. The set of messages is

M := L ×{1,2,3}×{ run,halt}

of triples, together with an additional finite setH ′ of auxiliary messages.

4 A finite walk in a(Π,R)-modelM is a function from some initial segment ofN into the domain ofM such that
(

f (i), f (i+
1)
)

∈ RM for each pair(i, i +1) of indices in the domain off . A finite word s0...sk = s∈ {0,1}∗ correspondsto a walk f iff
we havef (i) ∈ PM

si
for eachi ∈ {0, ...,k}.

154 Infinite Networks, Halting and Local Algorithms

We next discuss the intuition behind the definition of the states in S. The first setS1 of a state
(S1,S2,S3,S4,S5) ∈ S of a nodew in round n encodes a collection of words corresponding to walks
originating fromw. The longer the automaton computes, the longer the words inS1 get.

The second and third setsS2 andS3 are used in order to be able to detect nodes that are not properly
labelled. The second setS2 (intuitively) encodes the symbolP∈ {P0,P1} satisfied by the nodew: assum-
ing that the labelling scheme atw is fixed such that(M,w) |= P0∧¬P1 or (M,w) |= P1∧¬P0, then we
haveS2 = i iff w satisfiesPi. Similarly, the third setS3 intuitively encodes the symbolQ∈ {Q1,Q2,Q3}
such that(M,w) |= Q.

The fourth and fifth setsS4 andS5 control the halting of the nodew. A state(S1,S2,S3,S4,S5) is an
accepting final state ifS4 = halt andS5 = 0, and rejecting final state ifS4 = halt andS5 = 1. The state
S5 ∈ {0,1} simply counts whether the current computation step is even or odd.

The setS1 of a message(S1,S2,S3) is a set of binary words.S1 corresponds to the language recorded
by the sending node.S2 encodes the label in{Q1,Q2,Q3} that labels the sending node.S3 is a halting
instruction ifS3 = halt.

In the very beginning of the computation, the algorithm makes use of the additional states inH and
messages inH ′ in order to locally detect nodes that are not properly labelled. (It is of course possible
that such nodes do not exist.) Then, if a nodew is proper and(M,w) |= Px∧Qy, wherex ∈ {0,1} and
y∈ {1,2,3}, the state ofA at w in round 1 is set to be({x},x,y, run,1). If w is not proper, then the state
of A atw in round 1 is set to be({x′},x′,y′,halt,1), wherex′ andy′ are fixed arbitrarily.

Let U be the set of messages received by a nodew in some roundn+ 1, wheren ∈ N \ {0}.
Let (S1,S2,S3,S4,S5) be the state ofw in round n. If S4 = halt, then the new state is the same state
(S1,S2,S3,S4,S5). Otherwise the new state(S′1,S

′
2,S

′
3,S

′
4,S

′
5) is defined as follows.

Let p : {1,2,3} → {1,2,3} be the cyclic permutation 17→ 2 7→ 3 7→ 1. Assume first thatU does not
contain a tuple of the form(X,Y,halt). Then we define

S′1 = { v∈ {0,1}∗ | v= xu such thatx= S2 andu∈ T for some(T, p(S3), run) ∈U }.

We setS′2 = S2 andS′3 = S3. We let S′4 = halt iff S′1 contains a word with a cube as a factor. We let
S′5 ∈ {0,1}\{S5}.

If U contains a tuple of the form(X,Y,halt), we define(S′1,S
′
2,S

′
3,S

′
4,S

′
5) = (X′,Y′,Z,halt,x), where

x∈ {0,1}\{S5}, andX′, Y′ andZ are fixed arbitrarily.
Let (S1,S2,S3,S4,S5) be the state ofA at w in roundn, wheren∈ N\{0}. If S4 = run, the message

broadcast byA at w in roundn+1 is (S1,S3, run), and ifS4 = halt, the message is(X,Y,halt), whereX
andY are fixed arbitrarily.

Recall that the automatonA accepts iff it halts in roundn for some positive even numbern. The set
of accepting states of the automatonA is exactly the set of states of the type(X1,X2,X3,halt,0). The set
of rejecting states is the set of states of the type(X1,X2,X3,halt,1).

Theorem 3.1.LetΠ be as defined above. There exists anSB(Π) automaton A that is halting but strongly
nonlocal in the class of finite pointedSB(Π)-models.

Proof. We shall first establish that the algorithm defined above halts in the class of finite pointed SB(Π)-
models. Assume that it does not halt in some finite model(M,w). Thusw must be a proper node. By
symmetry, we may assume that(M,w) |= Q1∧¬Q2∧¬Q3. It is easy to see that for eachn∈ Z+, the
nodew must be the first memberw1 of some finite walk(wi)i∈{1,..,n} of proper nodes that satisfy the
predicatesQi in the cyclic fashion such that(M,w1) |= Q1, (M,w2) |= Q2, (M,w3) |= Q3, (M,w4) |= Q1,
and so on. Therefore, sinceM is a finite model, the nodew must be the first memberw1 of some infinite

A. Kuusisto 155

walk (wi)i∈Z+ of proper nodes that satisfy the predicatesQi in the cyclic fashion. The infinite walk must
contain a cycle. The cycle will generate a word with a cube factor that will ultimately be detected atw.
Therefore the automaton atw halts. This is a contradiction.

To see that the automaton is strongly nonlocal, we shall consider labelledpath graphsthat encode
finite prefixes of the infinite Thue-Morse sequence. The labelled path graphs are defined as follows.

Let ω denote the infinite Thue-Morse sequence of zeros and ones. The sequence does not contain a
cube factor. For each finite nonempty prefixv of ω , let Path(v) denote the({P0,P1,Q1,Q2,Q3},{R})-
modelM such that the following conditions hold.

1. Note first thatν is a nonempty prefix ofω , soν is a functionν : {0, ...,k}→ {0,1} for somek∈N.
The domain of the modelM is the set{0, ...,k}.

2. The modelM encodes a path graph, so for eachi, j ∈ {0, ...,k}, we have(i, j) ∈ RM iff |i − j|= 1.

3. M encodes the finite prefixν of the Thue-Morse sequence, so the following conditions hold for
eachi ∈ {0, ...,k}.

(a) We havei ∈ PM
0 iff ν(i) = 0.

(b) Similarly, we havei ∈ PM
1 iff ν(i) = 1.

4. Let j ∈ {1,2,3}. For eachi ∈ {0, ...,k}, we havei ∈ Q j iff i = j − 1 mod 3. Thus we observe
that each node ofM, with the exception of the end nodes 0 andk, is properly labelled. (Recall the
definition of proper labelling from the beginning of this section.)

Since there exist structuresPath(v) of arbitrarily large finite sizes, and since the Thue-Morse se-
quence is cube-free, it is easy to see that our automatonA is strongly nonlocal. To see this, assume
that there exists a automatonA′ such thatA′ andA accept (and reject) exactly the same finite pointed
SB(Π)-models, and furthermore,A′ specifies a local algorithm. Letn∈ N be the effective running time
of A′ in the class of finite pointed SB(Π)-models. (We assume, w.l.o.g., thatn is greater than, say, 10.)
Define the prefixesν : {0, ...,5n} → {0,1} andν ′ : {0, ...,5n+1} → {0,1} of the Thue-Morse sequence.
Define the pointed models

(

Path(ν),ν(3n)
)

and
(

Path(ν ′),ν ′(3n)
)

.
Consider the behaviour of our original automatonA on these two pointed models. We claim thatA

accepts exactly one of the two pointed models. The halting ofthe pair(A,ν(3n)) in the modelPath(ν) is
caused by detecting a violation of the proper labelling scheme at the end point 5n. Similarly, the halting
of (A,ν ′(3n)) in the modelPath(ν ′) is caused by detecting a violation at the end point 5n+ 1. The
distance from the nodeν ′(3n) to the nodeν ′(5n+1) is exactly one step greater than the distance from
the nodeν(3n) to the nodeν(5n). ThusA accepts exactly one of the pointed models

(

Path(ν),ν(3n)
)

and
(

Path(ν ′),ν ′(3n)
)

.
Since the pointed models

(

Path(ν),ν(3n)
)

and
(

Path(ν ′),ν ′(3n)
)

look locally similar to the automa-
ton A′, whose effective running time isn, the automatonA′ cannot differentiate between them. ThusA′

does not halt on exactly the same finite pointed SB(Π)-models asA. This is a contradiction.

4 Halting and Convergence in Arbitrary Networks

In this section we study a comprehensive collection of distributed computing models in a setting that
involves infinite networks in addition to finite ones. We establish thateveryhalting distributed algorithm
is in fact a local algorithm. In fact, we show that this resultrelativises to any class of networks definable
by a first-order theory.

The strategy of proof in this section is to first appropriately characterize acceptance and rejection of
automata in terms of definability in modal logic (see Lemma 4.1), and then use the compactness theorem

156 Infinite Networks, Halting and Local Algorithms

in order to obtain the desired end result (see the proof of Theorem 4.3). The characterizations we obtain
extend the characterizations in [11].

Let Π be a finite set of unary relation symbols, and letR = {R1, ...,Rk} be a finite set binary relation
symbols. The setT0 of (Π,R,0)-typesis defined to be the set containing a conjunction

∧

P∈U

P ∧
∧

P∈Π\U

¬P

for each setU ⊆ Π, and no other formulae. We assume some standard bracketing and ordering of
conjuncts, so that there is exactly one conjunction for eachsetU ⊆ Π in T0. Note also that

∧

/0 = ⊤.
The (Π,R,0)-type τ(M,w),0 of a pointed(Π,R)-model (M,w) is the unique formulaϕ in T0 such that
(M,w) |= ϕ .

Assume then, recursively, that we have defined the setTn of (Π,R,n)-types. Assume thatTn is finite,
and assume also that each pointed(Π,R)-model(M,w) satisfiesexactly onetype inTn. We denote this
unique type byτ(M,w),n. Define

τ(M,w),n+1 := τ(M,w),n∧
∧

{ 〈Ri〉τ | τ ∈ Tn, (M,w) |= 〈Ri〉τ , i ∈ {1, ...,k} }

∧
∧

{ ¬〈Ri〉τ | τ ∈ Tn, (M,w) 6|= 〈Ri〉τ , i ∈ {1, ...,k} }.

The formulaτ(M,w),n+1 is the(Π,R,n+1)-type of (M,w). We assume some standard ordering of con-
juncts and bracketing, so that if two typesτ(M,w),n+1 andτ(N,v),n+1 are equivalent, they are actually the
same formula. We defineTn+1 to be the set

{ τ(M,w),n+1 | (M,w) is a pointed(Π,R)-model}.

We observe that the setTn+1 is finite, and that for each pointed(Π,R)-model(M,w), there exists exactly
one typeτ ∈ Tn+1 such that(M,w) |= τ .

It is easy to show by a simple induction on modal depth that each formulaϕ of ML(Π,R) is equiva-
lent to the disjunction of exactly all(Π,R,md(ϕ))-typesτ such thatτ |= ϕ . Hereτ |= ϕ means that for
all pointed(Π,R)-models(M,w), we have(M,w) |= τ ⇒ (M,w) |= ϕ . (Note that

∨

/0=⊥.)
DefineT := {τ | τ is a(Π,R,n)-type for somen∈ N}. A (Π,R)-type automaton Ais a (Π,R)-

automaton whose set of states isT . The set of messages is also the setT . The initial transition function
π is defined such that the state ofA at (M,w) in roundn = 0 is the(Π,R,0)-type τ(M,w),0. The state
transition funtionδ is defined as follows.

Let n∈ N. Let (N1, ...,Nk) be a sequence of setsNi of (Π,R,n)-types. Letτn be a(Π,R,n)-type. If
there exists a type

τn+1 := τn ∧
∧

{ 〈R1〉τ | τ ∈ N1 }∧
∧

{ ¬〈R1〉τ | τ ∈ Tn\N1 }

...
∧

{ 〈Rk〉τ | τ ∈ Nk }∧
∧

{ ¬〈Rk〉τ | τ ∈ Tn\Nk },

we defineδ ((N1, ...,Nk),τn) = τn+1. Otherwise we defineδ ((N1, ...,Nk),τn) arbitrarily. On other kinds
of input vectors,δ is also defined arbitrarily.

The message construction functionµ is defined such thatµ(τ ,Ri) = τ for eachRi. The sets of
accepting and rejecting states can be defined differently for different type automata. It is easy to see that
the state of any type automatonA at (M,w) in roundn is τ iff the (Π,R,n)-type of(M,w) is τ .

A. Kuusisto 157

Lemma 4.1. LetΠ andR = {R1, ...,Rk} be finite sets of unary and binary relation symbols, respectively.
Let A be a(Π,R)-automaton. LetC be the class of pointed(Π,R)-models. The classK ⊆C of pointed
models accepted by A is definable by a (possibly infinite) disjunction

∨

Φ of formulae ofML(Π,R).
Also the classJ ⊆ C of pointed models rejected by A is definable by a (possibly infinite) disjunction
∨

Ψ of formulae ofML(Π,R). The(Π,R,n)-type of a pointed(Π,R)-model(M,w) ∈ C is in Φ iff
the automaton A accepts(M,w) in round n. Similarly, the(Π,R,n)-type of(N,v) ∈ C is in Ψ iff the
automaton A rejects(N,v) in round n.

Proof. Let (M,w) be a pointed(Π,R)-model. LetB be a (Π,R)-automaton. Letn ∈ N. We let
B
(

(M,w),n
)

denote the state of the automatonB at the nodew in roundn.
We shall first show that for alln∈ N and all pointed(Π,R)-models(M,w) and(N,v), if the models

(M,w) and (N,v) satisfy exactly the same(Π,R,n)-type, thenB
(

(M,w),m
)

= B
(

(N,v),m
)

for each
m≤ n and each(Π,R)-automatonB. We prove the claim by induction onn.

For n= 0, the claim holds trivially by definition of the transition functionπ. Let (M,w) and(N,v)
be pointed(Π,R)-models that satisfy the same(Π,R,n+1)-type τn+1. Let B be a(Π,R)-automaton
andδ the transition function ofB. Call qn = B

(

(M,w),n
)

andqn+1 = B
(

(M,w),n+1
)

. Let N1, ...,Nk be
sets of(Π,R,n)-types such thatτn+1 is the formula

τn ∧
∧

{ 〈R1〉τ | τ ∈ N1 }∧
∧

{ ¬〈R1〉τ | τ ∈ Tn\N1 }

...
∧

{ 〈Rk〉τ | τ ∈ Nk }∧
∧

{ ¬〈Rk〉τ | τ ∈ Tn\Nk }.

Since the models(M,w) and(N,v) satisfyτn+1, they must satisfy the(Π,R,n)-type τn. By the induc-
tion hypothesis, we therefore conclude thatB

(

(M,w),m
)

= B
(

(N,v),m
)

for eachm≤ n. In particular,
B
(

(N,v),n
)

= qn. We must still show thatB
(

(N,v),n+1
)

= qn+1.
Let us define that ifL is the set of exactly all(Π,R,n)-typesτ such that(M,w) |= 〈Ri 〉τ , thenL is

theset of(Π,R,n)-types realized by the Ri-successors of w.
Let i ∈ {1,,k}. Since(M,w) and (N,v) satisfy the same(Π,R,n+ 1)-type τn+1, the set of

(Π,R,n)-types realized by theRi-successors of the pointw is the same as the set realized by theRi-
successors ofv; that set isNi in both cases. Therefore, by the induction hypothesis, the set of states
obtained by theRi-successors ofw in roundn is exactly the same as the set of states obtained by the
Ri-successors ofv in roundn. This holds for alli ∈ {1, ...,k}. Thusw andv receive exactly the same
k-tuple of message sets in roundn+1. Therefore, sinceB

(

(N,v),n
)

= B
(

(M,w),n
)

= qn, we conclude
thatB

(

(N,v),n+1
)

= qn+1, as required.
We have now established that if(M,w) an(N,v) satisfy the same(Π,R,n)-type, then any automaton

B produces the same state at(M,w) and(N,v) in all roundsm≤ n. We are ready to complete the proof
of the current lemma.

Let A be an arbitrary(Π,R)-automaton. LetT denote the set

{ τ | τ is a(Π,R,n)-type for somen∈ N }.

Let Φ denote the set of exactly all typesτ ∈ T such that for somen, the typeτ is the(Π,R,n)-type of
some pointed(Π,R)-model(M,w), and furthermore, the automatonA accepts(M,w) in roundn. Define
the (possibly infinite) disjunction

∨

Φ. We shall establish that for all pointed(Π,R)-models(M,w), we
have(M,w) |=

∨

Φ iff A accepts(M,w).

158 Infinite Networks, Halting and Local Algorithms

Assume that(M,w) |=
∨

Φ. Thus(M,w) |= τn for some(Π,R,n)-type τn of some pointed model
(M′,w′) accepted byA in roundn. The models(M,w) and(M′,w′) satisfy the same(Π,R,n)-type τn,
and thusA produces exactly the same state at(M,w) and at(M′,w′) in each roundl ≤ n. Therefore
(M,w) must be accepted byA in roundn.

Assume that(M,w) is accepted by the automatonA. The pointed model(M,w) is accepted in some
roundn, and thus the(Π,R,n)-type of(M,w) is one of the formulae inΦ. Therefore(M,w) |=

∨

Φ.
We have established that

∨

Φ defines the classK ⊆ C . Let J ⊆ C be the class of pointed models
rejected byA. Let Ψ be the set of typesτ ∈ T such that for somen, the typeτ is the(Π,R,n)-type of
some pointed(Π,R)-model(M,w), and furthermore, the automatonA rejects(M,w) in roundn. By an
argument practically identical to the one above establishing thatK is definable by

∨

Φ, one can establish
that

∨

Ψ defines the classJ .

Theorem 4.2(Compactness Theorem, see for example [7]). Assume T is a set of formulae ofFO(Π,R)
such that for each finite subset T′ of T , there exists a(Π,R)-interpretation(M, f) such that(M, f) |=T ′.
Then there exists a(Π,R)-interpretation(M′, f ′) such that(M′, f ′) |= T.

It is a well-known immediate consequence of the compactnesstheorem that ifT |= ϕ , then there is a
finite subsetT ′ of T such thatT ′ |= ϕ .

Theorem 4.3. Let Π and R be finite sets of unary and binary relation symbols. LetC be the class
of all pointed(Π,R)-models. LetH ⊆ C be a class definable by a first-order(Π,R)-theory. If a
(Π,R)-automaton converges inH , then it specifies a local algorithm inH .

Proof. Assume a(Π,R)-automatonA converges inH 6= /0. LetK ⊆H be the class of pointed models
accepted byA in H . By Lemma 4.1, there is a disjunction

∨

Φ of types that definesK with respect
to H and a disjunction

∨

Ψ of types that definesH \K with respect toH . The(Π,R,n)-type of a
pointed(Π,R)-model(M,w) ∈ H is in Φ iff the automatonA accepts(M,w) in roundn. Similarly, the
(Π,R,n)-type of(N,v) ∈ H is in Ψ iff the automatonA rejects(N,v) in roundn.

Let T be a first-order theory that defines the classH . Call X = { ¬Stx(ϕ) | ϕ ∈ Φ } andY =
{ ¬Stx(ϕ) | ϕ ∈ Ψ }. Since

∨

Φ definesK with respect toH and
∨

Ψ definesH \K with respect to
H , we haveX ∪Y ∪ T |=⊥. By the compactness theorem, there is a finite setU ⊆ X ∪Y∪ T such that
U |= ⊥. Let V =U ∩X andW =U ∩Y. DefineW∗ = {ϕ ∈ ML(Π,R) | Stx(ϕ) ∈W}, and defineV∗,
X∗ andY∗ analogously. We shall next establish that

∧

W∗ definesK with respect toH .
Assume(M,w) ∈ K . Thus(M,w) |= Y∗, and hence(M,w) |=

∧

W∗. Assume then that(N,v) ∈
H \K . Therefore(N,v) |= X∗. Since(N,v) ∈ H , we haveN |= T. Now assume, for the sake of
contradiction, that(N,v) |=

∧

W∗. Therefore(N, f [x 7→ v]) |= X ∪ W ∪ T. Thus(N, f [x 7→ v]) |= U .
SinceU |=⊥, we conclude that(N, f [x 7→ v]) |=⊥. This is a contradiction.

We then establish that
∧

V∗ definesH \K with respect toH . Assume(M,w) ∈ H \K . Thus
(M,w) |= X∗, and hence(M,w) |=

∧

V∗. Assume then that(N,v) ∈ K . Therefore(N,v) |=Y∗. Since
(N,v) ∈ H , we haveN |= T. Now assume, for the sake of contradiction, that(N,v) |=

∧

V∗. Therefore
(N, f [x 7→ v]) |=V ∪Y ∪ T. Thus(N, f [x 7→ v]) |=U . SinceU |=⊥, we conclude that(N, f [x 7→ v]) |=⊥.
This is a contradiction.

The finite setsV∗ andW∗ are negations of types. LetΦ′ be the set of types whose negations are in
V∗ andΨ′ the set of types whose negations are inW∗. Notice indeed thatΦ′ ⊆ Φ andΨ′ ⊆ Ψ. The
disjunction

∨

Φ′ definesK with respect toH , and the disjunction
∨

Ψ′ definesH \K with respect to
H .

Let l be the greatest integerj such that there is a(Π,R, j)-type inΦ′ ∪Ψ′. We claim that for each
pointed model(M,w) in H , the automatonA either accepts or rejects(M,w) in some roundm≤ l . To

A. Kuusisto 159

see this, let(N,v) ∈ K . Thus(N,v) |=
∨

Φ′, and hence(M,w) |= τ for some(Π,R, i)-type τ ∈ Φ′,
wherei ≤ l . SinceΦ′ ⊆ Φ, we haveτ ∈ Φ. As we already stated in the beginning of the proof of the
current theorem, the(Π,R,n)-type of a pointed(Π,R)-model(M,w) ∈ H is in Φ iff the automatonA
accepts(M,w) in roundn. Thus the fact thatτ ∈ Φ implies that(N,v) is accepted in roundi by A. A
similar argument applies when(N,v) ∈ H \K . ThereforeA specifies a local algorithm inH .

As we saw in Section 2, each classPN (n) is definable by a related first-order sentenceϕPN(n).
Hence all halting algorithms in the port-numbering model are local algorithms when infinite networks
are allowed. In Section 3, we saw that finiteness gives rise tononlocal halting behaviour. It would be
interesting to investigate what kinds of other non-first-order properties (in addition to finiteness) there
are that lead to existence of nonlocal halting algorithms.

5 Conclusion

We have shown that a comprehensive variety of models of distributed computing cannot define univer-
sally halting nonlocal algorithms when infinite networks are allowed. In contrast, we have shown that in
the finite, even very weak models of distributed computing can specify universally halting nonlocal al-
gorithms. Our proof concerning infinite networks nicely demonstrates the potential usefulness of modal
logic in investigations concerning distributed computing.

Our work in this article concernedanonymous networks, i.e., networks without ID-numbers. This
choice was due to the fact that in most natural theoretical frameworks for the modelling of computation
in infinite networks, even the reading of local IDs would takeinfinitely long, and thus synchronized
communication using ID-numbers would be impossible. This reasoning still leaves the possibility of
investigating asynchronous computation. A natural logical framework that can accomodate ID-numbers
can probably be based on some variant of hybrid logic (see [3]). Hybrid logic is an extension of modal
logic with nominals; nominals are formulae that hold in exactly one node. It remains open at this stage,
however, how asynchronicity should be treated. Of course there are numerous possibilities, and different
logic-based frameworks for similar investigations exist,but we would like to develop an approach that
canonically extends the approach introduced in [8, 9], developed further in [11], and used in the current
article.

References

[1] J-P. Allouche & J. O. Shallit (2003):Automatic Sequences - Theory, Applications, Generalizations. Cam-
bridge University Press, doi:10.1017/CBO9780511546563.

[2] D. Angluin (1980):Local and Global Properties in Networks of Processors (Extended Abstract). In: STOC,
pp. 82–93, doi:10.1145/800141.804655.

[3] C. Areces & B. ten Cate (2006):Hybrid Logics. In P. Blackburn, F. Wolter & J. van Benthem, editors:
Handbook of Modal Logics, Elsevier, pp. 821–868, doi:10.1016/S1570-2464(07)80017-6.

[4] P. Blackburn & J. van Benthem (2006):Modal logic: a Semantic Perspective. In Frank Wolter
Patrick Blackburn, Johan van Benthem, editor:Handbook of Modal Logic, Elsevier, pp. 1–82, doi:10.1016/
S1570-2464(07)80004-8.

[5] P. Blackburn, J. Benthem & F. Wolter (2006):Handbook of Modal Logic, Volume 3 (Studies in Logic and
Practical Reasoning). Elsevier Science Inc., New York, NY, USA.

[6] P. Blackburn, M. de Rijke & Y. Venema (2001):Modal Logic. Cambridge University Press, New York, NY,
USA, doi:10.1017/CBO9781107050884.

http://dx.doi.org/10.1017/CBO9780511546563
http://dx.doi.org/10.1145/800141.804655
http://dx.doi.org/10.1016/S1570-2464(07)80017-6
http://dx.doi.org/10.1016/S1570-2464(07)80004-8
http://dx.doi.org/10.1016/S1570-2464(07)80004-8
http://dx.doi.org/10.1017/CBO9781107050884

160 Infinite Networks, Halting and Local Algorithms

[7] H-D. Ebbinghaus, J. Flum & W. Thomas (1994):Mathematical logic. Undergraduate texts in mathematics,
Springer, doi:10.1007/978-1-4757-2355-7.

[8] L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju, T.Lempiäinen, K. Luosto, J. Suomela & J. Virtema
(2012): Weak models of distributed computing, with connections to modal logic. In: PODC, pp. 185–194,
doi:10.1145/2332432.2332466.

[9] L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju, T.Lempiäinen, K. Luosto, J. Suomela & J. Virtema
(2014): Weak Models of Distributed Computing, with Connections to Modal Logic. Online first, doi:10.
1007/s00446-013-0202-3.

[10] N. Immerman (1999):Descriptive complexity. Graduate texts in computer science, Springer, doi:10.1007/

978-1-4612-0539-5.

[11] A. Kuusisto (2013):Modal logic and distributed message passing automata. In: CSL, pp. 452–468, doi:10.
4230/LIPIcs.CSL.2013.452.

[12] L. Libkin (2004): Elements of Finite Model Theory. Springer, doi:10.1007/978-3-662-07003-1.

[13] J. Suomela (2013):Survey of local algorithms. ACM Comput. Surv.45(2), p. 24, doi:10.1145/2431211.
2431223.

http://dx.doi.org/10.1007/978-1-4757-2355-7
http://dx.doi.org/10.1145/2332432.2332466
http://dx.doi.org/10.1007/s00446-013-0202-3
http://dx.doi.org/10.1007/s00446-013-0202-3
http://dx.doi.org/10.1007/978-1-4612-0539-5
http://dx.doi.org/10.1007/978-1-4612-0539-5
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.452
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.452
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1145/2431211.2431223
http://dx.doi.org/10.1145/2431211.2431223

	1 Introduction
	2 Preliminaries
	3 Halting in the Finite
	4 Halting and Convergence in Arbitrary Networks
	5 Conclusion

