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The immediate past has witnessed an increased amount mdshie local algorithms, i.e., constant
time distributed algorithms. In a recent survey of the tof@oomela, ACM Computing Surveys,
2013), it is argued that local algorithms provide a naturaifework that could be used in order
to theoretically control infinite networks in finite time. V¢gudy a comprehensive collection of
distributed computing models and prove that if infinite nates are included in the class of structures
investigated, then every universally halting distributddorithm is in fact a local algorithm. To
contrast this result, we show that if only finite networksaltewed, then even very weak distributed
computing models can define nonlocal algorithms that hatyavhere. The investigations in this
article continue the studies in the intersection of logid distributed computing initiated in (Hella
et al., PODC 2012) and (Kuusisto, CSL 2013).

1 Introduction

This work is a study of deterministic distributed algorithrfor arbitrary networks, including infinite
structures in addition to finite ones. In the recent survéiglar[13], Suomela points out that distributed
constant-time algorithms are a reasonable choice for ¢ieally controlling infinite networks in finite
time. In this article we show that for a rather comprehensal&ection of models of distributed comput-
ing, constant-time algorithms are in a sensedhky choice. We define a framework—based on a class
of message passing automata and relational structures-eeth@mins a comprehensive variety of models
of distributed computing imnonymous networkse., networks without ID-numbers. We then show that
if infinite networks are allowed, theall universally halting algorithmslefinable in the framework are in
fact local algorithms, i.e., distributed constant-timgaaithms.

The widely studiedoort-numbering mode{see [2] 8] B]) of distributed computing can be directly
extended to a framework that contains infinite structuresdufition to finite ones. In the port-numbering
model, a node of degrde< n, wheren is a globally known finite degree bound, receives messages
throughk input ports and sends messages throkighitput ports. The processors in the nodes can send
different messages to different neighbours, and also see frhich port incoming messages arrive.
There are no ID-numbers in this framework. The omission ehlinbers is well justified when infinite
networks are studied: in most natural theoretical framks/éor the modelling of computation in infinite
networks,even the reading of all locdDs in the beginning of computation would take infinitely long
Thus typical synchronized communication using ID-numbessld be impossible.

There are several fields of study outside distributed comguwhere the objects of investigation
can be regarded as infinite distributed anonymous commiioncaetworks.Cellular automatgprovide
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probably the most obvious and significant example of suchradwork. But of course there are various
others. Crystal lattices and the brain, for example, aresivasietwork systems often modelled by
infinite structures.

Below we define ayeneral distributed computing modehsed on relational structures and synchro-
nized message passing automata. The port-numbering m&tiedbM8, 9] and all its subclasses can be
directly simulated in our framework by restricting attemtito suitable classes of structures and automata.
We establish (Theoren 4.3) that# is a class of communication networks definable Hyrst-order
theory, then all universally halting algorithms ovef” are local algorithms. For example, the classes of
networks for the V\{ model are easily seen to be definable by first-order formagadong as infinite
structures are allowedin fact, when the requirement of finiteness is lifted, adlssles of structures in the
comprehensive study inl[8] 9] can easily be seen to be fidgratefinable.

The proof of Theorenh 413 makescaucial use of logi¢ thereby extending the work initiated in
[8l 9] and developed further in [11]. The articlés [8/ 9] 14{emd the scope aflescriptive complexity
theory (see [[7/ 10|_12]) to the realm of distributed computing byniifging a highly canonical one-
to-one link betweerlocal algorithms and formulae of modal logic. This link is basedtba novel
idea of directly identifyingKripke modelsand distributed communication networks with each other.
Under this interpretation, arrows of the accessibilityatieihs of Kripke models are consideredhie
communication channels between processors in distriboéddorks. This idea has turned out to be
fruitful because it enables the transfer of results betweedal logic and distributed computing. For
example, in[[8] B] a novel separation argument concerniagilbluted complexity classes is obtained by
applying thebisimulation methodsee [4| 5, 5]) of modal logic to distributed communicatiatworks.

In this article we adapt the link between modal logic andritisted computing for the purpose of
proving Theorer 4]3. We first obtain a characterization tfrigabehaviour in terms of modal formulae.
This facilitates the use of theompactness theorefsee [7]), which is the final step in our proof.

To contrast Theorein 4.3, we investigate halting behaviddistributed message passing automata
in the finite. We establish that even extremely weak subsyst the port-numbering model can define
nonlocal halting algorithms when attention is restrictedinite networks: Theorein 3.1 shows that even
if message passing automata in the port-numbering model &lasolutely no access to port numbers
whatsoever, nonlocal but universally halting behavioyrdssible.

In order to prove Theorefn 3.1, we employ tools froombinatorics on wordsamely, the infinite
Thue-Morse sequendeee [1]). This infinite binary sequence is known to be cube;fi.e., it does not
have a prefix of the typauuy whereu is a nonempty word. This lack of periodicity allows us to desi
an appropriate algorithm that is halting but nonlocal infihie.

2 Preliminaries

Let I be a finite set ofinary relation symbols B IN and# a finite set obinary relation symbols R Z.
These symbols are also callpeedicate symbolsThe set of M, %)-formulaeof modal logicML (I, %)
is generated by the grammar

¢ = T[P|=¢|(91162) | (R)Y,

whereP is any symbol i1, Rany symbol inZ, andT is a logical constant symbol. Let VAR { x; | i €
N } be a set ofzariable symbolsThe set of(,%)-formulaeof first-order logicFO(M, %) is generated
by the grammar

¢ n= TIx=y[PX) [RXY)| =0 |(p1A¢2) | X,
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wherex andy are symbols in VARP a symbol inl1, Ra symbol inZ, and T a logical constant symbol.
For both logics, we define the abbreviatian= -T. We also use the abbreviation symbels— and
< in the usual way. Thenodal depth mgp) of a formula is defined recursively such that(T) =

md(P) = 0, md(—~¢) = md(y), mdy A x) = max{md(y), md(x)}, andmd((R) @) = md(y) + 1.
LetN ={Py,...,P} andZ = {Ry,...,Rn}. A (M, %)-modelis a structure

M= WPM . .PM RN RY,

whereW is an arbitrary nonempty set (tdemainof the modeM), eachPM is a unary relatio®P™ C W,
and eactRM a binary relationrRM C W x W. The semantics of MU, %) is defined with respect to
pointed (M, %)-models(M,w), whereM = (W,PM,....PM RV .. RM) is a (M, %)-model andw € W a
point or anodeof (the domain ofM. For eactR, € N, we defingM,w) |= R iff w < PM. We also define
(M,w) = T. We then recursively define

Mw -6 = (Mw) g,
Mw) = (pAY) < (Mw) k¢ and(M.w) -y,
Mw) = (R)$ & FveW(wv) eR¥and(M.v) = ¢).

The semantics of FOI1,%) is defined in the usual way with respect(fd, Z)-interpretations(M, f),
where
M = (W,PM, .. PM RV .. RM)

is a (M,#)-model andf is anassignment function fVAR — W giving an interpretation to the vari-
ables in VAR. We definégM, f) Ex=y < f(x) = f(y), (M, f) ER(X) & f(x) € PM, and(M, f) =
R(xY) < (f(x),f(y)) € RM. We also definéM, f) = T. We then recursively define

M f)=—¢ & M HE¢
M E=@AY) < (M )Fd’aﬂd('\/' f)=w,
(M, f) = 3x¢ & WeW((M, fix—V)Ee),

wheref[x+— V] is the functiong: VAR — W such that

v if y=x,
g(y)_{fw) ify#x

It is well known that modal logic can be directly translatatbifirst-order logic. We define thrstandard
translationfrom ML (M,%) into FO(M, %) in the following way. We leSt(T) := T, Si(R) = R(x),
SL(($AY)) == (Sk(P) ASK(W)), Sk(—9) := ~Sk($), andSk((R )¢) := Iy(R (x,y) ASt($)). Here
yis a fresh variable distinct from It is easy to see thaM,w) = ¢ iff (M, f[x+— w]) = St(¢). Due to
the standard translation, modal logic is often considepduktsimply @ragmentof first-order logic.

We next fix some conventions concernisgtsof formulae. We only discuss formulae of first-order
logic, but analogous definitions hold for modal logic.

If @ is a set of formulae of FQ1,%#), then\/ ® and A ® denote thalisjunctionandconjunctionof
the formulae ind. The set® can be infinite, but then of course neithg¢d nor A @ is a formula of
FO(N,Z). We defingM, f) = \/ @ if there exists at least one formufac ® such that{M, f) = ¢. We
define(M, f) = A®if (M, f) |= ¢ for all ¢ € ®. A setof formulae of FQM, %) is called aheory(over
the signaturél‘l,,%’)).@ If T is atheory over the signatu(fl, %), then(M, f) =T means thatM, f) = ¢

1A theory does not have to be closed under logical consequéniteory is simply a set of formulae, and can be infinite or
finite.
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for all ¢ € T. When we writeT = ¢, we mean that the implicatiofM, f) =T = (M, f) = ¢ holds
for all (M, %)-interpretationgM, f). As usual, two FQN,Z)-formulae¢$ andy areequivalentif the
equivalenceM, f) = ¢ < (M, ) = ¢ holds for all(M,Z)-interpretationgM, f).

Let.”Z be a class opointed (1, #Z)-models, and letz” C 7#. A modal formulag defineshe class
22 with respect tosZ, if for all (M,w) € 27, we haveM,w) = ¢ < (M,w) € Z". If some formulay
defines a class# of pointed(IN, #)-models with respect to the class of all poini¢tl %2)-models, we
simply say thatp defines 7.

If ¢ is asentenceof FO(N,#) andM a (M, %)-model, we writeM = ¢ if (M, f) = ¢ for some
assignment. (Trivially, whether(M, f) = ¢ holds or not, does not depend érwhen¢ is a sentence.)
If T is a theory consisting of FDI, %Z)-sentences, we writ!l =T iff M = ¢ forall g € T. Let 7
be a class opointed (N, #)-models andr' a theory consisting of FOI1,%)-sentencesWe say that the
first-order theory T defines the clagg of pointed model# for all pointed (I, %)-models(M,w), we
haveM =T < (M,w) € _#. Notice indeed that accoring to this conventionTidefines a class#
of pointed models and i is a point in the domain o and (M,u) a pointed model in #, then we
have(M,w) € 7. If a first-order theoryl defines a class#’ of pointed models, then we say th#f is
definableby the first-order theoryr. If 77 is definable by a theory¢ } containing a single first-order
(N, %)-sentencep, we say that’# is definable by the first-order sentenge

Let M andZ = {Ry,...,R«} be finite sets of unary and binary relation symbols, respelgti A
message passing automatomver the signaturéll, %), or a(N,#)-automaton, is a tuple

(Q7%7 T[? 67”7 F7 G)

defined as followsQ is a nonempty set aftates Q can be finite or countably infinite# is a nonempty
set ofmessages# can be finite or countably infinite. For a twe letPow(S) denote the power set of

S m: Pow(N) — Qs aninitial transition functionthat determines the beginning state of the automaton
A &: ((Pow.#))*x Q) — Qis atransition functionthat constructs a new statie= Q when given a
k-tuple (Ny, ...,N) € (Pow(.))* of received message sets and the current stat€Q x #) — . is a
message construction functitimat constructs a message for the automaton to send forwaed given

the current state of the automaton ancommunication channeliR #. F C Q is the set ofaccepting
statesof the automatonG C Q\ F is the set ofejecting state®f the automaton.

Let#Z={Ry,...,Rc} andl ={Py,....Pn}. Let(M,w) be a(l,%Z)-model. The set dR-predecessors
of wis the set of nodes in the domain oM such thatR;(u,w), and the set oR;-successorsf w is the
set of nodesi such thalR; (w,u). The set ofR;-successors ol is denoted bysucgR;,w).

A message passind1,#)-automatonA is run on a(M,%)-modelM = (W,Ry,...,R, Py, ...,Pn),
considered to be a distributed system. We first give an imtuitescription of the computation of the dis-
tributed system defined by the automatoand the modeM, and then define the computation procedure
more formally.

On the intuitive level, we place a cog, w) of the automatorA to each nodev € W. Then, each
automaton(A,w) first scans thdocal information of the nodew, i.e., finds the set of unary relation
symbolsP € N such thatM,w) = R, and then makes a transition tdbaginning statéased on the
local information. The local information &t can be considered to be ambit stringt of zeros and ones
such that the-th bit of t is 1 iff (M,w) |= B. After scanning the local information, the autométaw),
wherew € W, begin running irsynchronized step®uring each step, each automai@nw) sends, for
eachi € {1,....k}, a message to the R-predecessorsf wh The automator{A,w) also receives a

2Therefore information flows opposite to the direction of émews (i.e., ordered pairs) 6. The reason for this choice is
technical, and could be avoided. The choice is due to théaekhip between modal logic and message passing autoata.
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tuple (N, ...,Nx) of message sef; such that sel; is received from thdr;-successors of. Then the
automaton updates its state based on the received messagée @urrent state.
More formally, a(M,%)-model (W, Ry, ..., R¢, Py, ...,Pn) and a(M,#)-automaton

A= (Q7///>7T>57IJ>F>G)

define a synchronized distributed computation system wéxeltuteommunication rounddefined as
follows. Each rounah € N defines aylobal configuration §: W — Q. The configuratiorfy of the zeroth
round is the functiorfy such thatfo(w) = i({ P M | we PM }) for all w € W. Recursively, assume
that we have defined}, and let(Ny, ...,Nx) be a tuple of message sets

N = {me.Z|m=pu(fa(v),R), ve sucqR,w) }.

Thenfnia(w) = ((Ny,...,N), fa(w)).

When we talk abouthe state of the automaton A at the node w in round/@ mean the statg,(w).

We define that an automatdh acceptsa pointed mode(M,w) if there exists som@ € N such that
fa(w) € F, and furthermore, for aln < n, fm(w) € G. Similarly, A rejects(M,w) if there exists some

n € N such thatf,(w) € G, and for allm < n, f(w) ¢ F. Notice thatA may keep passing messages and
changing state even after it has accepted or rejected. Aatgotimat stop sending messages after accepting
or rejecting can be modelled in this framework by automaaa Ilegin sending only the message “I have
halted” once they have accepted or rejected. (Notice tlab#haviour of the distributed system does
not have to be Turing computable in any sense.)

Let ¢ be the class of all pointed1,%#)-models. Let#” C €. We say thai accepts (rejectsy? if
the class of pointed models #ithatA accepts (rejects) is#”. Let ¢ C J# C ¢. We say thaf accepts
(rejects) 7 in ¢ if the class of pointed models i#f” thatA accepts (rejects) isZ . A (I, %)-automaton
A convergesn the class if for all (M,w) € ¢, the automator either accepts or rejec{dl,w). A
(N, %)-automatorA = (Q, M, 1,0, UL F, G) haltsin .7 if Aconverges in’, and furthermore, for each
stateq € F UG that is obtained byA at somgM,w) € 7, the state oA at (M, w) will be g forever once
g has been obtained for the first time. We say that the automatspecifies a local algorithnm 7
if there exists soma € N such that for allM,w) € J#", the automator accepts or rejectM,w) in
some roundn < n. The smallest such numbaiis called theeffective running timef Ain J¢". For the
sake of curiosity, note that evenAfspecifies a local algorithm, it does not necessarily haltvéler, a
corresponding halting automaton of course exists.

Let .7 be a class of pointe1, #)-models. When we say that an algorit#nfor more rigorously, a
(N, %)-automatond) is strongly nonlocain ¢, we mean that there exists fd, % )-automatorB that
specifies a local algorithm it¥” and accepts exactly the the same pointed modelg iasA.

Our framework with(I', %)-automata operating difil, %)-models is rather flexible and general. For
example, each system in the comprehensive collectiomeak models of distributed computistydied
in [8},/9] can be directly simulated in our framework by regirig attention to suitable classes(of, Z)-
structures andll, #Z)-automata. Let us have a closer look at this matter.

Let Z = {R} and letM be any finite set. M is (IN,%)-model, whereRM is a symmetric and
irreflexive binary relation, theM is an SBIM)-model The letter S stands for the wosgtand the letter
B for broadcast The intuition behind the framework provided by @B-models is that message passing
automata seaeither input port numbers nor output port numhefthis means that the state transition

possible alternative approach would be to consider modgddowith the truth of R )¢ defined such thatM,w) = (R; )¢ iff
WeW((vw) e RMand(M,v) = ¢).
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of an automaton depends only on the current state andetaf messages received—rather than the
multiset for example—and an automaton mosiadcastthe same message ¢éachof its neighbours
during a communication round. It is not possible to sendedifit messages to different neighbours
during the same communication round.

The framework provided by SBl)-models is similar to the weakest (in computational cagacit
computation model SB studied inl [8, 9]. In fact, the framekvok SB(I)-models in the current paper is
a canonical generalization of the model SBLIN [8, 9]. In theckr [8,,[S], all classef structures studied
are always associated with a finite maximum degree boundyuathérmore, all structures are assumed to
be finite. In the current article, such restrictions needapuiy. Also, we allow arbitrary interpretations
of the unary relation symbols ifl, while in the SB model of[[8,19], unary relation symbols alway
indicate the degree of a node in a network (and nothing Elé'df)e reason for generalizing the definition
of [8,[9] is that in the current paper we opt for generality adlas increased mathematical simplicity.
The philosophy in[[8, 9] is more application oriented.

Letne N\ {0} andS={1,...,n}. Letl = {P,...,P } andZ = { R j) | (i, ]) € Sx S}. A pointed
(M, 2)-model (M, w) is ann-port-numbering structureor a PNn)-structure, if it satisfies the following
(admittedly long and technical, and for the current papraraunimportant) list of conditions.

The uniorR of the reIationsR'(‘{{D is a symmetric and irreflexive relation.

For any two distinct pair§, j), (k,1) € Sx S, if R'(‘{'.j)(u,v), thenR'(‘f'(’I)(u,v) does not hold.
For eact(i, ) € Sx S if RY; (u,v), thenRY{ ; (v,u).

For eacH(i, j) € Sx S the out-degree and in-degreeRQ\fvj) is at most one at each node.

ok 0N

If R(i7j>(u,v) for some nodesi andv and soma, j € S then, ifk < i, there exists somlec Sand

some node’ such thaR?”kﬁl)(u,\/).

6. Similarly, if R'(‘{'j)(u,v) for some nodesi andv and some, j € S, then, ifk < j, there exists some

| € Sand some nod# such thaR'(‘f'qk)(u’,v).

7. Finally, for each node and each € {0,...,n}, we haveu € PM if and only if the out-degree (or
equivalently, in-degree) of the uniddof all the relations irZZ isi atu.

Itis straightforward to show that there exists a first-ord@r%)-sentencepy ) that defines the class
2./ (n) of all PN(n)-structures. This piece of information will be used in theyvend of the current
article when we discuss concrete applications of Thedrédn Zhe class ofinite PN(n)-structures is
exactlythe collection of communication networks of maximum degaemostn used in the framework
of the port-numbering model Wof [8,[9]. The related collection of V}algorithmscorresponds to
the class of algorithms that can be specified By.%)-automata that halt in all finite RN)-structures.
Therefore the class”.4'(n) of exactly all PNn)-structures, together witfll, #)-automata, defines
a generalization of the port-numbering model to the conaattt infinite structures in addition to finite
ones. Theoreiin 4.3 shows that all halting algorithms#or/”(n) are constant-time algorithms. There are
no nonlocal halting algorithms in the framework of the paumbering model when infinite structures
are included in the picture.

The port numbering model Vihas been studied extensively since the 1980s. The relatestiga-
tions were originally initiated by Angluin in2]. Sectiond [9] gives a brief and accessible introduction
to the port-numbering model and its relation to other modétiistributed computing.

SWe do not need the to define the SB model useflinl[8, 9] for thegses of the current article. For the precise definition,
see([8[ 9]. It is worth mentioning here once more, howevext &l systems studied inl[8] 9] can be directly simulatedun o
framework by simply restricting attention to suitable autda and suitable classes of pointed models.



A. Kuusisto 153

3 Halting in the Finite

In this section we prove that when attention is restrictefthite structures, halting and strongly nonlocal
algorithms exist even when the model of computing is define@B(IM)-models. While the existence
of such algorithms may not be surprising, it is by no means/eaktmatter. Indeed, as we shall see in
Sectior 4, no such algorithms exist when infinite structaresincluded in the picture.

Let M = {Py,P1,Q1,Q2,Q3} and Z = {R}. We will show that there exists a strongly nonlocal
algorithm that halts in the class of finite §B)-models.

We begin by sketching eughintuitive description of the algorithm. The unary relati&ymbolsPk,
andP; will be used in order to define binary words{®,1}* that correspond ténite walksin (I1,2%)-
modelsd Each pair(A,w), whereA is an automaton and a node, will store a dynamically growing
set of increasingly long finite binary words that corresptmavalks that originate fromv. The walks
will be oriented by the relation symbof3;, Q, and Q3 such that if a nodel is labelled byQ;, then its
successor is labelled ), wherep: {1,2,3} — {1,2,3} is the cyclic permutation &> 2+ 3+ 1.

A pair (A,w) will halt if it records some words € {0,1}* that contains @ubeas a factor, i.e., a word
s = tuuuy, whereu is anonemptyword in{0,1}* andt,v € {0,1}*.

Upon halting,(A,w) will send an instruction to halt to its neighbours, who whiéh pass the message
on and also halt. Thus the halting instruction will spreatliodhe connected componentwf causing
further nodes to halt. In addition to detecting a word withube factor, a globally spreading halting
instruction can also be generated due to the detection ohdesirable labelling pattern defined by the
unary predicates ifl. For example, if a noder satisfies both predicatd® andPy, then the labelling
pattern at is undesirable. The intuition is that thendoes not uniquely specify an alphabet{y 1},
and thereby destroys our intended labelling scheme. Simila halting instruction is generated if a
violation of the cyclic permutation scheme of the predis®g, Q», Qs is detected.

A node accepts iff it halts in a roumde N for some positive even number Otherwise it rejects upon
halting. We shall see that the algorithm is halting and gfiypnonlocal in the finite. Strong nonlocality
will follow from the existence of arbitrarily long cube-&dinite words. Indeed, there exists an infinite
cube-free word, known as thiéhue-Morse sequengsee [1] for example).

We then define the algorithm formally. Let us say that a ned®aQ;-nodeif (M,w) = Q1 A—-Q2A
—Qs. Similarly,wis aQ;-node if(M,w) = Q2 A =Q1 A Q3 and aQz-nodeif (M, w) = Q3 A —Q1 A —Qx.

A nodew is properly orientedf w is aQ;-node for somé € {1, 2,3}, and furthermorew has aQj-node
as a neighbour if and only if € {1,2,3} \ {i}. A nodew is properly labelledif it is properly oriented,
and furthermore, eithgM,w) = Py A =Py or (M,w) = Py A —P.

Let {0,1}* denote the sef0,1}*\ {A }, whereA is the empty word. LetZ be the set of finite

subsets 0f 0,1} . The set of states of the automatanhat defines our algorithm is the set

S = Zx{0,1} x{Q1,Q2,Q3} x {run,halt} x {0,1}
of quintuples, together with an extra finite $¢f auxiliary states The set of messages is
M = Zx{1,2,3} x{run,halt}

of triples, together with an additional finite dét of auxiliary messages

4 Afinite walk in a(M,%)-modelM is a function from some initial segment&finto the domain oM such that(f (i), f(i+
1) € RM for each pair(i,i + 1) of indices in the domain of. A finite wordsp...sc = se {0,1}* correspondgo a walk f iff
we havef (i) € PM for eachi € {0, ...,k}.
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We next discuss the intuition behind the definition of thaestanS. The first setS; of a state
($1,9,%,%,S) € S of a nodew in round n encodes a collection of words corresponding to walks
originating fromw. The longer the automaton computes, the longer the wor8sget.

The second and third seB andS; are used in order to be able to detect nodes that are not proper
labelled. The second s8f (intuitively) encodes the symbél € {P, P, } satisfied by the node: assum-
ing that the labelling scheme watis fixed such thatM,w) = Py A =Py or (M,w) = Pi A =P, then we
haveS, =i iff w satisfies?. Similarly, the third se&; intuitively encodes the symb@ € {Q1,Q2, Qs}
such thatM,w) = Q.

The fourth and fifth set§, andSs control the halting of the node. A state(S,$,S5,%,Ss) is an
accepting final state &, = halt andS = 0, and rejecting final state 8 = halt andS = 1. The state
S € {0,1} simply counts whether the current computation step is evexld.

The setS; of a messagés;, S, ) is a set of binary wordsS; corresponds to the language recorded
by the sending nodeS, encodes the label iiQ1,Q2,Q3} that labels the sending nod&; is a halting
instruction ifS; = halt.

In the very beginning of the computation, the algorithm nsalkse of the additional stateskhand
messages ikl’ in order to locally detect nodes that are not properly laakll(It is of course possible
that such nodes do not exist.) Then, if a nedes proper andM,w) = P, A Qy, wherex € {0,1} and
y € {1,2,3}, the state oA atw in round 1 is set to b&{x},x,y,run,1). If wis not proper, then the state
of Aatwin round 1 is set to b&{x'}, X,y halt, 1), wherex andy’ are fixed arbitrarily.

Let U be the set of messages received by a nadie some roundn+ 1, wheren € N\ {0}.

Let (S1,$,%3,S,Ss5) be the state ofv in roundn. If §; = halt, then the new state is the same state
(S1,9,%3,%,S5). Otherwise the new staf&,,S,, S;, S, ) is defined as follows.

Letp:{1,2,3} — {1,2,3} be the cyclic permutation 2 +— 3 +— 1. Assume first thdt) does not

contain a tuple of the fornmiX, Y, halt). Then we define

S ={ve{0,1}" | v=xusuch thak =S, andu € T for some(T, p(S3),run) €U }.

We setS, = S andS; = S. We letS, = halt iff S| contains a word with a cube as a factor. We let
S e{01}\{S}.

If U contains a tuple of the forrfX, Y, halt), we defing(S;,S,, S;,S,, S) = (X', Y, Z, halt, x), where
xe{0,1}\{S}, andX’, Y andZ are fixed arbitrarily.

Let (S1,S,S3, %4, S) be the state of atw in roundn, wheren € N\ {0}. If S = run, the message
broadcast byA atw in roundn+1 is (S;, Sg, run), and if & = halt, the message i, Y, halt), whereX
andyY are fixed arbitrarily.

Recall that the automatoh accepts iff it halts in round for some positive even numbar The set
of accepting states of the automatiis exactly the set of states of the typ§, Xp, X3, halt,0). The set
of rejecting states is the set of states of the ti)e Xz, X3, halt, 1).

Theorem 3.1.Letl1 be as defined above. There existsSB{l1) automaton A that is halting but strongly
nonlocal in the class of finite pointesB(IM)-models.

Proof. We shall first establish that the algorithm defined abovestialthe class of finite pointed $B)-
models. Assume that it does not halt in some finite m@t#elw). Thusw must be a proper node. By
symmetry, we may assume thddl,w) = Q1 A =Q2 A —Qs. It is easy to see that for eache Z ., the
nodew must be the first membewv; of some finite walk(wi)ic(1,.ny Of proper nodes that satisfy the
predicate); in the cyclic fashion such th&aM,w;) = Q1, (M,wy) = Qo, (M, w3) = Qs, (M, ws) = Qq,
and so on. Therefore, sindgis a finite model, the nod& must be the first membev; of some infinite
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walk (w;)icz, of proper nodes that satisfy the predica@@sn the cyclic fashion. The infinite walk must
contain a cycle. The cycle will generate a word with a cubéofaihat will ultimately be detected at.
Therefore the automaton athalts. This is a contradiction.

To see that the automaton is strongly nonlocal, we shallidensabelledpath graphsthat encode
finite prefixes of the infinite Thue-Morse sequence. The latgdath graphs are defined as follows.

Let w denote the infinite Thue-Morse sequence of zeros and onessdduence does not contain a
cube factor. For each finite nonempty prefief cw, let Path(v) denote thg{Py, P1,Q1,Q2,Qs3},{R})-
modelM such that the following conditions hold.

1. Note first thav is a nonempty prefix ofo, sov is a functionv : {0,....,k} — {0,1} for somek € N.
The domain of the modé¥l is the set0, ...,k}.

2. The modeM encodes a path graph, so for eache {0, ...,k}, we have(i, j) € RV iff |i — j| = 1.
3. M encodes the finite prefix of the Thue-Morse sequence, so the following conditionsl ot
eachi € {0,...,k}.
(@) We have € P} iff v(i) =0.
(b) Similarly, we have € PM iff v(i) = 1.

4. Letj € {1,2,3}. Foreach € {0,...,k}, we havei € Q; iff i = j—1 mod 3. Thus we observe
that each node df1, with the exception of the end nodes 0 dqds properly labelled. (Recall the
definition of proper labelling from the beginning of this 8en.)

Since there exist structurézath(v) of arbitrarily large finite sizes, and since the Thue-Morse s
guence is cube-free, it is easy to see that our automatenstrongly nonlocal. To see this, assume
that there exists a automatdét such thatA’ and A accept (and reject) exactly the same finite pointed
SB(M)-models, and furthermordy specifies a local algorithm. Lete N be the effective running time
of A" in the class of finite pointed SBl)-models. (We assume, w.l.0.g., thais greater than, say, 10.)
Define the prefixes : {0,...,5n} — {0,1} andv’: {0,...,5n+ 1} — {0, 1} of the Thue-Morse sequence.
Define the pointed model$ath(v), v(3n)) and (Path(v’),v’(3n)).

Consider the behaviour of our original automatdon these two pointed models. We claim tiAat
accepts exactly one of the two pointed models. The haltingepair(A, v(3n)) in the modePath(v) is
caused by detecting a violation of the proper labelling sehat the end pointrb Similarly, the halting
of (A,v'(3n)) in the modelPath(v’) is caused by detecting a violation at the end poimt5L. The
distance from the node’(3n) to the nodev’(5n+ 1) is exactly one step greater than the distance from
the nodev(3n) to the nodev(5n). ThusA accepts exactly one of the pointed modg®ath(v), v(3n))
and (Path(v'),v’(3n)).

Since the pointed mode{®ath(v),v(3n)) and(Path(v’),v’(3n)) look locally similar to the automa-
ton A', whose effective running time ig the automato®\' cannot differentiate between them. Thals
does not halt on exactly the same finite pointed3Bmodels a#A. This is a contradiction. O

4 Halting and Convergence in Arbitrary Networks

In this section we study a comprehensive collection of iisted computing models in a setting that
involves infinite networks in addition to finite ones. We &dith thateveryhalting distributed algorithm
is in fact a local algorithm. In fact, we show that this reselativises to any class of networks definable
by a first-order theory.

The strategy of proof in this section is to first appropriateharacterize acceptance and rejection of
automata in terms of definability in modal logic (see Lenind),Zand then use the compactness theorem
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in order to obtain the desired end result (see the proof obiiém4.8). The characterizations we obtain
extend the characterizations in [11].

Let N be a finite set of unary relation symbols, and%t { Ry, ..., R« } be a finite set binary relation
symbols. The s€f of (1,2, 0)-typesis defined to be the set containing a conjunction

APA AN -P

PeU PeM\U

for each setJ C I, and no other formulae. We assume some standard bracketth@rdering of
conjuncts, so that there is exactly one conjunction for essth) C I in Tp. Note also thap\0 = T.
The (M, %,0)-type Ty w) o of a pointed(,%)-model (M, w) is the unique formula in To such that
(M,w) = ¢.

Assume then, recursively, that we have defined thé&set (I, %, n)-types. Assume thag, is finite,
and assume also that each pointEd%)-model (M, w) satisfiesexactly ondype inT,. We denote this
unique type byr w) - Define

T(M,W),I’H—l = T(M7w)7n/\ /\{ <R|>T | T € Tn, (M,W) ): <R5>T> S {17"'>k} }
AN —R)TITETH, (Mw) B (R)T, i€ {1,...k} }.

The formulaty w1 is the (M, %,n+ 1)-type of (M,w). We assume some standard ordering of con-
juncts and bracketing, so that if two types w)n+1 and Ty 1 are equivalent, they are actually the
same formula. We defing, ;1 to be the set

{ Tmm),n+1 | (M, w) is a pointed M, %7)-model }.

We observe that the s@&t, 1 is finite, and that for each pointédl, %#)-model (M, w), there exists exactly
one typert € T,;1 such thatM,w) = 1.

It is easy to show by a simple induction on modal depth that éaenula¢g of ML (M, %) is equiva-
lent to the disjunction of exactly a(l1, %, md(¢))-typest such thatr = ¢. HereT = ¢ means that for
all pointed(I1, #)-models(M,w), we haveM,w) =T = (M,w) = ¢. (Note thaty 0= L.)

Define.7 := {1 | tisa(M,#,n)-type for somen € N}. A (M, %)-type automaton As a (M, Z%)-
automaton whose set of states7s The set of messages is also the.getThe initial transition function
mis defined such that the state Afat (M,w) in roundn = 0 is the (M, %,0)-type Ty w)o- The state
transition funtiond is defined as follows.

Letne N. Let(Ny,...,Nx) be a sequence of sdtk of (IM,#,n)-types. Letr, be a(l,%,n)-type. If
there exists a type

Ti1 = Tn A N{(ROT|TENLIA A{~(R)T|TE€TH\Ny }

ARITITENGA A{~(ROT | TE T\ Ne},

we defined((Ny,...,Nk), Tn) = Tht1. Otherwise we definé((Ny,...,Nk), Tn) arbitrarily. On other kinds
of input vectors is also defined arbitrarily.

The message construction functipnis defined such thati(7,R;) = 1 for eachR;. The sets of
accepting and rejecting states can be defined differentlglifterent type automata. It is easy to see that
the state of any type automatérat (M, w) in roundnis T iff the (M, %, n)-type of (M,w) is T.
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Lemma4.1. LetlN andZ = {Ry, ..., R} be finite sets of unary and binary relation symbols, respebti
Let A be &N, %)-automaton. Le¥ be the class of pointed1,%)-models. The clas¥” C ¢ of pointed
models accepted by A is definable by a (possibly infiniteunlision \/ ® of formulae ofML (M, %).
Also the class # C ¢ of pointed models rejected by A is definable by a (possiblgiti@fidisjunction
VW of formulae ofML (M, #). The(MN,%,n)-type of a pointedN,#)-model(M,w) € € is in @ iff
the automaton A acceptd1,w) in round n. Similarly, thgM, 2, n)-type of(N,v) € ¢ is in W iff the
automaton A reject§N, v) in round n.

Proof. Let (M,w) be a pointed(,#)-model. LetB be a(l,#)-automaton. Len e N. We let
B((M,w),n) denote the state of the automa®at the nodew in roundn.

We shall first show that for afi € N and all pointed 1, %#)-models(M,w) and(N, v), if the models
(M,w) and (N,v) satisfy exactly the sam@1,2,n)-type, thenB((M,w),m) = B((N,v),m) for each
m < nand eachl,#%)-automatorB. We prove the claim by induction am

Forn =0, the claim holds trivially by definition of the transitionriction . Let (M,w) and(N, V)
be pointed(N,#)-models that satisfy the sanfBl,%,n+ 1)-type 1,.1. Let B be a(M,%)-automaton
andd the transition function oB. Call g, = B((M,w),n) andgn,1 = B((M,w),n+1). LetNy,...,Nx be
sets of(M, %, n)-types such that, 1 is the formula

WA AN{(R)TITEN IA A{~(R)T[TET\ Ny }

ARITITENGA A{ ~(RIT|T€Ta\N¢ }.

Since the model$M,w) and (N, v) satisfy 1,,1, they must satisfy théll, %, n)-type 1,. By the induc-
tion hypothesis, we therefore conclude tB4tM,w),m) = B((N,v),m) for eachm < n. In particular,
B((N,V),n) = d,. We must still show thaB((N,v),n+ 1) = tn1.

Let us define that it is the set of exactly al1,Z%,n)-typest such thatM,w) = (R )1, thenL is
the set of(M, %, n)-types realized by the;jRuccessors of w

Leti € {1,....k}. Since(M,w) and (N,v) satisfy the sam&l,#, n+ 1)-type 1,.1, the set of
(M, 2,n)-types realized by th&-successors of the poimt is the same as the set realized by Be
successors of; that set isN; in both cases. Therefore, by the induction hypothesis, ¢hefsstates
obtained by theR;-successors oiv in roundn is exactly the same as the set of states obtained by the
Ri-successors of in roundn. This holds for alli € {1,...,k}. Thusw andv receive exactly the same
k-tuple of message sets in round- 1. Therefore, sinc&((N,v),n) = B((M,w),n) = g,, we conclude
thatB((N,V),n+1) = g1, as required.

We have now established tha{¥,w) an (N, v) satisfy the sam@1, %, n)-type, then any automaton
B produces the same state(lt,w) and (N, V) in all roundsm < n. We are ready to complete the proof
of the current lemma.

Let A be an arbitrary(,%)-automaton. LeT denote the set

{t]tisa(l,#,n)-type for somen € N }.

Let @ denote the set of exactly all types= T such that for some, the typert is the (M, %, n)-type of
some pointed,#)-model(M,w), and furthermore, the automatéracceptgM, w) in roundn. Define
the (possibly infinite) disjunctioly ®. We shall establish that for all pointé€l, %2)-models(M,w), we
have(M,w) = \/ ® iff AacceptyM,w).
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Assume tha{M,w) = \/®. Thus(M,w) = 1, for some(I, %, n)-type 1, of some pointed model
(M’,w') accepted byA in roundn. The modelg§M,w) and (M’,w/) satisfy the sam¢r, %, n)-type Ty,
and thusA produces exactly the same state(lt w) and at(M’,w/) in each round < n. Therefore
(M, w) must be accepted byin roundn.

Assume thatM,w) is accepted by the automatdn The pointed modelM,w) is accepted in some
roundn, and thus thél, %, n)-type of (M,w) is one of the formulae i®. Therefore(M,w) |=\/ ®.

We have established thgt® defines the classt” C €. Let _# C ¢ be the class of pointed models
rejected byA. Let W be the set of types € T such that for some, the typer is the (M, 2%,n)-type of
some pointed,%)-model(M,w), and furthermore, the automatérejects(M,w) in roundn. By an
argument practically identical to the one above estabigstiiat.z” is definable byy/ ®, one can establish
that\/ W defines the clasg? . O

Theorem 4.2(Compactness Theorem, see for example [ABsume T is a set of formulae BO(INM, %)
such that for each finite subset @f T, there exists &1, Z)-interpretation(M, f) such thatM, f) =T".
Then there exists @1, %)-interpretation(M’, f’) such thatM’, f') =T.

It is a well-known immediate consequence of the compactiiessem that ifT = ¢, then there is a
finite subsefl ' of T such thafl’ |= ¢.

Theorem 4.3. Let I and Z be finite sets of unary and binary relation symbols. %ebe the class
of all pointed (M, %)-models. Let# C ¢ be a class definable by a first-ordéirl, #)-theory. If a
(N, 2)-automaton converges is?’, then it specifies a local algorithm ipZ”.

Proof. Assume g1, %)-automatorA converges i # 0. Let.z” C 7 be the class of pointed models
accepted by in #. By Lemma4.1, there is a disjunctiofi® of types that defines#” with respect
to »# and a disjunction/ ¥ of types that defines? \ # with respect to#”. The (M,%,n)-type of a
pointed(N, #Z)-model (M, w) € ¢ is in @ iff the automatorA acceptdM, w) in roundn. Similarly, the
(N,2,n)-type of (N,v) € . is in W iff the automatorA rejects(N, v) in roundn.

Let T be a first-order theory that defines the clagd Call X = { —=Sk(¢) | ¢ € ® } andY =
{=Sk(¢) | ¢ € ¥ }. Since\/ ® defines’#” with respect to7” and\/ W definess# \ % with respect to
', we haveX UY UT = L. By the compactness theorem, there is a finitéJsetX U Y U T such that
UEL LetV=UnXandW =UnNY. DefineW* ={¢ € ML(N,Z) | Sk(¢) € W}, and define/*,
X* andY* analogously. We shall next establish tihgtv* defines’z” with respect ta77.

Assume(M,w) € . Thus(M,w) =Y*, and hencgM,w) = AW*. Assume then thatN,v) €
S\ . Therefore(N,v) = X*. Since(N,v) € 2, we haveN = T. Now assume, for the sake of
contradiction, tha{N,v) = AW*. Therefore(N, f[x— Vv]) E X UW UT. Thus(N, f[x— V]) = U.
SinceU = L, we conclude thafN, f[x+— V]) = L. This is a contradiction.

We then establish thakV* defines.7”\ % with respect to7#. Assume(M,w) € 7\ #. Thus
(M,w) |= X*, and hencéM,w) = AV*. Assume then thatN,v) € .#". Therefore(N,v) = Y*. Since
(N,v) € 2, we haveN |= T. Now assume, for the sake of contradiction, ttfv) = AV*. Therefore
(N, fx—V])) EVUYUT. Thus(N, f[x— V]) =U. SinceU |= L, we conclude thafN, f[x+— V]) |= L.
This is a contradiction.

The finite setd/* andW* are negations of types. L&Y be the set of types whose negations are in
V* andW¥' the set of types whose negations aré\ih. Notice indeed that®’ C ® andW’ C W. The
disjunction\/ @ defines#” with respect ta7#’, and the disjunctioly W' defines7#\ ¢ with respect to
I

Let| be the greatest integgrsuch that there is €1,%, j)-type in® UW. We claim that for each
pointed mode(M,w) in J#, the automator either accepts or rejec{®,w) in some roundn<1. To
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see this, letN,v) € #. Thus(N,v) &=\ @', and hencéM,w) = 1 for some(IN,Z,i)-type T € @/,
wherei < 1. Sinced®’ C ®, we haver € ®. As we already stated in the beginning of the proof of the
current theorem, th@1, %, n)-type of a pointed N, #)-model (M,w) € J# is in ® iff the automatorm
acceptsM,w) in roundn. Thus the fact that € ® implies that(N,v) is accepted in roundby A. A
similar argument applies wheN,v) € o7\ ¢. ThereforeA specifies a local algorithm i . O

As we saw in Sectiohl2, each clasg.#"(n) is definable by a related first-order sentegegn).
Hence all halting algorithms in the port-numbering mode kcal algorithms when infinite networks
are allowed. In Sectiop] 3, we saw that finiteness gives riseidocal halting behaviour. It would be
interesting to investigate what kinds of other non-firsddesrproperties (in addition to finiteness) there
are that lead to existence of nonlocal halting algorithms.

5 Conclusion

We have shown that a comprehensive variety of models ofildiséd computing cannot define univer-
sally halting nonlocal algorithms when infinite networke atlowed. In contrast, we have shown that in
the finite, even very weak models of distributed computing s@ecify universally halting nonlocal al-
gorithms. Our proof concerning infinite networks nicely derstrates the potential usefulness of modal
logic in investigations concerning distributed computing

Our work in this article concernednonymous networks.e., networks without ID-numbers. This
choice was due to the fact that in most natural theoretieah&works for the modelling of computation
in infinite networks, even the reading of local IDs would takénitely long, and thus synchronized
communication using ID-numbers would be impossible. Thesoning still leaves the possibility of
investigating asynchronous computation. A natural Ilddieanework that can accomodate ID-numbers
can probably be based on some variant of hybrid logic (s@e IBjbrid logic is an extension of modal
logic with nominals nominals are formulae that hold in exactly one node. It iemapen at this stage,
however, how asynchronicity should be treated. Of courseethre numerous possibilities, and different
logic-based frameworks for similar investigations exiatt we would like to develop an approach that
canonically extends the approach introduced_ in[8, 9], ibgexl further inl[11], and used in the current
article.
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