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An integral part of safeguarding systems of communicating agents from covert channel communica-
tion is having the ability to identify when a covert channel may exist in a given system and which
agents are more prone to covert channels than others. In thispaper, we propose a formulation of one
of the necessary conditions for the existence of covert channels: the potential for communication
condition. Then, we discuss when the potential for communication is preserved after the modifica-
tion of system agents in a potential communication path. Ourapproach is based on the mathematical
framework of Communicating Concurrent Kleene Algebra (C2KA). While existing approaches only
consider the potential for communication via shared environments, the approach proposed in this
paper also considers the potential for communication via external stimuli.
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1 Introduction and Motivation
Today we are faced with large and complex networks, consisting of numerous communicating agents
which have the ability to harbour countless covert communication channels. A covert channel refers
to any communication means that allows an agent to transfer information in a manner that violates a
system’s security policy [31]. We can imagine a complex network of communicating agents organised in
such a way that covert communication can be widespread across the entire network and which can utilise
a number of different communication mediums, channels, andtechniques as depicted by the perception of
covert channel communication given in [13]. The existence of covert communication channels introduces
a number of security concerns such as confidentiality concerns and economical concerns. In [15], we
presented a set of informal conditions which are necessary for the existence of covert communication
channels in systems of communicating agents. In such systems, if there exists a covert communication
channel, then theconstraint on communicationandpotential for communicationconditions are satisfied.
In this paper, we focus on providing a formulation of the potential for communication condition. The
potential for communication condition states that if thereexists the possibility for information to flow
from one agent to another through the synchronisation and sequencing of events in a system, then the
agents have the potential for communication.

Currently, covert channels are poorly understood [13]. There are shortcomings in the science, math-
ematics, and fundamental theory to deal with covert channels in modern computer systems [32]. One of
the first steps towards uncovering whether covert channels can exist in a given system of communicating
agents is to identify which agents have the potential for communication. There are a limited number of
existing approaches for identifying potential for communication in systems of communicating agents.
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Those that do exist are typically information theoretic approaches (e.g., [2, 3, 4, 7, 23, 24, 25, 26, 28]).
These approaches attempt to identify potential for communication by looking for positive capacity chan-
nels that may exist among system agents. However, the notionof channel capacity is an insufficient
stand-alone measure for the existence of covert channels [28]. As motivation for this argument, an ex-
ample of a zero capacity channel is given in [28], on which anymessage can be sent, thus illustrating
that knowing that the capacity is zero does not ensure that there is no potential for communication.
Other existing approaches view potential for communication from the perspective of information flows
(e.g., [20, 21]). However, these approaches only consider communication via shared environments by
examining the dependencies between shared events.

The formulation proposed in this paper is based on the mathematical framework of Communicating
Concurrent Kleene Algebra (C2KA) [16, 17] which is an extension of the work of Hoare et al. [8, 9, 10,
11]. This framework provides a means for specifying systemsof communicating agents and allows for
the separation of communicating and concurrent behaviour in a system and its environment. Because of
this, we are able to consider the potential for communication amongst agents from two complementary
perspectives. First, we consider the potential for communication via external stimuli which examines
how stimuli generated from one agent in the system are able toinfluence the behaviour of other agents in
the system. Second, we consider the potential for communication via shared environments which studies
how communication can occur through shared events/variables and the dependencies between them.
By formulating the potential for communication condition for covert channel existence using C2KA,
we can formally verify the satisfaction of the condition fora given system of communicating agents.
The proposed formulation can serve as the basis for developing effective and efficient mechanisms for
mitigating covert channels in systems of communicating agents. This can allow us to strengthen the
design of systems so that they are more robust against covertchannels.

The remainder of this paper is organised as follows. Section2 gives the required background of covert
channel communication and C2KA. Section 3 provides a formulation of the potential for communication
condition using C2KA. Section 4 discusses the proposed formulation along withrelated work. Finally,
Section 5 draws conclusions and provides the highlights of our future work.

2 Background
2.1 Covert Channel Communication

A covert channel is any communication means that allows information to be transferred by system agents
in a manner that violates the system’s security policy [31].Typically, covert channels are hidden from the
view of third party observers. In this way, the use of covert channels often results in third-party observers
not even necessarily being aware that any communication is taking place at all.

Today, systems comprise of broad and heterogeneous communication networks with many interact-
ing agents. This yields numerous possibilities for covert channels. Systems consist of physical networks,
virtual networks, and even social networks and can be spreadacross a variety of application domains,
each with their own security concerns with varying implications and priorities. Because of the scale and
complexity of such systems, the need for a systematic analysis of systems of communicating agents for
the existence of covert channels is becoming increasingly important.

Covert channels can be classified as eitherprotocol-based, environment-based, or both [12]. A
protocol-based covert channel is a communication means that uses a communication protocol to convey
messages that violate a security policy whereas an environment-based covert channel is a communica-
tion means that uses environmental resources, functionalities, or features, including timing information,
to convey messages that violate a security policy.
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2.2 Communicating Concurrent Kleene Algebra

Communicating Concurrent Kleene Algebra (C2KA) extends the algebraic foundation of Concurrent
Kleene Algebra (CKA), proposed by Hoare et al. [8, 9, 10, 11],with the notions of semimodules and
stimulus structures to capture the influence of external stimuli on the behaviour of system agents. For a
full account of C2KA, the reader is referred to [16, 17].

A monoidis a mathematical structure
(

S, ·,1
)

consisting of a nonempty setS, together with an asso-
ciative binary operation· and a distinguished constant 1 which is the identity with respect to·. A monoid
is calledcommutativeif · is commutative and a monoid is calledidempotentif · is idempotent.

A semiringis a mathematical structure
(

S,+, ·,0,1
)

consisting of a commutative monoid
(

S,+,0
)

and a monoid
(

S, ·,1
)

such that operator· distributes over operator+. We say that element 0 ismultiplica-
tively absorbingif it annihilatesSwith respect to·. We say that a semiring isidempotentif operator+ is
idempotent. Every idempotent semiring has a natural partial order≤ onSdefined bya≤ b⇐⇒ a+b= b.
Operators+ and· are isotone on both the left and the right with respect to≤.

A Kleene algebrais mathematical structure that extends the notion of idempotent semirings with
the addition of a unary operator for finite iteration. Kleenealgebras are most commonly known for
generalising the operations of regular expressions.

Definition 1 (Left S -semimodule – e.g., [6]). LetS =
(

S,+, ·,0S ,1
)

be a semiring andK =
(

K,⊕,0K

)

be a commutative monoid. We call
(

S
K,⊕

)

a left S -semimoduleif there exists a mapping S×K → K
denoted by juxtaposition such that for all s, t ∈ S and a,b∈ K

(i) s(a⊕b) = sa⊕sb

(ii) (s+ t)a= sa⊕sb

(iii) (s· t)a= s(ta)

(iv)
(

S
K,⊕

)

is calledunitary if it also satisfies1a= a

(v)
(

S
K,⊕

)

is zero-preservingif it also satisfies0S a= 0K

A right S -semimodule can be defined analogously.
Concurrent Kleene algebra is an algebraic framework that extends Kleene algebra by offering oper-

ators for sequential and concurrent composition, along with those for choice and finite iteration.

Definition 2 (Concurrent Kleene Algebra – e.g., [8]). A concurrent Kleene algebra (CKA)is a struc-

ture K
def
=

(

K,+,∗, ;
,

*©
,

;©
,0,1

)

where
(

K,+,∗, *©
,0,1

)

and
(

K,+,
;
,

;©
,0,1

)

are Kleene algebras
linked by theexchange axiomgiven by(a∗b) ; (c∗d)≤K (b ; c)∗ (a ; d).

Within the context of agent behaviours,K represents a set of possible agent behaviours. The op-
erator+ is interpreted as a choice between two behaviours, the operator ∗ is interpreted as a parallel
composition of two behaviours, and the operator; is interpreted as a sequential composition of two be-
haviours. The operators*© and ;© are interpreted as finite parallel iteration and finite sequential iteration,
respectively. The element 0 represents the behaviour of theinactive agentand the element 1 represents
the behaviour of theidle agentjust as in many process calculi. Moreover, an agent behaviour a is a
sub-behaviourof an agent behaviourb, denoteda≤K b, if and only if a+b = b. In this way, the ex-
change axiom intuitively expresses a divide-and-conquer mechanism for how parallel composition may
be sequentially implemented on a machine.

When we speak of agents and agent behaviours, we writeA =
〈

a
〉

whereA is the name given to
the agent anda ∈ K is the agent behaviour. ForA =

〈

a
〉

andB =
〈

b
〉

, we writeA+B to denote the
agent

〈

a+b
〉

. In a sense, we extend the operators on behaviours ofK to their corresponding agents. In
this way, an agent is defined by simply describing its behaviour. Because of this, we may use the terms
agents and behaviours interchangeably.
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Definition 3 (Stimulus Structure – e.g., [17]). Let S
def
=

(

S,⊕,⊙,d,n
)

be an idempotent semiring with
a multiplicatively absorbingd and identityn. We callS a stimulus structure.

Within the context of external stimuli,S is the set of stimuli which may be introduced to a system. A
stimulus can be thought of as an event that has the potential to affect agent behaviour. The operator⊕ is
interpreted as a choice between two stimuli and the operator⊙ is interpreted as a sequential composition
of two stimuli. The elementd represents thedeactivation stimuluswhich influences all agents to become
inactive and the elementn represents theneutral stimuluswhich has no influence on the behaviour
of all agents. We say thats∈ S is a basic stimulusif it is indivisible with regard to the⊙ operator
(i.e., ∀

(

t |: (t|s) =⇒ (t = n ∨ t = s)
)

and ∀
(

t, r |: (s|(t ⊙ r)) =⇒ (s|t ∨ s|r)
)

where the division
operator| is defined byx|y ⇐⇒ ∃(z |: y = x⊙ z)). We denote the set of all basic stimuli asSb.
Furthermore, a stimuluss is asub-stimulusof a stimulust, denoteds≤S t, if and only if s⊕ t = t.

Definition 4 (Communicating Concurrent Kleene Algebra – e.g., [17]). A Communicating Concurrent
Kleene Algebra (C2KA) is a system

(

S ,K
)

, whereS =
(

S,⊕,⊙,d,n

)

is a stimulus structure andK =
(

K,+,∗, ;
,

*©
,

;©
,0,1

)

is aCKA such that
(

S
K,+

)

is a unitary and zero-preservingleft S -semimodule
with mapping◦ : S×K → K and

(

SK ,⊕
)

is a unitary and zero-preservingright K -semimodulewith
mappingλ : S×K → S, and where the following axioms are satisfied for all a,b,c∈ K and s, t ∈ S:

(i) s◦ (a ; b) = (s◦a) ;
(

λ (s,a) ◦b
)

(ii) c ≤K a ∨ (s◦a) ;
(

λ (s,c) ◦b
)

= 0

(iii) λ (s⊙ t,a) = λ
(

s,(t ◦a)
)

⊙λ (t,a)

A C2KA consists of two semimodules which describe how the stimulus structureS and the CKAK

mutually act upon one another. In this way, the response invoked by a stimulus on the behaviour of
an agent is characterised as a next behaviour and a next stimulus. The leftS -semimodule

(

S
K,+

)

describes how the stimulus structureS acts upon the CKAK via thenext behaviour mapping◦ and the
right K -semimodule

(

SK ,⊕
)

describes how the CKAK acts upon the stimulus structureS via the
next stimulus mappingλ . Axiom (i) describes the interaction of the next behaviour mapping◦ with the
sequential composition operator; for agent behaviours. Axiom (ii) states that when an external stimulus
is introduced to the sequential composition(a ; b), then the stimulus cascaded tob must be generated by
a sub-behaviour ofa. In this way, Axiom (ii) ensures consistency between the next behaviour and next
stimulus mappings with respect to the sequential composition of agent behaviours. Finally, Axiom (iii)
describes the interaction of the next stimulus mappingλ with the sequential composition operator⊙
for external stimuli. This can be viewed as the analog of Axiom (i) with respect to the next stimulus
mappingλ when considering the action of

(

SK ,⊕
)

. When examining the effects of external stimuli on
agent behaviours, it is important to note that every stimulus invokes a responsefrom an agent. When
the behaviour of an agent changes as a result of the response,we say that the stimulusinfluencesthe
behaviour of the agent. Moreover, we say that a C2KA is without reactivationif ∀(s | s∈ S\{d} :
s◦1= 1).

We recall the notions of orbits, strong orbits, and fixed points from the mathematical theory of
monoids acting on sets [22]. Let

(

S
K,+

)

be the unitary and zero-preserving leftS -semimodule of
a C2KA and let a ∈ K. The orbit of a in S is the set Orb(a) = {s◦ a | s∈ S} and represents the
set of all possible behavioural responses from an agent behaving asa to any stimulus fromS . The
strong orbitof a in S is the set OrbS(a) = {b ∈ K | Orb(b) = Orb(a)}. Two agents are in the same
strong orbit if and only if their orbits are identical. This is to say, if an agent behaving asa is influenced
by a stimulus to behave asb, then there exists a stimulus which influences the agent, nowbehaving
asb, to revert back to its original behavioura. Furthermore, ifa andb are in the same strong orbit,
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then ∃(s, t | s, t ∈ S : s◦a = b ∧ t ◦b = a). Lastly, we say that the elementa ∈ K is a fixed point
behaviour if ∀(s | s∈ S\{d} : s◦ a = a). In other words,a is a fixed point behaviour if it is not
influenced by any external stimuli other than the deactivation stimulusd.

3 Formulating the Potential for Communication Condition

The potential for communicationcondition is introduced as one of the two necessary conditions for
covert channel existence in [15]. The condition reads:

If there exists an agent acting as a source of information andan agent acting as an informa-
tion sink, such that the source and sink agents are different, and if there exists a pattern of
communication allowing for information to transfer from the source to the sink through the
synchronisation and sequencing of events, then the source and sink agents have a potential
for communication.

In this section, we propose a formulation of the potential for communication condition using C2KA.
In what follows, we adopt the notion of communication used in[27], where each interaction (direct or
indirect) of an agent with its neighbouring agents is calleda communication. We examine the potential
for communication from two complementary perspectives, namely the external stimuli perspective and
the shared environment perspective, consistent with the view of communication introduced in [16, 17].
Throughout the following subsections, letC be a collection of agents. We callC a system of communi-
cating agents.

3.1 Formulating Potential for Communication via External Stimuli

When considering communication in a system of communicating agents from the perspective of external
stimuli, we need to look at the interactions of the agents. Ina given system of communicating agents,
each agent is subjected to each external stimulus. This means that when an agent generates a stimulus, it
is broadcasted to all other agents and a response is invoked.However, it is not the case that the behaviour
of each agent will be influenced by the stimulus. Only when a stimulus that is generated by an agent
influences (i.e., does not fix) the behaviour of another agentdo we say thatcommunication via external
stimuli has taken place.

Let A,B ∈ C such thatA 6= B. We say thatA =
〈

a
〉

has thepotential for direct communication via
external stimuliwith B =

〈

b
〉

(denoted byA→
S

B) if and only if ∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) :
t ◦b 6= b

)

whereSb is the set of all basic stimuli. This means that if there exists a basic sub-stimulus that
is generated byA that influences the behaviour ofB, then there is a potential for direct communication
via external stimuli fromA to B. We say thatA has thepotential for communication via external stimuli
withB using at most n basic stimuli(denoted byA→n

S
B) if and only if ∃

(

C | C ∈ C ∧ C 6= A ∧ C 6=

B : A→
(n−1)
S

C ∧ C→
S

B
)

. More generally, we say thatA has thepotential for communication via
external stimuliwith B (denoted byA→∗

S
B) if and only if ∃

(

n | n≥ 1 : A→n
S

B
)

. This means that
whenA→∗

S
B, there is a sequence of external stimuli of arbitrary lengthwhich allows for information

to be transferred fromA to B in the systemC of communicating agents.
We say that two subsetsX1 andX2 of C form a partition ofC if and only ifX1∩X2= /0 andX1∪X2=C .

A systemC of communicating agents is said to bestimuli-connectedif and only if for everyX1 andX2

that form a partition ofC , we have∃(A,B | A ∈ X1 ∧ B ∈ X2 : A→∗
S

B ∨ B→∗
S

A). Otherwise,
we say thatC is stimuli-disconnected. This means that in a stimuli-connected system, every agentis a
participant, either as the source or sink, of at least one direct communication via external stimuli.
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We say that an agentA ∈ C is a communication fixed pointif and only if ∀
(

B | B ∈ C \{A} :
¬(A→∗

S
B)

)

. Obviously, a communication fixed point does not have the potential for communication
via external stimuli with any other agent. Thus, it is plain to see that an agentA=

〈

0
〉

is a communication
fixed point since for alls∈ Swe haveλ (s,0) = d and sinced is not a basic stimulus, it cannot have the
potential for communication via external stimuli with any other agent. Additionally, ifA →∗

S
B, then

the potential communication path fromA toB contains at most one communication fixed point that isB.
An agentA ∈ C is said to beuniversally influentialif and only if ∀

(

B | B ∈ C \{A} : A→∗
S

B
)

.
Every stimulus that is generated by a universally influential agent influences the behaviour, either directly
or indirectly, of each other agent in the system. In this way,a universally influential agent is the dual
of a communication fixed point and therefore it is obvious that a communication fixed point cannot be
universally influential.
Proposition 1. A system of communicating agents that contains a universally influential agent is stimuli-
connected.

Proof. AssumeC is a stimuli-disconnected system and letC ∈ C be universally influential. Then, using
the definition of a stimuli-disconnected system, instantiation withB=C, and the definition of universally
influential, we have that eitherC is stimuli-connected orC is not universally influential which is a
contradiction to the assumption thatC is stimuli-disconnected andC is universally influential. The
detailed proof can be found in Appendix A.

Proposition 2. LetA=
〈

a
〉

be an agent such that a is a fixed point behaviour. Then, there does not exist
an agentB that has the potential for communication via external stimuli with A.

Proof. The proof is straightforward using the definition of→
S

.

In Proposition 2, we have that no agent has the potential for communication via external stimuli
with an agent that has a fixed point behaviour. This is due to the fact that if an agent has a fixed point
behaviour, then it is not influenced by any external stimuli and therefore communication with that agent
via external stimuli is not possible.
Proposition 3. LetA=

〈

a
〉

, B=
〈

b
〉

, andC=
〈

c
〉

be agents inC .
(i) If B→

S
C then(A+B)→

S
C.

(ii) If A→
S

B thenA→
S

(B+C) only if ∀(t | t ∈ Sb : ¬(t ◦c≤K b+c)).

Proof. The proof of (i) uses the definition of→
S

, the distributivity ofλ over+, the definition of≤S ,
and isotony of=. The proof of (ii) involves the definition of→

S
and the distributivity of◦ over+,

weakening, the definition of≤K , and isotony of=. The detailed proofs can be found in Appendix A.

Proposition 3 shows how the potential for communication viaexternal stimuli can be preserved
when we introduce non-determinism among agents. Specifically, Proposition 3(i) states that when non-
determinism is added at the source of a potential communication path via external stimuli, the potential
for communication via external stimuli is always preserved. Intuitively, this is the case since there can
always be a sub-stimulus generated by the source which results fromB that can preserve the potential for
communication via external stimuli withC. On the other hand, Proposition 3(ii) states that when non-
determinism is added at the sink of a potential communication path via external stimuli, the potential for
communication is preserved only if there does not exist any basic stimulus that influencesC to behave
as a sub-behaviour ofB+C. This condition ensures thatB+C cannot have a fixed point behaviour. If
the non-determinism that is introduced causes a fixed point behaviour, then there will no longer be any
potential for communication as stated by Proposition 2.
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3.2 Formulating Potential for Communication via Shared Environments

The examination of communication via shared environments,either through shared variables, resources,
or functionalities, has been the topic of study for a number of existing techniques for covert channel and
information flow analysis (e.g., [20, 21, 29, 30, 33]). When formulating the potential for communication
via shared environments, we are interested in finding if a particular agent has the ability to alter an
element of the environment that it shares with a neighbouring agent such that the neighbouring agent is
able to observe the alteration that was made.

Since the proposed formulation is based on C2KA which is an extension of CKA, we utilise the
mechanisms provided by CKA to formulate the potential for communication via shared environments.
Similar to what is done with existing information flow techniques for formulating the potential for com-
munication via shared environments, we study the dependencies between events that are shared amongst
system agents.

In what follows, let
(

K,+
)

be an aggregation algebra [9, 10, 11] whereK is a set of agent behaviours
and+ is the choice between agent behaviours and leta,b,c∈ K. A dependence relationon

(

K,+
)

is a
bilinear relation R⊆ K ×K (i.e., (a+b)Rc ⇐⇒ (aRc ∨ bRc) andaR(b+c) ⇐⇒ (aRb ∨ aRc))
whereaRb denotes that the behaviourb depends on the behavioura. Such a dependence relation may
be a definition-reference relation between program variables in the specifications of agent behaviours.
We additionally assume that¬(aR0) and¬(0Ra) and¬(aR1) and¬(1Ra) for everya ∈ K. These
are rather natural assumptions since the inactive and idle behaviours depend on nothing and nothing
depends on them. Such assumptions are additionally made by Hoare et al. [11]. For the purpose of this
formulation, we assume that such a dependence relation R is given.

ForA,B ∈ C such thatA 6= B, we sayA=
〈

a
〉

has thepotential for direct communication via shared
environmentswith B=

〈

b
〉

(denoted byA→
E
B) if and only if aRb. Furthermore, we say thatA has the

potential for communication via shared environmentswith B (denoted byA→∗
E
B) if and only if aR+b

where R+ is the transitive closure of the given dependence relation.This means that if two agents respect
the given dependence relation, then there is a potential forcommunication via shared environments.

Proposition 4. LetC be a system of communicating agents and letA,B,C ∈ C .

(i) If B→
E
C then(A+B)→

E
C. (ii) If A→

E
B thenA→

E
(B+C).

Proof. The proofs are straightforward from the definition of→
E

and the bilinearity of the dependence
relation R.

Proposition 4 shows that the potential for communication via shared environments is preserved when
we introduce non-determinism at the source or the sink of a potential communication path via shared
environments. If we know that there exists a dependency between two agent behavioursa andb, then
given a choice betweenb and any other behaviours, it is possible to choose to behave as b in order to
preserve the dependency. While this is not always the case, it is important to note that we are focussed on
identifying the potential for communication, which means that if it is possible for an agent to choose a
behaviour which yields the potential for communication, then in general the potential for communication
exists.

3.3 A Formulation of the Potential for Communication Condition

By combining the definitions of potential for communicationvia external stimuli and via shared en-
vironments, we obtain a formulation of the potential for communication condition for covert channel
existence.



168 A Formulation of the Potential for Communication ConditionusingC2KA

ForA,B ∈ C , we say thatA has thepotential for direct communicationwith B (denoted byA B)
if and only if A→

S
B ∨ A→

E
B. We say thatA has thepotential for communicationwith B (denoted

by A 
∗
B) if and only if A B ∨ ∃

(

C | C ∈ C : A C ∧ C 
∗
B
)

. This means that for a given
system of communicating agents, if there exists a sequence of agents, starting with a source agentA and
ending on a sink agentB, that have the potential for direct communication either via external stimuli or
via shared environments, thenA has the potential for communication withB.

A useful result showing the effects of modifying the behaviour of an agent in the sequence of a
potential communication path between two agents is given inProposition 5. Recall that we say that a
stimulus generated by an agentA influencesan agentB if the behaviour ofB changes as a result of the
response to the stimulus (i.e.,∃

(

s | s∈ S : λ (s,a) ◦b 6= b
)

).

Proposition 5. LetA ∗
B such that ∃

(

C | C ∈ C : A C ∧ C 
∗
B
)

whereA =
〈

a
〉

, B =
〈

b
〉

,
andC=

〈

c
〉

. LetR be the given dependence relation. SupposeC is replaced by another agentC′ =
〈

c′
〉

.
Then,

(i) If c′ = (c ; d), thenA ∗
B only if

(

aR(c ; d) ∧ (c ; d)Rb
)

∨ ∃
(

t | t ∈ S : λ (t,(c ; d))◦b 6= b
)

.

(ii) If c ′ = (c+d), thenA ∗
B only if ∀

(

t | t ∈ Sb : ¬(t ◦d ≤K c+d)
)

.

(iii) If c ′ = c ;©, thenA ∗
B.

(iv) If c′ = 0 or c′ = 1 and theC2KA is without reactivation, then¬(A ∗
B).

(v) If c′ ∈ OrbS(c), thenA ∗
B.

(vi) If c′ is a fixed point behaviour, thenA ∗
B only if aRc′ ∧ c′ Rb.

Proof. Each of the proofs involve the applications of definitions of , →
S

, and→
E

as well as the basic
axioms of C2KA. The detailed proofs can be found in Appendix A.

Proposition 5 identifies the conditions constraining the modifications allowable to the behaviour of
an agent in a potential communication path in order to maintain the potential for communication between
two agents. Specifically, Identity (i) shows how the sequential composition of an additional behaviour
with the existing agent will not affect the potential for communication provided the composed behaviour
preserves the dependency relation or has the ability to influence the behaviour of the next agent in the
path. Assuming that each agent behaviour takes some amount of time, this is useful since we can con-
struct behaviours that satisfy this constraint to introduce delay into the potential communication path in
order to disturb a covert timing channel without the need to fully eliminate the communication. How-
ever, in general, we cannot say anything about the behaviourd alone as a consequence of Definition 4(ii).
The stimuli that are generated byd are dependent on the stimuli generated byc and the effects of the
stimuli cascaded fromc to d cannot be determined sinceC′ is viewed as a black-box. Identity (ii) is
an extension of Propositions 3 and 4 to general potential forcommunication. In general, provided that
the introduction of non-determinism does not result in a fixed point behaviour, the potential for com-
munication is maintained with the addition of non-determinism. Identity (iii) follows from Identities (i)
and (ii) and shows that the sequential iteration of an agent behaviour does not affect the potential for
communication. Identity (iv) states that if we replace an agent in a communication path with an inactive
agent or an idle agent when we have a C2KA without reactivation, then there is no longer a potential
for communication. This can be useful in terms of eliminating the potential for communication among
agents since it shows how we may modify the behaviour of some agents in order to eliminate the potential
for communication and potentially thwart any attempts for establishing covert communication channels.
However, it is noted that this is not a suitable solution in all cases since modifying agent behaviours in
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such a way can inadvertently modify the overall system behaviour and thereby undesirably render the
system useless. Identity (v) states that replacing an agentin a given communication path with another
agent in the same strong orbit will not affect the potential for communication. This is because agents in
the same strong orbit always have the potential for communication via external stimuli with one another.
Identity (vi) states that the potential for communication is maintained when replacing an agent in a given
communication path with another agent that has a fixed point behaviour only if the dependency relation
is preserved. Proposition 2 showed that an agent with a fixed point behaviour does not have the potential
for communication via external stimuli unless it is the source of a potential communication path. So, if
an agent with a fixed point behaviour is not the source of the potential communication path, then it may
only have the potential for communication via shared environments. Finally, it should be noted that if we
restrict the behaviour of an agent in a potential communication path to a particular sub-behaviour, then
the potential for communication is only preserved if the sub-behaviour maintains the communicating
behaviour of the original agent.

4 Discussion and Related Work
Given a system of communicating agents, it is difficult to fully prevent the possibility of covert com-
munication from taking place since it is often undesirable to completely eliminate the communication
among agents. An integral part of safeguarding systems of communicating agents from covert chan-
nel communication is having the ability to identify when a covert channel may exist in a given system
which involves determining if and when two agents have a potential for communication. While much
of the existing work in attempting to mitigate covert channels has been based on information theoretic
approaches (e.g., [2, 3, 4, 7, 23, 24, 25, 26, 28]), the proposed formulation looks to the issue of mitigating
covert channels from a different perspective. Although, itis difficult to completely eliminate covert chan-
nels from modern computer systems, the proposed formalisation provides a means for analysing a system
of communicating agents in order to devise mechanisms for strengthening the design of such systems
in order to make them more robust against covert channels. Italso builds the foundation for the ability
to identify parts of a system where it would be most beneficialto observe or disrupt the communication
among particular system agents. For example, once we have identified a sequence of agents that have
the potential for communication, in order to detect confidential information leakage via protocol-based
covert channels, we can install monitors that are configuredto identify patterns of communication on the
communication channels available to the agents in the potential communication path using techniques
similar to that presented in [14]. Similarly, in order to mitigate the use of covert timing channels, we
can employ mechanisms that de-couple or deteriorate any sort of timing information associated with the
communication channels available to the agents in the potential communication path by injecting random
delays similar to the NRL Pump [19].

In the literature, we find existing works that have attemptedto articulate and verify potential for
communication conditions for covert channels. However, some of them are indirect or informal and
require reasoning about potential scenarios in which the conditions might be satisfied (e.g., [30]). Fur-
thermore, those works which do provide some level of formalism, focus primarily on the potential for
communication via shared environments through various information flow analyses based on finite state
machine models, information theory, and probability theory (e.g., [5, 18, 26, 33]). Perhaps one of the
most popular mechanisms for determining the potential for communication for identifying the existence
of covert channels is the Shared Resource Matrix technique [20]. It involves a careful analysis of the
ways in which shared resources are used in a system to determine whether it is possible for a particular
resource to covertly transfer information from one agent toanother with respect to a set of minimum
criteria. Similarly, Covert Flow Trees (e.g., [21]) attempt to identify information flows supporting either
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the direct or indirect ability of an agent to detect when an attribute of a shared resource has been mod-
ified. The Shared Resource Matrix technique and Covert Flow Trees can be used in our formulation to
concretely build the dependence relation discussed in paragraph 3 of Section 3.2.

While existing works focus on studying the potential for communication via shared environments, the
proposed formulation of the potential for communication condition for covert channel existence is based
on the mathematical foundation of C2KA and thereby also considers the potential for communication
via external stimuli. If we were to consider the use of CKA alone for the formulation of the potential
for communication condition, we can only use the dependencies between shared events to define and
verify any sort of potential for communication. The proposed formulation provides a more complete
representation of the potential means for communication among system agents that encompasses what
can be done using CKA alone as well as other existing information flow techniques.

5 Conclusion and Future Work
In this paper, we presented a formulation of the potential for communication condition for covert chan-
nel existence. The proposed formulation is based on the mathematical framework of Communicating
Concurrent Kleene Algebra (C2KA). It allows for the consideration of the potential for communica-
tion from the perspective of shared environments as well as the perspective of external stimuli. To the
best of our knowledge, there does not exist a formulation of the potential for communication in systems
of communicating agents that considers the potential for communication via both external stimuli and
shared environments. The proposed formulation and its mathematical background help to analyse sys-
tems of communicating agents in order to devise mechanisms for strengthening such systems against
covert channels.

In future work, we aim to support the automated verification of the potential for communication
condition for covert channel existence. We are developing tool support to aid in the specification and
verification of the potential for communication condition for systems of communicating agents. We are
also investigating the adaptation of description logic [1]to develop a formulation of the constraint on
communication condition for covert channel existence [15]in systems of communicating agents. Then,
we aim to propose guidelines for designing systems of communicating agents that are resilient to covert
channels.
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S
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S

A)) ∧ C is universally influential
=⇒ 〈 Instantiation:B= C 〉

∀(A | A ∈ X1 : ¬(A→∗
S

C) ∧ ¬(C→∗
S

A)) ∧ C is universally influential
=⇒ 〈 Definition of Universally Influential〉

∀(A | A ∈ X1 : ¬(A→∗
S

C) ∧ false)
⇐⇒ 〈 Zero of ∧ & ∀-False Body〉

false

Detailed Proof of Proposition 3: LetA=
〈

a
〉

, B=
〈

b
〉

, andC=
〈

c
〉

be agents inC .

(i) If B→
S

C then(A+B)→
S

C.

(A+B)→
S

C

⇐⇒ 〈 Definition of→
S

〉
∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a+b) : t ◦c 6= c
)

⇐⇒ 〈 Distributivity of λ over+ 〉
∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a)⊕λ (s,b) : t ◦c 6= c
)
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⇐= 〈 Definition of≤S & Isotony of= 〉
∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,b) : t ◦c 6= c
)

⇐= 〈 Hypothesis:B→
S

C 〉
true

(ii) If A→
S

B thenA→
S

(B+C) only if ∀(t | t ∈ Sb : ¬(t ◦c≤K b+c)).

A→
S

(B+C)
⇐⇒ 〈 Definition of→

S
〉

∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : t ◦ (b+c) 6= b+c
)

⇐⇒ 〈 Distributivity of ◦ over+ 〉
∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : t ◦b+ t ◦c 6= b+c
)

⇐= 〈 Weakening〉
∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : ¬(t ◦c+ t ◦b≤K b+c)
)

⇐⇒ 〈 Definition of≤K & Idempotence of+ 〉
∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : ¬(t ◦c+b+c+ t ◦b= b+b+c)
)

⇐⇒ 〈 Isotony of= 〉
∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : ¬(t ◦c+b+c= b+c ∨ t ◦b= b)
)

⇐⇒ 〈 De Morgan〉
∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : t ◦c+b+c 6= b+c ∧ t ◦b 6= b
)

⇐= 〈 Hypothesis:A→
S

B=⇒t ◦b 6= b & Hypothesis:∀(t | t ∈ Sb :¬(t ◦c≤K b+c))〉
∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : true
)

⇐⇒ 〈 ∃-True Body〉
true

Detailed Proof of Proposition 5: Let A ∗
B such that ∃

(

C | C ∈ C : A C ∧ C 
∗
B
)

. For
simplicity, we assume thatA ∗

B viaA C
′ ∧ C

′
 B unless stated otherwise.

(i) C
′ =

〈

c ; d
〉

A C
′ ∧ C

′
 

∗
B

⇐⇒ 〈 Definition of ∗ 〉
A C

′ ∧
(

C
′ →∗

S
B ∨ C

′ →
E
B
)

⇐⇒ 〈 Definition of 〉
(

A→
S

C
′ ∨ A→

E
C
′
)

∧
(

C
′ →∗

S
B ∨ C

′ →
E
B
)

⇐⇒ 〈 Definition of→
S

& Definition of →
E
〉

(

∃
(

s, t |s, t ∈ Sb ∧ t ≤S λ (s,a) : t ◦ (c ; d)6=c ; d
)

∨ aR(c ; d)
)

∧
(

C
′ →∗

S
B ∨ (c ; d)Rb

)

⇐⇒ 〈 Definition 4(i) 〉
(

∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : (t ◦c) ;
(

λ (t,c)◦d
)

6= c ; d
)

∨ aR(c ; d)
)

∧
(

C
′ →∗

S
B ∨ (c ; d)Rb

)

⇐⇒ 〈 Definition of 6= 〉
(

∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : ¬
(

(t ◦c) ;
(

λ (t,c)◦d
)

= c ; d
))

∨ aR(c ; d)
)

∧
(

C
′ →∗

S
B ∨ (c ; d)Rb

)

⇐= 〈 Isotony of= 〉
(

∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : ¬
(

t ◦c= c ∧
(

λ (t,c)◦d
)

= d
))

∨ aR(c ; d)
)

∧
(

C
′ →∗

S
B ∨ (c ; d)Rb

)

⇐⇒ 〈 De Morgan〉
(

∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : t ◦c 6= c ∨
(

λ (t,c)◦d
)

6= d
)

∨ aR(c ; d)
)

∧
(

C
′ →∗

S
B ∨ (c ; d)Rb

)

⇐= 〈 Hypothesis:
(

aR(c ; d) ∧ (c ; d)Rb
)

∨ ∃
(

t | t ∈ S : λ (t,(c ; d)) ◦ b 6= b
)

&
A C=⇒ ∃(t | t ∈ Sb : t ◦c 6= c) 〉

true

(ii) C
′ =

〈

c+d
〉
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A C
′ ∧ C

′
 B

⇐⇒ 〈 Definition of 〉
(

A→
S

C
′ ∨ A→

E
C
′
)

∧
(

C
′ →

S
B ∨ C

′ →
E
B
)

⇐⇒ 〈 Definition of→
S

& Definition of →
E
〉

(

∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : t ◦ (c+d) 6= c+d
)

∨ aR(c+d)
)

∧
(

∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,(c+d)) : t ◦b 6= b
)

∨ (c+d)Rb
)

⇐= 〈 Hypothesis:A C ∧ C B & Hypothesis:∀(t | t ∈Sb : ¬(t◦d≤K c+d))
& Proposition 3 & Proposition 4〉

true

(iii) C
′ =

〈

c ;©
〉

A C
′ ∧ C

′
 B

⇐⇒ 〈 Definition of 〉
(

A→
S

C
′ ∨ A→

E
C
′
)

∧
(

C
′ →

S
B ∨ C

′ →
E
B
)

⇐⇒ 〈 Definition of→
S

& Definition of →
E
〉

(

∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,a) : t ◦c ;© 6= c ;©
)

∨ aRc ;©
)

∧
(

∃
(

s, t | s, t ∈ Sb ∧ t ≤S λ (s,c ;©) : t ◦b 6= b
)

∨ c ;©Rb
)

⇐= 〈 Definition of ;© & Proposition 5(ii)〉
true

(iv) C
′ =

〈

0
〉

A C
′ ∧ C

′
 B

⇐⇒ 〈 Definition of 〉
(

A→
S

C
′ ∨ A→

E
C
′
)

∧
(

C
′ →

S
B ∨ C

′ →
E
B
)

⇐⇒ 〈 0 is a fixed point behaviour & Proposition 2 &¬(aR0) 〉
(

false ∨ false
)

∧
(

C
′ →

S
B ∨ C

′ →
E
B
)

⇐⇒ 〈 Idempotence of∨ & Zero of ∧ 〉
false

The proof is similar whenC′ =
〈

1
〉

and the C2KA is without reactivation (i.e.,∀(s | s∈ S\{d} :
1◦s= 1)).

(v) C
′ =

〈

c′
〉

such thatc′ ∈ OrbS(c)
A C

′ ∧ C
′
 B

⇐⇒ 〈 Definition of 〉
(

A→
S

C
′ ∨ A→

E
C
′
)

∧
(

C
′ →

S
B ∨ C

′ →
E
B
)

⇐= 〈 Hypothesis:A C ∧ C B & Hypothesis:c′ ∈ OrbS(c) =⇒
∃(s, t | s, t ∈ S : s◦c= c′ ∧ t ◦c′ = c) =⇒ C→∗

S
C
′ ∧ C

′ →∗
S

C 〉
true

(vi) C
′ =

〈

c′
〉

such thatc′ is a fixed point behaviour
A C

′ ∧ C
′
 B

⇐⇒ 〈 Definition of 〉
(

A→
S

C
′ ∨ A→

E
C
′
)

∧
(

C
′ →

S
B ∨ C

′ →
E
B
)

⇐⇒ 〈 Definition of→
E
〉

(

A→
S

C
′ ∨ aRc′

)

∧
(

C
′ →

S
B ∨ c′Rb

)

⇐= 〈 Hypothesis:c′ is a fixed point behaviour&Proposition 2〉
(

false ∨ aRc′
)

∧
(

C
′ →

S
B ∨ c′Rb

)

⇐⇒ 〈 Identity of ∨ 〉
aRc′ ∧

(

C
′ →

S
B ∨ c′Rb

)

⇐= 〈 Hypothesis:aRc′ ∧ c′Rb 〉
true ∧

(

C
′ →

S
B ∨ true

)

⇐⇒ 〈 Zero of ∨ & Idempotence of∧ 〉
true
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