
Adriano Peron and Carla Piazza (Eds.):
Proceedings of the Fifth International Symposium on
Games, Automata, Logics and Formal Verification (GandALF 2014)
EPTCS 161, 2014, pp. 32–45, doi:10.4204/EPTCS.161.6

c© A.M. Ben-Amram
This work is licensed under the
Creative Commons Attribution License.

The Hardness of Finding Linear Ranking Functions for Lasso
Programs

Amir M. Ben-Amram
The Academic College of Tel-Aviv Yaffo

amirben@cs.mta.ac.il

Finding whether a linear-constraint loop has a linear ranking function is an important key to un-
derstanding the loop behavior, proving its termination andestablishing iteration bounds. If no pre-
conditions are provided, the decision problem is known to bein coNP when variables range over
the integers and in PTIME for the rational numbers, or real numbers. Here we show that deciding
whether a linear-constraint loop with a precondition, specifically with partially-specified input, has a
linear ranking function is EXPSPACE-hard over the integers, and PSPACE-hard over the rationals.
The precise complexity of these decision problems is yet unknown. The EXPSPACE lower bound
is derived from the reachability problem for Petri nets (equivalently, Vector Addition Systems), and
possibly indicates an even stronger lower bound (subject toopen problems in VAS theory). The lower
bound for the rationals follows from a novel simulation of Boolean programs. Lower bounds are also
given for the problem of deciding if a linear ranking-function supported by a particular form of in-
ductive invariant exists. For loops over integers, the problem is PSPACE-hard for convex polyhedral
invariants and EXPSPACE-hard for downward-closed sets of natural numbers as invariants.

1 Introduction

The results in this paper relate two basic problems in the analysis of loops: reachability and the existence
of a linear ranking function that proves termination of the loop. We only consider the (often used) model
in which loops compute over numeric variables (most frequently integer) and their effect is expressed by
linear equations or inequalities (constraints).

Termination provers, of which TERMINATOR by Cook, Podelski and Rybalchenko [11] is a proto-
typical example, are based on the subproblem of proving termination for simple loops with a “stem”,
the so-calledlasso(Figure 1). Termination of such loops is established in TERMINATOR by abstracting
the loop to linear constraint form and finding a linear ranking function (a function of the state variables
which is bounded below and decreases in every iteration). But the algorithm used in TERMINATOR to
check for the existence of such a function [27] does not take the effect of the “stem,” which is a precon-
dition for the simple loop, into account. We may describe theproblem solved by such an algorithm as
finding auniversalranking function—one that works for any initial state.

There are several works that do take preconditions into account in the algorithm that looks for ranking
functions. Early approaches [9, 29] used precomputed invariants, and once these invariants were included
in the description of the loop, looked for a universal ranking function. Later, some works attempted to
integrate the discovery ofsupporting invariantswith the search for a ranking function, e.g., [6, 19]. Other
works heuristically find some precondition under which a ranking function can be established, e.g., [10].

I am aware of no published upper or lower bounds on the complexity of precisely answering the
question: given a linear-constraint loop with a precondition, does it have a linear ranking function? This
contrasts with the well-understood classification of the universal linear ranking-function problem: as a
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Y := 2;
while X> 0 do

Y :=Y−1;
X := X+Y;
Y := 2∗Y;

Y = 2;
while X> 0 do
X′ = X+Y−1, Y′ = 2Y−2

(a) (b)

Figure 1: A loop with a stem (a): the stem is the straight-linecode preceding the while loop. The
loop has the ranking functionX, but this is only justified when the stem is taken into account. In
(b), the loop is written in the formalism of linear constraints.

decision problem (for simplicity we only consider decisionproblems when referring to a complexity
class) it is PTIME over the rationals1 [2, 27] and coNP-complete over the integers [3].

In this paper, we show that deciding whether a linear-constraint loop with a precondition of a simple
form has a linear ranking function is EXPSPACE-hard over theintegers, and PSPACE-hard over the
rationals. Clearly, these problems are much harder than theuniversal linear ranking-function problem.
In fact, we do not even know if they are decidable!

A possible reaction to the hardness of this problem is to lookat a mitigated problem that has been
attempted by work already mentioned: theinvariant-supported ranking function. Instead of asking for
a ranking function that holds for the precise set of reachable states, we relax the requirement so that the
ranking function has to hold in a set that contains the reachable states, a loop invariant. Moreover, we
considerinductive invariants: such an invariant is verified by a local condition, that is, acondition on
a single loop step, and this condition becomes clearly decidable if the invariant comes from a suitable
“effective” class. We shall consider two classes of invariants which seem natural: (1) convex polyhedra,
that is, conjunctions of linear constraints, and (2) disjunctive invariants of a very simple form (downward-
closed sets—basically a union of boxes with one corner at theorigin). For precise definitions see the
Section 2. Do they make the problem more tractable? We do not know exactly. But we can show that—
over the integers, at least—the problem is certainly noteasy. We prove PSPACE-hardness for ranking
functions supported by inductive invariants which are convex polyhedra, and EXPSPACE-hardness for
downward-closed sets.

Thus the results of this paper are four hardness results: twofor the general problem with a precon-
dition and two for the invariant-supported problem. In addition, for the integer case (without invariants)
we strengthen the hardness result to the claim that the problem is at least as hard as the reachability
problem for Vector Addition Systems, a problem for which even a primitive-recursive upper bound is not
known (see Section 4 for details). These are the first complexity results for these problems, and hope-
fully, another contribution is to motivate further research towards their theoretical understanding. At the
conclusion of this paper, further discussion of the significance of the results and the open problems will
be given.

1We say that we solve the problem over the rationals when we consider the state space to consist of all rational-valued points
that satisfy the loop constraints, and “over the integers” when only integer points are considered. See Section 2.
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2 Preliminaries

In this section we give basic definitions, regarding linear-constraint loops, linear ranking functions, vector
addition systems and inductive invariants.

2.1 Loop representation

We define the loop representation based on linear constraints, which is quite standard.
A single-pathlinear-constraint loop with preconditions (SLCρ for short) overn variablesx1, . . . ,xn

has the form

Cx ≤ c; while (Bx ≤ b) do A

(

x
x′

)

≤ a

wherex = (x1, . . . ,xn)
T andx′ = (x′1, . . . ,x

′
n)

T are column vectors, and for somep,q, r > 0, C ∈ Zr×n,
B ∈ Zp×n, A ∈ Zq×2n, c ∈ Zr , b ∈ Zp, a ∈ Zq. The constraintCx ≤ c is calledthe precondition, and
specifies the initial states for the computation of the loop.The set of initial states is denoted byI. The
constraintBx ≤ b is calledthe loop condition(a.k.a. the loop guard) and the last constraint is calledthe
update. The update is calleddeterministicif, for a givenx (satisfying the loop condition) there is at most
onex′ satisfying the update constraint.

We say that there is a transition from a statex ∈Qn to a statex′ ∈Qn, if x satisfies the condition and
x andx′ satisfy the update. A transition can be seen as a point

(x
x′
)

∈ Q2n, where its firstn components
correspond tox and its lastn components tox′. For convenience, we denote

( x
x′
)

by x′′.
The notions ofcomputation of a loopand termination are straight-forward. A computation must start

at an initial state. Note that when the loop is non-deterministic, termination means that there exists no
infinite computation from an initial state. Areachable state (transition)is a state (respectively transition)
that appears in some computation.

We say that the loop is interpretedover the rationalsif x andx′ range overQn, andover the integers
if they range overZn. We also say that the loop isa rational (respectively, integer)loop. For uniformity
of notation, we useS to denote the state space, without specifying its precise nature.

For purposes of complexity classification, we define the representation of the input to consist of
the matrices and vectors that specify the loop, with numbersin binary notation. We often consider a
restricted problem, concerning aloop with partially-specified input: that means that the precondition is
of the form

∧k
i=1xi = di for some variablesxi and valuesdi . Thus the value of each variable is either

specified precisely or left free.

2.2 Ranking functions

We now define linear ranking functions and the decision problem LINRFρ , asking for the existence of a
Linear Ranking Function for reachable states (theρ reminds us of the lasso shape, and is also an initial
of “reachability”).

An affine linear functionρ : Qn →Q is of the formρ(x) =~λ ·x+λ0 where~λ ∈ Qn is a row vector
andλ0 ∈Q.

DEFINITION 2.1. Given a setT ⊆ Q2n, representing transitions, we say thatρ is a linear ranking
function(LRF) for T if the following hold for every

(x
x′
)

∈ T:

ρ(x)≥ 0, (1)

ρ(x)−ρ(x′)≥ 1. (2)
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We say thatρ is aLRF for a loop (with precondition) if its is aLRF for the set ofreachable transitions
of this loop.

DEFINITION 2.2. The decision problemExistence of a LRF(with precondition) is defined by

Instance: anSLCρ loop.

Question: does there exist aLRF for this loop?

The decision problem is denoted by LINRFρ(Q) and LINRFρ(Z) for rational and integer loops respec-
tively.

2.3 Invariants

Consider a loop with initial statesI and transition setQ. We define aninvariant of the loop to be a set
INV ⊆ S such that all reachable states are inINV. We define aninductive invariant(sometimes this is
just called an invariant) to be a setINV⊆ S satisfying the properties of

• Initiation: I⊆ INV;

• Consecution: if
( x

x′
)

∈ Q thenx ∈ INV⇒ x′ ∈ INV.

Clearly, an inductive invariant does contain all reachablestates. However, frequently, concentrating on
inductive invariants makes the verification of an invariantpossible—even if the precise set of reachable
states could be uncomputable. This depends on the kind of invariants one considers. For example,
an often-used type of invariant isconvex polyhedra[13]. Using a customary representation, e.g., by
constraints, the invariant properties are decidable by linear or integer programming (for linear-constraint
loops). Another natural class—for loops over the natural numbers—aredownward-closed sets: setsINV
such thatx ≤ y, y ∈ INV ⇒ x ∈ INV. Due to Dickson’s lemma, such sets are finitely representable as
the downward-closure of a finite set in the latticeNn

ω (adding the elementω allows for unbounded sets
in N to be represented). This makes them useful for analysing certain kinds of programs, notably vector
addition systems [17, 21]. We note that, they constitute an elementary kind of disjunctive invariants—
each disjunct is of the form 0≤ x ≤ c wherec ∈Nn

ω .
Since with both of the above classes, verification of an invariant is effective, we call themeffectively

inductive invariants. Our main interest lies in using the invariants to support ranking functions: this
means that we look for a ranking function not for the set of reachable transitions, but for the set{

( x
x′
)

|
x ∈ INV}, which may be larger, but computable.

3 Rational Loops with Preconditions

Most of this section is dedicated to proving the next thoerem, from which we later derive the result on
L INRFρ(Q).

THEOREM 3.1. The following problem is PSPACE-hard: given a (deterministic) rational linear-
constraint loop and an initial state, does a specified variable ever get a positive value?

We prove this by reduction from the halting problem for Boolean programs, namely programs that
manipulate a finite number of{0,1}-valued variables,X1, . . . ,Xn. The program is a list of labeled in-
structions

1:I1, . . . ,m:Im,m+1:�
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where each instructionIk is one of the following:

incr(Xj) | decr(Xj) | if X j then k1 else k2

with 1≤ k1,k2 ≤ m+1 and 1≤ j ≤ n. A state is of the form(k,〈a1, . . . ,an〉) which indicates that Instruc-
tion Ik is to be executed next, and the current values of the variables areX1 = a1, . . . ,Xn = an. In a valid
state, 1≤ k ≤ m+1 and allai ∈ {0,1}. Any state in whichk = m+1 is a halting state. For any other
valid state(k,〈a1, . . . ,an〉), the successor state is defined as follows.

• If Ik is incr(Xj), thenXj is changed from 0 to 1; if it is already 1, the program aborts. Similarly,
decr(Xj) changes a 1 to a 0. In both cases, if execution does not abort, it proceeds at instruction
k+1.

• If Ik is “if X j then k1 else k2”, then the execution moves to instructionk1 if Xj ’s value is 1, and to
k2 if it is 0. The values of the variables do not change.

The halting problem is whether the program reaches the halting labelm+ 1 when started at theinitial
state(1,〈0, . . . ,0〉) (note that aborting due to an invalid increment or decrementshould give a negative
answer).

The class of deterministic Boolean programs captures PSPACE computability, and the halting prob-
lem for such programs is, therefore, PSPACE-complete (see,e.g., [20], which uses this model up to
non-essential differences).

Given a Boolean programPB, we generate a correspondingSLCρ loop T(PB) by translating the fol-
lowing program, written in pseudo-code with assignments, into linear constraints.

while ( 0≤ A1 ≤ 1∧ ·· ·∧0≤ Am ≤ 1∧ 0≤ X1 ≤ 1∧ ·· ·∧0≤ Xn ≤ 1 ) do {

N1 := 0; N2 := A1; . . . Nm := Am−1; Nm+1 := Am+Am+1;

T(1:I1)
...

T(m:Im)
A1 := N1; . . . Am+1 := Nm+1

}

Basically,Ai represents the choice of instruction (the “program counter”), andNi is a temporary variable
used for finding the next instruction (it is modified by jumps,as shown below). T(k:Ik) is a translation of
thekth instruction, defined as follows (again, with a mix of assignments and assertions, for readability)

• If Ik ≡ incr(Xj), then T(k:Ik) is Xj := Xj +Ak;

• If Ik ≡ decr(Xj), then T(k:Ik) is Xj := Xj −Ak;

• If Ik ≡ if X j > 0 then k1 else k2, then T(k:Ik) involves two dedicated variables,Tk andFk, as follows:

0≤ Tk ≤ Ak;
Tk ≤ Xj ;

0≤ Fk ≤ Ak;
Fk ≤ 1−Xj ;

Tk+Fk ≥ Ak;
Nk+1 := Nk+1−Ak;
Nk1 := Nk1 +Tk;
Nk2 := Nk2 +Fk
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In the last part, the variablesTk (respectivelyFk) represent the choice of the “true” branch (resp. “false”)
of a conditional branch instruction at labelk.

Our precondition defines an initial state that corresponds to the initial state ofPB. More precisely,
in the initial state, all variables are set to 0, exceptA1 = 1. All auxiliary variables (Nk, Tk, Fk) are set to
the appropriate values according to their constraints, or to 0 if unconstrained. The essential arguments to
complete the justification of the reduction are given by the following lemma.

LEMMA 3.2. In every (rational-valued) state reachable from the initial state, it holds that
1. all variables have values in{0,1}.
2. Tk = 1 if and only if Ak = 1, instruction k is a branch on Xj and Xj = 1.
3. Fk = 1 if and only if Ak = 1, instruction k is a branch on Xj and Xj = 0.
4. At most one variable Ak = 1.
5. A state where all of A1, . . . ,Am are 0 is only reached when a transfer to label m+ 1 has been

simulated. Only in such a state is Nm+1 = 1.
6. When a state where Nm+1 = 1 is reached, the program idles in this state.

Proof. The proof requires induction on the number of transitions from the initial state. The initial state
was chosen to satisfy these properties. For the induction step, we first prove (2) and (3), which follow
quite easily (as the reader may check) from the assumption that Ak andXj are either 0 or 1 (which we
have by the induction hypothesis). Given these facts, one can check that for any state in which (1) and (4)
hold, the variablesXi remain in{0,1} (in fact, at most one of them is modified), proving that (1) holds in
the next step. For the variablesNi, since initially they are zero, it is easy to see that it always holds that
just one of them will be a 1 (using (4) and (5)), which implies (4) and (5) for the next state. Finally, (6)
is easy to verify.

Essentially, the lemma shows that the constraint loop simulatesPB in lockstep (i.e., every transition of
PB is simulated by a transition of the loop), except that normalhalting becomes an infinite loop in a state
whereNm+1 = 1. Theorem 3.1 follows immediately. By modifying the constructed program slightly, we
obtain

COROLLARY 3.3. TheL INRFρ(Q) problem is PSPACE-hard, even when restricted to deterministic
loops.

Proof. We add another variableY, initially unbounded, and the constraints:

Y > 0, Y′ =Y−1+Nm+1 .

It is easy to see that if the original Boolean program doesnot halt, ourSLCρ loop will halt from the
specified initial state, andY is a ranking function. If the Boolean programdoeshalt, ourSLCρ loop does
not, and therefore, has no ranking function (of any kind).

The fact that our loop either has the specified ranking function, or does not halt at all, is significant:
it means that the existence of any “termination witness” (like LRF) which can handle this loop (in par-
ticular, any witness which encompasses single-variableLRFs) will also be PSPACE-hard. On the other
hand, we can distinguish our problem from termination in thefollowing sense.

COROLLARY 3.4. TheL INRFρ(Q) problem is PSPACE-hard even if restricted to deterministicloops
that do terminate.
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Proof. We add another variableR, initially unbounded, and the constraints:

R′ = R−1, Y′ ≤Y+R.

Now, the loop will always halt, sinceR must eventually be negative and forceY to decrease. But, when
the Boolean program halts, the loop can go through several iterations in whichY does not decrease (as
long asR is still positive); therefore,Y is still not a ranking function. Neither can we form a ranking
function using other variables. Specifically, we cannot useR, because it has no lower bound; and the rest
of the variables do not change in such iterations.

4 Integer Loops with Preconditions

The constructions in this section are inspired by the simulation of Petri nets bySLCρ loops, used for
Theorem 6.1 in [4], which states that the termination problem for such loops is EXPSPACE-hard. The
hardness result is based on Lipton’s reduction from haltingof counter programs with exponential space;2

this was originally used by Lipton [24] to prove hardness of some decision problems in Petri nets. First,
we give the necessary definitions.

4.1 VAS and Petri nets

A vector addition system is a type of program which maintainsn counter variables (variables of non-
negative integer value), so that a statex is a vector of non-negative integers. A state-transition isof the
form x′ = x+vi , wherevi is chosen non-deterministically among givendisplacement vectorsv1, . . . ,vk,
and subject to the constraint that all variables remain non-negative. For purposes of complexity classifi-
cation, we define the representation of a VAS as input to be thelist of vectors, with numbers in binary
notation. We denote thejth element ofvi by vi [ j].

A Petri net is a very similar model, and for convenience we present it here using the terminology of
VAS. Then, the difference lies in the definition of transitions: a possible transition is specified bytwo
vectors,v−i andv+i , both non-negative, and its effect is described byx′ = x−v−i +v+i , providedx−v−i
is non-negative. One may think ofv−i as a requirement for the enabling of transitioni.

4.2 Lipton’s reduction

Let us first recall Lipton’s reduction (a good reference is [15]). Given an exponential-space counter
programP, the reduction constructs a Petri netNP that has the following behavior when started at an ap-
propriate initial state.NP has two kinds of computations,successfulandfailing. Failing computations are
caused by taking non-deterministic branches which are not the correct choice for simulatingP. Failing
computations always halt. The (single) successful computation simulatesP faithfully. If (and only if) P
halts, the successful computation reaches a state in which aparticular flag, sayHALT, is raised (that is,
HALT is a counter which is incremented for the first time from 0 to 1). This flag is never raised in failing
computations. Thus, the reduction proves hardness of a problem which we may calleventual positivity:

THEOREM 4.1. It is EXPSPACE-hard to decide, for a Petri net with a given initial statex0, whether
there is a reachable state in which xn > 0.

2The space complexity measure for counter programs is the number of bits necessary to maintain the counters in binary
notation.
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Note that this problem is a special case ofcoverability (given x0 and another vectory, is there a
reachable statex such thatx ≥ y?). It is easy to adapt the reduction to also show hardness of state
reachability (isy reachable fromx0?).

4.3 Application to the LRF problem

By translating Petri nets toSLCρ loops, we obtain a question on eventual positivity in such loops with a
partially-specified input. It is easy enough to transform this question to a question on the existence of a
LRF. Thus we obtain

THEOREM 4.2. L INRFρ(Z) is EXPSPACE-hard for partially-specified input.

Proof. Let a Petri net be given, havingn counter variables andm displacement vectors, along with an
initial statex0. We construct aSLCρ loop having variablesX1, . . . ,Xn, that represent the counters, and
flagsA1, . . . ,Am, that represent the choice of the next transition and changenon-deterministically. The
loop guard isX1 ≥ 0∧ ·· · ∧Xn ≥ 0. The initial state for our loop is the given initial state (for theXi)
and zeros for theAi. The transition relation of the loop implements the Petri-net transitions in a straight-
forward way, specifically, it is the conjunction of the following three conjunctions

∆ ≡
m
∧

k=1

(A′
k ≥ 0)∧ (A′

1+ ....+A′
m= 1)

Ψ ≡
n
∧

i=1

(Xi ≥
m

∑
k=1

vk[i] ·A
′
k)

Φ ≡
n
∧

i=1

(X′
i = Xi −

m

∑
k=1

v−k [i] ·A
′
k+

m

∑
k=1

v+k [i] ·A
′
k)

where∆ ensures that one and only oneA′
k will be a 1,Ψ ensures that the transition chosen is enabled,

andΦ implements the effect of the transition.
To reduce to the LINRFρ(Z) problem, we add another variableY, and the constraints:

Y > 0, Y′ ≤Y−1+Xn.

In addition, we add a new transition to our VAS (and encode it in our loop); the new transition is enabled
whenXn is positive, and does not modify the state (so it loops forever).

It is easy to see now that if the original counter program doesnot halt, ourSLCρ loop will halt from
the specified initial state, because variableY will hit its lower bound; in fact,Y is a ranking function. If
the original counter programdoeshalt, ourSLCρ loop does not, and therefore, has no ranking function
(of any kind).

We conclude that determining if the constructed loop has a linear ranking function is as hard as
deciding whether the counter machine that the Petri net simulates halts, that is, EXPSPACE-hard.

Note that a reduction from counter programs with unbounded counter values would have proved un-
decidability. Unfortunately, such a reduction has not yet been found. The reduction from VAS suceedes,
essentially, because it is a kind of counter program in whicha transition cannot be conditioned on a
zero-test.
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4.4 A reduction from Reachability

In the Reachability problem for Petri nets/VAS, we are givenan initial states and are asked whether
a given target statet is reachable froms. We can also reduce to LINRFρ(Z) from the reachability
problem. This observation may be of interest since the latter problem is generally presumed to be harder
than coverability, which provided our EXPSPACE lower bound[14, 16, 23] (at least, it is certain that
reachability too is EXPSPACE-hard, so the same lower bound follows. Hence, in terms of the resulting
lower bound, the next theorem supersedes the previous one. However, the previous reduction is not
entirely redundant as it is useful for a proof to be given later in Section 5).

Intuitively, the reduction operates as follows: a program simulates the VAS and tries to check if the
target vectort is reached. When this happens, it results in an infinite execution.

THEOREM 4.3. There is polynomial-time reduction of the VAS reachabilityproblem toL INRFρ(Z),
with a partially-specified initial state.

Proof. Let a VAS (of dimensionn, and withm displacement vectors), and the vectorss, t be given. We
assume (with no loss of generality) that the VAS is designed so that a computation froms will never
reach the zero vector.

We construct a constraint loop simulating it as follows. Theloop has variablesX1, . . . ,Xn,Xn+1 and
A1, . . . ,Am+2. The guard is

X1 ≥ 0∧ ·· ·∧Xn+1 ≥ 0∧A1 ≥ 0∧ ·· ·∧Am+2 ≥ 0∧∑
i

Ai = 1

and the update is the conjunction of the following constraints,

X′
j = Xj +(

m

∑
i=1

vi [ j] ·Ai)− t[ j] ·Am+1 for j = 1, . . . ,n, (3)

A′
1 ≥ 0∧ ·· ·∧A′

m+2 ≥ 0∧∑
i

A′
i = 1, (4)

X′
n+1 = Xn+1− (

n

∑
j=1

Xj), (5)

A′
m+2 ≥ Am+1+Am+2 . (6)

The initial state for our loop is just the given initial states (for theXi) and unspecified for theAi .
Explanation: As before, the variablesX1, . . . ,Xn andA1, . . . ,Am are used to simulate the VAS. The

X’s represent the state vectorx, andA’s are flags which change non-deterministically to indicatethe next
transition. This simulation goes on as long asAm+1 or Am+2 have not turned on, and as long as it does go
on, Xn+1 descends, by (5). IfAm+1 turns on, the target vectort is substracted from(X1 . . .Xn), so such a
transition is only enabled if this vectorx is at least as large ast. Suppose that this happens. Then by (6),
later transitions are forced to haveAm+2 = 1, so they do not simulate the loop any longer, and theX’s do
not change, except forXn+1, which continues to decrease if and only ifx at the start of this phase was
not equalto t.

Hence, ift is reachable froms, it is possible to run into a non-terminating computation where nothing
decreases, and the loop has noLRF. Otherwise,Xn+1 keeps decreasing, even whenAm+2 = 1, so it
constitutes aLRF.

We should note that it is possible to turnAm+2 on without passing throughAm+1 = 1, and in this case
Xn+1 keeps decreasing regardless of the reachability question,so our reduction remains correct.
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4.5 Ranking versus termination

As in Section 3, we can see that our reduction yields a loop which either has the specified ranking
function, or does not halt at all, which means that the existence of any “termination witness” (likeLRF)
which can handle the loop (in particular, any witness which encompasses single-variableLRFs) will also
be PSPACE-hard. On the other hand, we can show (using the sametrick as in Corollary 3.4) that the
L INRFρ(Z) problem is EXPSPACE-hard even if restricted to loops that doterminate.

4.6 Deterministic loops

Both of the above hardness results also hold for deterministic constraint loops. In order to do that, we
need to “determinize” the loop constructed in the reduction. The technique is from [4], and consists
of adding an uninitialized variable, whose value is used as an “oracle,” to guide the non-deterministic
choices. In the case that there is a computation which makes the value ofXn positive (in our first reduc-
tion) or the value of∑n

j=1Xj zero (for the second), there will be a value for the oracle variable that guides
the computation to this state. See [4, Sect. 6.1] for more details.

5 Hardness for Invariant-Supported LRFs

In this section we turn to the problem of invariant-supported LRFs, namely the decision problem defined
as follows:

Instance: anSLCρ loop.

Question: does there exist an inductive invariantINV (of a particular class) for this loop, such that
there is aLRF for {

( x
x′
)

| x ∈ INV}?

We give two hardness results, depending on the type of invariant: PSPACE-hardness for convex polyhe-
dra and EXPSPACE-hardness for downward-closed sets overNn. Both are derived from the constructions
of earlier sections, by noticing that if there is a ranking function, there is an invariant to support it. Both
address integer loops only.

THEOREM 5.1. For deterministic integer SLCρ loops, deciding whether convex polyhedral invariant
exists which supports a LRF for the loop is PSPACE-hard.

Proof. We use the reduction from halting of Boolean programs (Section 3). We claim that when there
is aLRF (which would consist of the variableY as shown in the proof of Corollary 3.3), then there is a
convex polyhedral invariant supporting it. Indeed, assumethat the Boolean program does not halt. LetR

be the set of reachable states of theSLCρ loop constructed. In all these states, the variables are 0-1valued
(except forY, which is unbounded). Note that the convex hull of a setV of 0-1 vectors includes no other
integer vectors besidesV. Thus, as we are considering an integer loop, the convex hullof R representsR
precisely, and constitutes an invariant (the set of reachable states is clearly an inductive invariant) which
supports theLRF.

THEOREM 5.2. For deterministic SLCρ loops over the natural numbers, deciding whether a downward-
closed invariant exists which supports a LRF for the loop is EXPSPACE-hard.

Proof. We reuse the reduction from the Eventual Positivity problemof Petri nets (Theorem 4.2). We
claim that when there is aLRF (which would consist of the variableY as shown in the proof), then there
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is a downward-closed invariant supporting it. LetR be the set of reachable states form the given initial
states, and consider its downward-closureŘ. It clearly contains the initial states, and it is easy enough
to verify that it is closed under the transition relation (recall thatR is closed, by definition). ThušR
constitutes an invariant; it supports theLRF Y becauseXn is zero in all these states.

As in previous sections, both of the above hardness results are also valid when restricting to programs
that do terminate.

6 Related work

Termination analysis has been the subject of many papers (too many to list here), but, in addition to
works already mentioned, the following works seem closely related.

There are some tools which, like TERMINATOR, use a counterexample-directed approach which
naturally calls for the analysis of lasso programs. Examples include [12, 18, 28].

Bagnara et al. [2] give a clear exposition on the computationof universal ranking functions, compar-
ing [27] with previous solutions [25, 29] that use essentially the same approach. Recently, several works
addressed the generation of more complex termination proofs, in particular, involving lexicographically-
decreasing tuples of linear functions. The universal problem for linear-constraint loops is analysed in
[3], while preconditions have been taken into account in some works: Bradley et al. [6, 7] search for
supporting invariant using constraint solving (for multi-path loops). Alias et al. [1] handle control-flow
graphs of any form, but require precomputed invariants. Brockschmidt et al. [8] use an iterative method
in which invariant generation is guided by the needs of the termination prover. They use a separate safety
checker to provide them, while Larraz et al. [22] use the constraint-solving approach to find supporting
invariants together with the ranking functions, but using iterative improvement as in the latter work.

Regarding the computation oftermination preconditions, Bozga et al. [5] show that for loops speci-
fied byoctagonal relationsa precondition forterminationcan be computed in polynomial time. But the
proof does not necessarily produce a linear ranking function.

7 Concluding Remarks

We have established lower bounds (that is, hardness results) on the complexity of the linear-ranking
problem with preconditions, first in its general form and then when restricted toLRFs supported by two
forms of effectively inductive invariants. In fact, our lower bounds hold for the linear-ranking function
verification problem:

Instance: anSLCρ loop and an affine-linear functionf .

Question: is f aLRF for this loop?

Moreover, the lower bounds hold for a simple kind of precondition, namely a partially-specified
input. Even for this case, we do not have upper bounds, and obtaining them seems extremely difficult. We
still have no answer to the following intriguing questions:Is any of the decision problem studied here any
easier than termination for the corresponding class of loops? And are they equivalent to reachability?

An interesting open problem results from restricting the update, say toaffine linear: x′ = A′x+ a′.
We note that the notoriouspositivity problem for linear recurrence sequences[26] translates easily to
LRF verification—to check whetherx1 is always positive, add a variablexn+1 with x′n+1 = xn+1−x1, put
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xn+1 ≥ 0 in the guard and ask whetherf (x) = xn+1 is aLRF. It would be interesting to know whether a
reduction toLRF existencecan also be found.

An interesting direction for further research may be to find out the implications of fixing the number
of variables. For our VAS problem it is known to make the problem solvable in polynomial space [14,
Corollary 3.4.5]. Our lower bounds do not give any significant result in this case (and clearly, the problem
does get easier for sufficiently smalln: at least forn= 1 it does!).

Another, very natural, idea is to restrict the invariants toa fixed (or polynomial) number of conjuncts
or disjuncts. In fact, all the works using the constraint-solving approach are based on such a restriction.
But is the problem tractable now? There is again an intriguing lack of results. For conjunctions of a given
number of linear constraints, Bradely, Manna and Sipma [6] show decidability in exponential time, but
only over the reals (it is not clear whether results would be different over the rationals). Heizmann et
al. [19] show a polynomial-time procedure for loops over thereals or rationals, when the invariant is a
single half-space; and they prove completeness only under an additional restriction. So there is a long
way ahead.
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