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We introduce the class of synchronous subsequential relations, a subclass of the synchronous rela-
tions which embodies some properties of subsequential relations. If we take relations of this class as
forming the possible transitions of an infinite automaton, then most decision problems (apart from
membership) still remain undecidable (as they are for synchronous and subsequential rational rela-
tions), but on the positive side, they can be approximated ina meaningful way we make precise in
this paper. This might make the class useful for some applications, and might serve to establish an
intermediate position in the trade-off between issues of expressivity and (un)decidability.

1 Introduction

Automata play an important role for a huge number of tasks, ranging from formal language theory to
program semantics and model checking for logical languages. The most widespread applications have
been found for finite automata; their properties and advantages are well-known to an extent which makes
comments unnecessary. There can be several reasons to move from finite automata to infinite automata:
in formal language theory, it is expressive power, same holds for automata as program semantics (a
program might have at least in theory infinitely many possible states). There might also be another
reason: for model checking, if we can compute a finite automaton directly from some formal (logical)
language specifying the properties of the model (see for example [8]), 1. the resulting automaton might
be too big to be effectively stored, or even if we can avoid this, it might happen that 2. though the
resulting minimal automaton is manageable in size, its construction involves intermediate steps with
automata too large to handle. For overview and motivation inlogic, see [8]; in program semantics, this
problem is referred to asstate explosion problem, see [7].

So there are a number of reasons to use infinite automata. Their obvious disadvantage is that we
cannot simply write them down, as they are infinite objects. What we rather do is the following: we
specify a recursive procedure by which an automaton constructs its own state seton the fly, meaning it
“constructs” a certain state only when reading a certain input. This leads to the theory of infinite automata
(see [12] for an overview, [5],[6] for some important results), and it is this line of research on which we
will investigate here. To specify a class of infinite automata, the main work lies in specifying a class of
possible primitive transitions relations, which are associated with the input letters, and, maybe of less
importance, classes possible sets of initial and final states.

For classes of infinite automata, there is usually the following situation of trade-off: Choice 1: we
take a class of relations which is very restricted, such as typically relations corresponding to transitions
of pushdown automata (henceforth: PDA) or slight extensions thereof (see for example [4]). In this
case, problems such as whether one state can be reached from another one, and whether the language
an automaton recognizes is non-empty are decidable. The problem is that many computations cannot be
simulated by these transitions, and recognizing power remains quite limited. Choice 2 is that we take a
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rather expressive class of relations such as the rational (or regular) relations, computed by (synchronous)
finite-state transducers. These will provide sufficient expressive power for most purposes. But on the
downside, most problems – reachability of states, emptiness of recognized language etc. – are undecid-
able. In between these two choices, there is usually thoughtto be little to gain (see also [12], [9]). In
particular, for classes of relations which do not have PDA-style restrictions, undecidability strikes very
quickly, so there is little use in investigating expressivesubclasses of the rational relations.

Yet this is exactly what we will do here: we will investigate the class of synchronous subsequential
relations, a rather large subclass of the regular relations, which embodies some properties of subse-
quential rational relations. It comes as no surprise that also for this class, the reachability problem is
undecidable. Yet this class allows for an interesting way ofapproximating the reachability problem.
This in turn allows to approximate other decision problems,which might make this class interesting for
some applications. The notion of approximation we use is of some interest in itself: its intuitive meaning
is that we get arbitrarily close to a solution of our binary problem, but we might never reach it. In a
binary problem, this is of course less satisfying than in a numerical one. However, this can be put to use
in various ways, which correspond to various interpretations we can give to reachability problems.

2 The General Setup: Self-constructing Automata

2.1 The Algebraic Setting: Self-constructing Automata

One can present automata in many different ways, the most standard one being probably the following:
an automaton asstate-transition system(STS) is a tupleA = (Σ,Q,δ ,F, I), whereΣ is a finite input
alphabet,Q a set of states,δ ⊆ Q×Σ×Q a transition relation,F ⊆ Q a set of accepting states,I ⊆ Q the
set of initial states. As our main interest will be ininfinite automata, we cannot simply write downQ;
same forδ and maybeI ,F . The solution to this is simple: we defineQ⊆ Ω∗ for some finite alphabetΩ
inductively by 1.I ⊆ Q, and 2. ifq∈ Q, a∈ Σ, thenδ (q,a) ⊆ Q,1 and 3. nothing else is inQ. Next, we
simply defineδ as some computable relation,I ,F as recursive sets, and we have a finite specification of
an infinite state machine.

As in order to define an infinite STS, the main work lies in specifying the transition relation, we now
introduce a more genuinely relational perspective, which amounts to a sort of non-standard definition of
automata, which we dubself-constructing automata, for short SCA. This is more a notional innovation
than a substantial one, and we just adopt it for convenience.

Self constructing automata can be roughly conceived of as mappings from the free monoid〈Σ∗, ·,ε〉 to
the monoid〈℘(Ω∗×Ω∗),◦, idΩ∗〉, whereΩ∗ is the free monoid overΩ; ◦ denotes relation composition;
idΩ∗ denotes the identity relation onΩ∗. We call the former theouteralgebra, the latter theinnerone. We
will as much as possible stick to the convention of usingΣ if something is supposed to belong to the outer
algebra, andΩ otherwise, though both designate finite alphabets throughout. We define a semi-SCA as
a tuple〈Σ,φ〉, whereφ is a mapφ : Σ →℘(Ω∗×Ω∗), thus mapping letters inΣ onto relations overΩ. It
is extended to strings in the usual fashion, whereφ(aw) = φ(a) ◦φ(w); soφ is a homomorphism from
the outer algebra into the inner algebra. A wordw∈ Σ∗ from the outer alphabet then induces a relation
φ(w) ⊆ Ω∗×Ω∗. We call the relations of the formφ(a) : a∈ Σ theprimitive transition relations . To
get a full automaton, we still need anaccepting relationof initial and accepting states. One usually
specifies a single initial and a set of accepting states, yielding an accepting relation{x0}×F. As for
us, acceptance will only play a minor role, we will take a slightly more general convention and assume

1Here and throughout this paper, we treat relations as functions into a powerset whenever it is convenient.
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that SCA specify anaccepting relation FR ⊆ Ω∗×Ω∗, which might be a Cartesian product, but need
not be. We denote the accepting relation byFR, where the subscript is just a reminder that we have a
relation rather than a set of accepting states. Thus a full SCA is a tuple〈Σ,φ ,FR〉. We can now define the
language recognized by an SCA. LetA= 〈Σ,φ ,FR〉 be an SCA; thenL(A) := {w∈ Σ∗ : φ(w)∩FR 6= /0}.

For convenience, we always putφ(ε) = idΩ∗ (though this is not necessary in all cases). One might
at this point wonder how we deal withε-transitions. There is an easy solution to that, by changingφ .
Before we state it, we give the following definitions: Given aset of relations{Ri : i ∈ I}, I an arbitrary
index set, by{Ri : i ∈ I}⊗ we define the smallest set such that:

1. {Ri : i ∈ I} ⊆ {Ri : i ∈ I}⊗;

2. if R,R′ ∈ {Ri : i ∈ I}⊗, thenR◦R′ ∈ {Ri : i ∈ I}⊗.

3. idΩ∗ ∈ {Ri : i ∈ I}⊗.

In words, {Ri : i ∈ I}⊗ contains{Ri : i ∈ I}, the identity, and is closed under composition.[−]⊗ is
obviously related to the Kleene-star closure, but for composition of relations rather than for concatenation
of strings. Be also careful to keep in mind that we do not take the union over this closure, so{Ri : i ∈ I}⊗

is not a relation but a set of relations. We will sometimes refer to aset of the form{Ri : i ∈ I}⊗ as a
relation monoid, as it is easy to see that this set is a monoid with operation◦. We will also need the
union of this set and so define{Ri : i ∈ I}⊕ :=

⋃
({Ri : i ∈ I}⊗). This is not exactly the smallest reflexive,

transitive relation containing everyRi : i ∈ I , because it contains the full identity onΩ∗; apart from
this however it equals the reflexive transitive closure. We urge the reader to be careful to not confuse
{Ri : i ∈ I}⊗, a set of relations, with{Ri : i ∈ I}⊕, a relation. Now assume we want a relationRε to
correspond toε , whereas for each lettera∈ Σ, we want a corresponding relationRa. We can simulate
this in the algebraic setting by puttingφ(a) := (Rε)

⊕ ◦Ra◦ (Rε)
⊕.

Given some classes of relationsR,R1,R2, bySR we denote the class of all semi-SCA〈Σ,φ〉, where
for all σ ∈ Σ, φ(σ) ∈ R. By SR1,R2 we denote the class of all SCA〈Σ,φ ,FR〉 whereφ(σ) ∈ R1 and
FR ∈ R2. A class of SCAis a class of the formSR1,R2 for some classes of relationsR1,R2.

2.2 Decision Problems in the Relational Setting

The most important decision problems in this paper can be states as follows:
Reachability problem: Given a class of automataS , is there an algorithm, which for any〈Σ,φ ,FR〉 ∈
S , (x,y) ∈ Ω∗×Ω∗, determines in a finite number of steps whether there isw ∈ Σ∗ such that(x,y) ∈
φ(w)?
Emptiness problem: Given a class of automataS , is there an algorithm, which for any given automaton
A ∈ S determines in a finite number of steps whetherL(A) = /0?
Inclusion problem: Given a class of automataS , is there an algorithm, which for any given automata
A,A′ ∈ S determines in a finite number of steps whetherL(A)⊆ L(A′)?

If there is such an algorithm, we say the problem isdecidablefor S , if there is no such algorithm, we
say it isundecidable. Note that in most cases (ifS contains the class of finite automata), the inclusion
problem subsumes the emptiness and universality problem, as they amount to decide whetherL(A)⊆ /0,
Σ∗ ⊆ L(A). Obviously, there is a close connection between emptiness,reachability and recursiveness of
relation monoids; it is made precise by the following lemma:

Lemma 1 LetFIN be the class of finite relations. Given a class of relationsR, the following are equiv-
alent:

1. The emptiness problem forSR,FIN is decidable.
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2. The reachability problem forSR,FIN is decidable.

3. Every relation of the form{Ri : i ∈ I}⊕, where Ri ∈ R : i ∈ I, |I |< ω , is recursive.

Proof. 1⇒ 2: Take a semi-automaton〈Σ,φ〉, and ask whether there isw∈ Σ∗ such that(x,y) ∈ φ(w).
This is the case if and only ifL(〈Σ,φ ,{(x,y)}〉) 6= /0, which by assumption is decidable.

2⇒ 3: Assume the reachability problem forSR,FIN is decidable, and forRi ∈ R : i ∈ I , |I |< ω , ask
whether(x,y) ∈ ({Ri : i ∈ I})⊕. We just putΣ := I , φ(i) = Ri. Then we know whether there isw∈ I∗

such that(x,y) ∈ φ(w), which holds if and only if(x,y) ∈ ({Ri : i ∈ I})⊕.
3⇒ 1: Ask whether for〈Σ,φ ,FR〉 ∈ SR,FIN, L(〈Σ,φ ,FR〉) = /0. We take({φ(a) : a∈ Σ})⊕, which is

recursive by assumption. Now we haveL(〈Σ,φ ,FR〉) = /0 if and only if for all(x,y) ∈ FR, (x,y) /∈ ({φ(a) :
a∈ Σ})⊕. As FR is finite, this can be effectively checked for all members. ⊣

Of course it is a rather significant restriction to only consider finite accepting relations. But keep in
mind that for many (most?) automata, we can boil it down to this case without loss of recognizing power,
provided we allowε-transitions.2

3 Synchronous Subsequential Relations

3.1 Synchronicity and Subsequentiality

The intuitive notion of synchronicity is that we use finite-state transducers which do not haveε-transitions.
A (finite-state) transducer is a tuple〈Q,Σ,F,q0,δ 〉, whereF ⊆ Q, q0 ∈ Q, Q,Σ are finite, andδ ⊆
Q×Σ∪{ε}×Σ∪{ε}×Q. Transducers are based on the operation·, where(a,b) · (c,d) = (ac,bd). We
extendδ to δ̂ by δ̂ (q,a,b) = δ (q,a,b), andδ̂ (q,aw,bv) = {δ̂ (q′,w,v) : q′ ∈ δ (q,a,b)}; L(A) = {(w,v) :
δ (q0,w,v)∩F 6= /0}. If R is recognized by a finite state transducer having transitions of the form(ε ,a)
and/or(a,ε), then it isrational . The main advantage of synchronicity is that withoutε appearing in
components, the operation· still gives rise to a free monoid: each term has a unique maximal decom-
position. This property gets lost withε : (a,ε) · (ε ,b) = (ε ,b) · (a,ε). So this means that synchronous
transducers can be reduced to simple string automata for most properties, whereas transducers in general
cannot.

However, under this strict definition disallowingε-transitions, the corresponding relations are rather
useless for infinite state transition systems, as from each state, only a subset of the finite set of equally
long states is reachable. So one uses a more liberal definition: we allowε-transitions to occur, but only
if in the component in which they occur, there are no more other letters to come. By|w| we denote the
length of a string, bywk its k iterations. PutΩ⊥ := Ω∪{⊥}, for ⊥/∈ Ω. Theconvolution ⊙(w,v) of a
pair of strings(w,v) ∈ Ω∗×Ω∗ is defined by⊙(w,v) := (w⊥max{0,|v|−|w|} ,v⊥max{0,|w|−|v|}). So in simple
words: we take the shorter word of the two and add⊥-symbols to make it as long as the other. The
convolution of a relationR⊆ (Ω∗)2 is defined as⊙R := {⊙(w,v): (w,v) ∈ R}. A relationR⊆ Ω∗×Ω∗

is regular, if there is an (ε-free) finite state transducer over(Ω⊥)
2 recognizing⊙R; we denote this class

by REG. This is the notion of synchronicity we will use here. Regular relations as defined here form a
proper subclass of the relations defined by finite state transducers in general, but the restriction comes
with a huge gain:REGis closed under Boolean operations, whereas the rational relations are not closed
under intersection and complement (see [1]). This makes theregular relations the more natural choice
for application for example in logic (see [11]).

2We need not talk of FSA, but this holds also for PDA,TM and manyintermediate classes.
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It is easy to see thatSREG has an undecidable reachability problem, as Turing machinetransitions
are regular. A highly non-trivial result shows thatSREG,FIN recognizes exactly the context-sensitive
languages (proved in [10]).

The intuitive notion ofsubsequentiality is the following: relations on strings are subsequential, if
computations depend on prefixes that have already been read,but not on the part of the input which has
not been read yet (in the sequel, we refer to this as “future”). It is easy to define this concept for rational
relations: letT= 〈Q,Σ,δ ,q0,F〉 be a transducer (possibly usingε-transitions) which istotal, that is, for
everya ∈ Σ,q ∈ Q, there is some(q,a,a′,q′) ∈ δ . ThenT is subsequential, if Q = F. In this sense,
there is no way to discard any computation we have made so far.A relation R is subsequentialif it is
computed by some subsequential transducer. We denote this class bySUB. The reachability problem for
SSUB is againundecidable. Though this result is not literally stated at any point we know, it easily falls
off from results in [2] (who prove that iterated subsequential transduction generates languages which are
not recursive). Moreover, as below we show a stronger result(theorem 9), we omit the formal statement
and proof of this one. What we now do is to pair the concept of subsequentiality with the concept of
synchronicity.

3.2 Synchronous Subsequential Relations

It is not reasonable to simply define a synchronous subsequential relation as being computed by a syn-
chronous transducer with only accepting states: because inthis case still computations depend on “the
future”: simply because whether we can map (or read) someε-pendant⊥ depends on the symbolswhich
are still to come(as⊥ can only occur final); so in some cases, we would have to discard computations
which have been executed, which contradicts the essence of subsequentiality. So we have to use another
definition of synchronous subsequential relations, takinga detour over (one-sided) infinite words. Let
Ω be an alphabet; we denote the set of infinite words overΩ by Ωω ; formally, we can think of them as
functionsN→ Ω; so they have the forma1a2...an...: we have a first letter, every letter has an immediate
successor, and every letter is preceded by finitely many letters. For clarity, we will designate infinite
words withx,y etc. Furthermore, we need one special letter�, which we assume to be in all our al-
phabetsΩ over which we form infinite words (please read this as a dummy for an arbitrary letter, which
however has to be explicitly designated). We can get back from infinite words to finite words via the
following mapη : Ωω → Ωω ∪Ω∗:

η(a1a2...an...) =

{

a1η(a2...an..), if a2...an... /∈ {�}ω , and

ε otherwise.
So for x ∈ Ωω , η(x) ∈ Ω∗ iff all but finitely many letters are�, andη(x) = x otherwise. We now

complete our definition of synchronous subsequential relations as follows: letT := 〈Q,δ ,Σ,q0〉 be a to-
tal (wrt. input q,a) ε-free transducer without accepting states. We putLω(T) := {(a1a2...,b1b2...) ∈
Ωω : δ (q0,a1,b1,q) ∈ δ , and for all i ∈ N, there is someq ∈ δ̂ (q0,a1...ai ,b1...bi) and q′ such that
(q,ai+1,bi+1,q′) ∈ δ}. We sayT is synchronous subsequential, if for every w ∈ Ωω , if η(w) ∈ Ω∗,
(w,v) ∈ Lω(T), thenη(v) ∈ Ω∗. We thus want for any input with a finiteη-image the output to have
a finite η-image as well. Technically, this can be easily implementedby making sure that after some
number of input of�-symbols, we end up in states which only give� as output given a�-input. Call
these statesfinal (not to be confused with accepting). The motivation for thisdefinition is the follow-
ing: we can use infinite words with finiteη-image as if they were finite words (in the sense of effective
computation).

Definition 2 We say that a relation R⊆ Ωω × Ωω is in SyS, the class of synchronous subsequen-
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tial relations, if there is a synchronous subsequential transducerT such that R= {(w,v) : (w,v) ∈
Lω(T) & η(w) ∈ Ω∗}.

The trick is the following: as we do not have accepting states, there is no additional complication
when considering infinite words as opposed to finite words, ascomplications arise from mode of accep-
tance. As we do not have anyε-transition, if we restrict ourselves to have a finite input (moduloη), that
is sufficient to ensure we have a finite output (modη). Note that� plays a double role in this definition:
if it is followed by some other symbola 6=�, then it is a symbol just like any other. If it is followed by
�-symbols only, it basically plays the role of⊥ in the regular relations, that is, it is a dummy-symbol
mapped toε . Note that this “trick” is necessary to pair synchronicity with subsequentiality, as we do need
a dummy symbol which gets deleted if final, and at the same timewe need to ensure that transitions are
total. An easy way to understand the relation of finite/infinite words is by analogy with the real numbers:
a number as 3.05 is in some sense a “shorthand” for the number 3.050000...; we can cut away final 0s,
but only if there is no other number to come.

For purposes of practical computation, this oscillation between finite and infinite words does not pose
any problem: we can just take a finite input wordw and take all the outputs we reach with some input
w�n with which go to a final state. The resulting set of outputs (mod η) is exactly the output for the
infinite input wordw�ω . So if we have a specific finite input word, we can compute the output by means
of a finite transducer with some accepting states (corresponding to the final states). However, this does
not hold in the more general case where we have an infinite set of input words. This is because when
reading an inputw�n, which is a prefix of an infinite wordw, we cannever be surewhetherη(w) = w,
so we can never actually stop the computation. This happens for example in relation composition, and
one might consider this problematic. However, in this case we cannot write down the set of outputs
anyway; and so we have to compute a finite representation of the infinite output set (or relation). The
most important lemma to ensure applicability ofSyS for infinite automata is the following:

Lemma 3 If R,R′ ∈ SyS, then R◦R′ ∈ SyS.

Proof. We can easily show this by the standard transducer construction: given synchronous rational
transducersA1 = (Q1,Σ1,q1

0,δ1),A2 = (Q2,Σ2,q2
0,δ2), we simply constructA3 = (Q1×Q2,(q1

0,q
2
0),Σ1∪

Σ2,δ3), whereδ3 is defined as follows:((q, r),a,b,(q′r ′)) ∈ δ3, iff (q,a,c,q′) ∈ δ1 and(r,c,b, r ′) ∈ δ2. It
can be easily checked (by induction on word length3) that this construction works. ⊣

Lemma 4 SyS( REG.

Proof. 1. ⊆. AssumeR∈ SyS. Take the synchronous subsequential transducerT recognizingR.
Make an additional, disjoint copy of the final states that is 1. accepting, 2. absorbing (no leaving arcs )
and 3. where you change� to ⊥. This is synchronous and does the job.

2. 6=. Every finite relation is synchronous. A finite relation which is not synchronous subsequential
is {(aac,aa),(aad,ab)}. This is becauseSyS-transducers have to be total, and if we compute a prefix
(aa,aa), we have an input letterd, there must be some output word corresponding to inputaad. ⊣

By pref(w) we denote all prefixes ofw. Relations inSUBgenerally have theprefix property: if
(w,v) ∈ R, then for everyw′ ∈ pref(w), there isv′ ∈ pref(v) such that(w′,v′) ∈ R (proof is straightfor-
ward).SyS does not have this property, as we see below:

Lemma 5 SyS 6⊆ SUB

3One might correctly observe that an induction is insufficient for the case of infinite words. However, we can reduce this
case to the finite case as sketched above. We skip details as the construction is standard.
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Proof. Take simply a relationRwhich computes the identity on all words in{�,a}∗, which end with
a. Obviously,R∈ SyS; to see thatR /∈ SUB, just note thatR does not have the prefix property. ⊣

The underlying reason is given by the sketch above: up to someextent, the computations of a syn-
chronous subsequential transducer depend “on the future”,namely as regards the question whether� is
mapped toε or not.SUB6⊆ SyS is obvious, asSUB6⊆REG. Note moreover that in the case of a one-letter
alphabet, allSyS-relations over this alphabet are trivial.

3.3 SyS and Program Semantics: an Example

To exemplify the meaning ofSyS-relations in terms of computational power, let us give the states of
infinite automata the following interpretation: A state, being a finite string, represents a current state of a
program. This program state in turn is a vector containing values of all declared objects (this comprises
all variables, memory, registers, program counters etc.).We can thus think ofregionsof the string as

values of variables. For example, we might have
value ofx1
︷ ︸︸ ︷
a1a2a3

boundary
︷︸︸︷
a4

value ofx2
︷ ︸︸ ︷
a5...a8 .... Now assume the program

computes the following function for alli such thatxi+1 is a declared object:

f (xi+1) :=







f1(xi+1), if x1, ...,xi satisfy conditionC1

f2(xi+1) if x1, ...,xi satisfy conditionC2

. . .

where f1, f2, .. are more basic computations andC1,C2, ... are exhaustive. This kind of computations
is exactly what relations inSyS do. An intermediate sequence of� symbols can be thought of as
saying: “variables are not instantiated”, just giving themsome default value. We can thus perform
computation steps where the computation on variablexi+1 depends on the values of (and computations
performed on) earlier variables, but not on those which havehigher index. This is due to the restriction
to subsequentiality. The restriction regarding synchronicity concerns a restricted ability to insert new
variables into the existing order (it is clear that the orderof variables is of crucial importance in this
model): in one computation step, we can insert only a globally bounded number of new variables into
the existing hierarchy, but not a arbitrary number (say, after any existing variable, insert a new one into
the hierarchy). Moreover, it poses some bounds to value changes of variables.

We can thus say:SREG corresponds to computations where values of all variables are computed in
dependence of one another,PDA correspond to computations where onlyonevariable can change value
in the course of a computation step.SSyS then corresponds to the intermediate situation where there
is a linear hierarchy (i.e. sequence) of variables, where the computations of variables higher up in the
hierarchy (i.e. having lower index) have impact on computations on lower variables, but not vice-versa.
So there are some restrictions; still it is easy to see that a huge number of computations can be performed
in this way!

4 Some Formal Properties ofSyS

We now scrutinize some more properties ofSyS. We denote by⋄ the product of two infinite strings,
which is defined as follows:(a1a2....)⋄ (b1b2...) = (a1,b1)(a2,b2).... So if w∈ (Ω1)

ω , v∈ (Ω2)
ω , then

w⋄v∈ (Ω1×Ω2)
ω . We lift this operations to sets in the canonical fashion andextend it canonically to

relations, such thatR⋄R′ = {((x⋄x′),(y⋄y′)) : (x,y)∈R,(x′,y′)∈R′}. It is easy to see that we could also
define this operation for finite words, but it would require some additional definitions to “synchronize”
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them. There is one thing we have to take care of: we have used a symbol� with a special meaning in
the definition ofSyS. We define a mapf�, which is a string homomorphism defined byf�(�,�) = �,
and f�(x) = x otherwise. Again, we lift this map to sets and relations in the canonical fashion. A simple,
yet important lemma is the following:

Lemma 6 If R,R′ ∈ SyS, then f�(R⋄R′) ∈ SyS.

Proof. TakeT1 = (Q,Σ1,q0,δ1),T2 = (R,Σ2, r0,δ2). We putT3 = (Q×R, f�(Σ1×Σ2),(q0, r0),δ3),
whereδ3 is defined by:((q, r), f�(a,b), f�(a′,b′),(q′, r ′)) ∈ δ3 iff (q,a,a′,q′) ∈ δ1,(r,b,b′, r ′) ∈ δ2. This
is a standard construction for FSA, so we leave its verification to the reader.4 ⊣

Lemma 7 LetR1,R2 be classes of relations. IfR1,R2 are closed under⋄, then the class of languages
L(SR1,R2) is closed under intersection.

Proof. We can show this by construction: takeA1 := 〈Σ1,φ1,FR1〉, A2 := 〈Σ2,φ2,FR2〉. Without loss
of generality, we assume thatΣ1 = Σ2.5 We construct a new automatonA3 := 〈Σ1,〈φ1,φ2〉,(FR1 ⋄FR2)〉,
where〈φ1,φ2〉 : Σ1 → (Ω1×Ω2)

ω × (Ω1×Ω2)
ω is defined by〈φ1,φ2〉(w) = φ1(w)⋄φ2(w). It is easy to

see thatL(A3) = L(A1)∩L(A2). ⊣
It is also easy to see that in particular the classFIN of finite relations is closed under⋄. Moreover,

regardingSyS, the mapf� does not affect recognizing power, so it remains a technicaldetail we will
ignore in the sequel. Next we prove the following:

Lemma 8 Let L be a CFL. Then there is aA ∈ SSyS,FIN such that L= L(A).

Proof. We show how to encode a PDA inSyS. The argument is conceptually simple yet tedious in
full formality, so we give a rather informal explanation.

We encode stacks (and control states) as strings, and assumewe read them from bottom to top.
Moves which consist in pushing something onto the stack are unproblematic: we just have to make sure
that after reading(x,x) we have a transition(�,y), and this is sufficient if we make sure for all reachable
states that if we encounter� at some point, then only� is to follow in that component.

The problem comes with pop-moves: readingx from left to right, we cannot tell whether a certain
symbol is final inη(x). We therefore proceed as follows: a set of popping PDA-transitions {(xa,x) : x∈
Ω∗,a∈ Ω} is encoded by a set of transitions{(xab1b2...,x�c1c2...) : x∈ Ω∗ and for alli ∈ N, if bi 6=�,
thenci =� andci =� otherwise} (where� does not figure in the original stack alphabet). This relation
is clearly inSyS. Note that for all states not containing�, this preserves the property that if we encounter
� at some point, then only� is to follow in that component.

Thereby, we use� as an “absorbing symbol”, that is, a symbol which can never beeliminated from
a string, and which does not figure in any accepting state of the automatonA ∈ SSyS,FIN. We use it to
exclude all transitions which do not correspond to “well-formed” stack moves from reaching an accepting
state. This creates some additional non-determinism wrt. the PDA, but makes sure all�-free states have
been reached by legitimate PDA-moves. ⊣

These lemmas, taken together, already have a strong immediate consequence:

Theorem 9 Given Ri ∈ SyS : i ∈ I, |I |< ω , it is undecidable whether(x,y) ∈ {Ri : i ∈ I}⊕. Equivalently,
the reachability problem forSSyS is undecidable.

4A very similar construction is performed when constructingthe automaton recognizing the intersection of two regular
languages.

5We can always enlarge alphabets with a new letterσ , puttingφ(σ) = /0. Of course we have to assume /0 is in any class of
relations.
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Proof. Assume conversely the problem is decidable. Then equivalently, the problem whetherL(A) =
/0 is decidable for allA∈SSyS,FIN. Now we take two context-free languagesL1,L2, accepted by two PDA
by empty stack. We encode the two PDA intoA1,A2 ∈ SSyS,FIN. By lemma 8, we haveA3 ∈ SSyS,FIN,
such thatL(A3) = L(A1)∩L(A2). By assumption, we can decide whetherL(A3) = /0, which holds if and
only if L1∩L2 = /0. But this is well-known to be an undecidable problem for two context-free languages
- contradiction. ⊣

Corollary 10 The emptiness, universality and inclusion problems forSSyS,FIN are undecidable.

So we do have a negative result for reachability in the first place. The proof also tells us how powerful
SyS is despite its restrictions, as we can recognize any intersection of context-free languages, and so if
we allowε-transitions, we can already recognize every recursively enumerable language (it is also well-
known that by simulating two pushdowns we can easily simulate a Turing machine). However, we can
show that there is a way to approximate its decision problem in a way to be made precise.

5 Decompositions and Approximations

We define the mapsτn : n ∈ N by τn(a1a2...,b1b2...) = (an,bn). For R a relation, we putτn(R) =
{τn(w,v) : (w,v)∈R} (again, for simplicity we give the definition only for infinite words). Note thatτn is
not necessarily a homomorphism for relation composition: Put R1 = {(ab...,ba...)},R2 = {(bb...,aa...)};
thenτ1(R1)◦τ1(R2) = {(a,a)}, whereasτ1(R1◦R2) = /0. However, we have one inclusion: for alln∈N,
R,R′ ∈ {Ri : i ∈ I}⊗, τn(R◦R′)⊆ τn(R)◦ τn(R′), as is easy to see.

These notions are related to the notion of direct and subdirect decompositions, fundamental to uni-
versal algebra (see [3]). We can say a set{Ri : i ∈ I} is directly decomposable, if for all n ∈ N, τn is
a ◦-homomorphism for{Ri : i ∈ I}⊗, and in addition,∏n<ω{τn((Ri : i ∈ I)⊗} = {Ri : i ∈ I}⊗ (here,∏
refers to the operation· – the pointwise concatenation of pairs – which is extended tosets). We can say
{Ri : i ∈ I}⊗ is subdirectly decomposable, if for all n∈ N, τn is a◦-homomorphism. One can readily
check that this is sufficient for the usual conditions of (sub)direct products to hold. We also define the
related family of mapsσn : n∈ N by σn(x,y) = ∏n

i=1 τi(x,y). The main motivation for consideringSyS
is the following result:

Theorem 11 Assume〈Σ,φ〉 ∈ SSyS. Then for all n∈ N,a,b∈ Ω,x,y ∈ Ω∗, the sets{w ∈ Σ∗ : (a,b) ∈
τn(φ(w))} and{w∈ Σ∗ : (x,y) ∈ σn(φ(w))} are regular languages.

We prove this only forσ , as the two proofs are almost identical. If we have a functionf : M → N,
then forX ⊆ M, we write f [X] := { f (x) : x∈ X}.

Proof. Take an arbitrary fixedn. For x,y ∈ Ωω , we write x ∼n y, if x = zx′,y = zy′ with |z| = n.
This is obviously an equivalence relation. The notion of synchronous subsequentiality now allows for
the following argument: Ifx∼n x′, then for anyw∈ Σ∗, we have(x,y) ∈ φ(w), if and only if we have
(x′,y′) ∈ φ(w) for somey′ : y′ ∼n y. Moreover, ifx∼n x′,y∼n y′, thenσn(x,y) = σn(x′,y′).

By this, we can obtain a congruence: Defineφ∼n by φ∼n(w) = [φ(w)]∼n, that is, the set of∼n-
equivalence classes ofφ(w). It is then clear that we haveσn ◦ φ(w) = σn ◦ φ∼n(w), if we choose an
arbitrary representative for each equivalence class. Moreover, the monoidφ∼n[Σ∗] is finite, simply be-
causeΩω modulo∼n has only finitely many equivalence classes. Soφ∼n is a map fromΣ∗ into a finite
set of relations, and hence for every element, the pre-imageconsisting of the words mapped to relations
containing this element, is a regular set (this is a fundamental result of the algebraic theory of finite
automata, see [1]). Hence{w∈ Σ∗ : (x,y) ∈ σn(φ(w))} is regular. ⊣

To see howσ ,τ are connected, consider that we have
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{w∈ Σ∗ : (a1...an,b1...bn) ∈ σn(φ(w))} =
⋂

i≤n{w∈ Σ∗ : (ai ,bi) ∈ τi(φ(w))}
As regular languages are closed under intersection, we thusobtain a regular language for any finite
sequence of indices. Moreover, the emptiness, universality and inclusion problem for regular languages
are decidable, and our computation effective. We now take the following convention: givenx,y ∈ Ω∗,
we put fω(x,y) = {(xx,yy) : x,y∈ Ωω ,η(x),η(y) ∈ Ω∗}. Then the main result on approximation reads:

Corollary 12 For any〈Σ,φ〉 ∈ SSyS, (x,y) ∈ Ω∗×Ω∗, the set{w : φ(w)∩ fω(x,y) 6= /0} is a regular set
which can be effectively computed.

This means that we can approach the problem of emptiness/reachability by calculating the language
for longer and longer prefixes of the infinite pair(x,y), which yields smaller and smaller regular lan-
guages.SyS can be characterized in another very natural fashion:

Lemma 13 Let {Ri : i ∈ I} be a set of relations, such that for all i∈ I, Ri ∈ SyS. Thenσn({Ri : i ∈
I}⊕)) = (σn[{Ri : i ∈ I}])⊕.

Proof. Follows directly from the conditions of synchronicity, subsequentiality and totality. ⊣
This is in some sense the essence of synchronous subsequentiality. The converse implication of

lemma 13 is however wrong: just take any singleton set{R}, whereR◦R= /0. This satisfies the above
equation, and it is easy to findR /∈ SyS for this.

6 The Limits of Approximation

One might think that this allows foreffectiveapproximation of the reachability problem in the sense
that if (x,y) /∈ {φ(a) : a∈ Σ}⊕, then there is some finite(x,y) such that(x,y) ∈ fω(x,y) and{φ(a) : a∈
Σ}⊕∩ fω(x,y) = /0. In this case, the approximation would always succeed in the case that actually(x,y) /∈
{φ(a) : a ∈ Σ}⊕, the only problem being that we never know whether it is stillworth continuing the
approximation. So the situation would be similar to a recursive enumeration (as opposed to a terminating
decision procedure). Unfortunately, this iswrong, and we want to underline this fact to not give a
misleading impression of the power of the methods developedhere:

Theorem 14 There exists〈Σ,φ〉 ∈SSyS,(x,y), such that 1.(x,y) /∈ {φ(a) : a∈ Σ}⊕, and yet 2. for every
finite prefix(x,y) = σn(x,y), {φ(a) : a∈ Σ}⊕∩ fω(x,y) 6= /0.

Proof. Assume that the above claim is wrong, which means: if(x,y) /∈ {φ(a) : a∈ Σ}⊕, then there
is a pair of finite strings(x,y) = σn(x,y) and fω(x,y)∩{φ(a) : a∈ Σ}⊕ = /0. We show how to construct
a decision procedure for checking the reachability problemout of this fact, contradicting theorem 9.

We have a recursive enumeration of{φ(a) : a ∈ Σ}⊕. So we can by turns enumerate an element
of {φ(a) : a ∈ Σ}⊕, and compute{w : φ(w)∩ fω(x,y) 6= /0} for a growing prefix(x,y) of (x,y). By
this method, either at some point we will find(x,y) in our enumeration, or we will, for some finite
(x,y) ∈ (Ω∗)2, find that{w : φ(w)∩ fω(x,y) 6= /0}= /0, meaning that{φ(a) : a∈ Σ}⊕∩ fω(x,y) = /0. This
entails that{φ(a) : a∈ Σ}⊕ is recursive – contradiction. ⊣

This is a negative result, but keep in mind we have never promised a decision procedure, just a
method for approximations! Now we can also state more precisely what it means for us to approximate
a binary problem: if(x,y) /∈ {φ(a) : a∈ Σ}⊕, then the set of candidate strings will diminish forσn(x,y)
asn increases; so we get closer to the empty set, though it is not said we reach it after a finite number of
steps (theorem 9). Note that we can still be more precise: thereachability problem is undecidable only
if for all n∈N, |{w : φ(w)∩σn(x,y)}|= ∞ (otherwise we can easily check by brute force).
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Now there is one substantial concern which has to be addressed: could it be that approximations of
the above kind are trivial, in the sense they can always be performed in one way or another? Assume
we want to check whether(x,y) /∈ {φ(a) : a∈ Σ}⊕. Then we just take an enumeration ofΣ∗, and check
for eachw whether(x,y) ∈ φ(w). This way, we get a growing set of strings we can exclude, andin the
limit, we find a solution to our problem. There is however a substantial difference between this kind
of approximation and the method we are proposing: if(x,y) /∈ {φ(a) : a∈ Σ}⊕, the latter enumeration
methodcan never succeed, because after any finite number of steps, we will necessarily remain with an
infinite set of strings to check. So because this method comeswith no hope of success, it is completely
useless. On the other side, in our case, we know that approximation cansucceed: because each step of
approximation excludes a possibly infinite language of candidate strings. This does of course not mean
that it necessarily succeeds: then it would be a decision procedure. This is, in other words, what we
mean by an approximation to the binary problem of reachability, and this is the meaning of our results.
We try to make this more precise in the following section.

7 The Prospects of Approximation

7.1 Three Potential Applications of Theorem 11

Apart from this negative result, there are many upsides to our notion of approximation. In particular,
there are three different ways to “interpret” theorem 11, which are based on different interpretations
of states, namely as atomic entities, as encoding objects ina space with a real-valued distance, and as
vectors of values of program variables. One should keep in mind that sketching methods forSyS, they
area fortiori applicable to transition relations which can be simulated by SyS such as those of pushdown
automata and many other methods in use.

The first interpretation of the notion of approximation is based on states as discrete objects. Given
a semi-automaton〈Σ,φ〉, a relationR, we put χφ (R) := {w ∈ Σ∗ : φ(w) ∩ R 6= /0}. Given an SCA
A = 〈Σ,φ ,FR〉 ∈ SSyS,FIN, we can use the methods described here toapproximate L(A) (note that the
restriction thatFR ∈ FIN is not strictly necessary, asσn[FR] is finite anyway, but it simplifies things). We
can obviously computefω ◦σn[FR]. We then know that for any〈Σ,φ ,FR〉 ∈ SSyS,FIN, χφ ( fω ◦σn[FR]) is
a regular language which is effectively computable (a finiteunion of regular languages). Consequently,
the sequence(χφ ( fω ◦σn[FR]))n∈N is a decreasing sequence of regular languages, each containing L(A);
that is,χφ ( fω ◦σn[FR])⊆ χφ ( fω ◦σn+1[FR])⊆ L(A) for all n∈ N.

Definition 15 Given an SCAA= 〈Σ,φ ,FR〉, we define its n-approximation An = 〈Σ,φ , fω ◦σn[FR]〉.

This kind of approximation is of course of little interest ifwe consider the membership problem,
which is decidable forSSyS,FIN anyways. However, it might be very interesting as soon as we consider
problems which are undecidable forSSyS,FIN. In the prior examples, we have focussed on reachability;
emptiness is related in the obvious way stated in lemma 1. Butwe can also consider problems like
inclusion and universality. As basically all important decision problems are decidable for the regular
languages, we can obviously compute these problems for arbitrary approximationsAn. So we get the
following in a straightforward fashion:

Lemma 16 GivenA,A′ ∈ SSyS,FIN, we can decide whether L(An) = /0, L(An) = Σ∗, L(An)⊆ L(A′
n) for

arbitrary n∈N.

This is clear because all are regular languages we can effectively compute, and we approximate all
these decision problems in this sense. What we have to show isthat these approximations are arbitrarily
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precise: let(Ln)n∈N be a decreasing sequence of languages, that isLn ⊇ Ln+1. We denote bylimn→∞(Ln)
the unique languageL such that 1. for alln∈N, Ln ⊇ L, and 2. if for alln∈N, Ln ⊇ L′, thenL′ ⊆ L. This
language always exists, and can be simply defined as{w : ∀n∈ N : w∈ Ln} =

⋂

n∈N Ln. The following
lemma establishes the desired correlation:

Lemma 17 limn→∞L(An) = L(A).

Proof. ⊇ is obvious, as for alln ∈ N, L(An) ⊇ L(A), and limn→∞L(An) is the largest language
satisfying this condition.

⊆: assume(x,y) ∈ fω ◦σn[FR] for all n∈N. After some finite number of positions (sayk), all letters
in (x,y) are�, and for(x′,y′) ∈ FR the same holds (say afterk′ positions). Consequently, if the two
agree on the firstmax{k,k′} positions, they will agree on all. Hence, we will have(x,y) ∈ FR, and if for
all n ∈ N, φ(w)∩ fω ◦σn[FR] 6= /0, thenφ(w)∩FR 6= /0; consequently, ifw ∈ L(An) for all n ∈ N, then
w∈ L(A). ⊣

Note however that this limit-construction does not need to preserveany computational properties:
we can easily construct a decreasing sequence or regular languages(Ln)n∈N such thatlimn→∞Ln is not
recursively enumerable: letL ⊆ Σ∗ be a language which is not recursively enumerable, putL1 = Σ∗, and
Ln+1 = Ln−{w} for somew∈ Ln. Then for alln∈ N, Ln is a co-finite language and therefore regular,
whereaslimn→∞(Ln) = L.

We now sketch how we might use this approximation to introduce a limit value which has some
similarity to a probability, though the values involved areclearly not probabilities in a technical sense.
We let I denote the inclusion problem, such thatI (A,A′) = 1 if L(A) ⊆ L(A′), andI (A,A′) = 0
otherwise. As we have said, this allows us to encode the problem of emptiness and universality. We can
now simply define a limit for stepwise approximation as follows:

Lim(I (A,A′) = 1) = limn→∞
|{i:i≤n&I (Ai ,A

′
i)=1}|

n (provided this limit exists)

That is, the chances thatI (A,A′) has a positive answer would be defined as the limit of the cardinality
of numbers≤ n where it has a positive answer forAn,A

′
n, divided byn.

Note that it is not said that our limit gives the correct answer to the problem: take the case ofA /0,
which is an automaton〈Σ,φ , /0〉 recognizing the empty language, andA ∈ SSyS,FIN, which is such that
1. L(A) = /0, and 2. for alln ∈ N, L(An) 6= /0 (this automaton must exist, otherwise emptiness would
be decidable). Now if we considerI (A,A /0), we find that for alln ∈ N, I (An,(A /0)n) = 0, hence
Lim(I (A,A /0)) = 0, whereasI (A,A /0) = 1. So the limit does not necessarily coincide with the correct
answer to the problem!

However, in the case of universality, things work out better: let AΣ∗ be a finite automaton such that
L(AΣ∗) = Σ∗, and hence for alln∈ N, L((AΣ∗)n) = Σ∗. Let A be just any automaton inSSyS,FIN. It is
easy to see that in this case, we haveLim(I (AΣ∗ ,A)) = I (AΣ∗ ,A). This is due to the fact that in our
approach, we always approximate from the top. We can slightly generalize this concept:

Definition 18 An instance of the inclusion problemI (A,A′) is correctly approximated, if Lim(I (A,A′))
exists and Lim(I (A,A′)) = I (A,A′).

Lemma 19 Let F be a finite SCA.6 Then the problemI (F,A) is correctly approximated, whereas
I (A,F) in general is not.

Proof. The second part already follows from the counterexample above. For the first part, consider
that for somek ∈ N and for alln > k we haveL(Fn) = L(F). So if I (F,A) = 1, then for alln > k,
I (Fn,An) = 1, and soLim(I (F,A)) = 1.

6By this, we mean an SCA such thatφ [Σ] is finite (modη). This is obviously equivalent to a finite state automaton.
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Conversely, assumeLim(I (F,A)) = 1. Then ifw∈ L(F), thenw∈ L(An) for all n∈N. As L(A) =
limn→∞L(An), it follows thatw∈ L(A), soI (F,A) = 1. ⊣

Note that by this result, we havea fortiori the negative result thatI (A,A′) cannot be correctly
approximated in the general case whereA,A′ ∈ SSyS,FIN. Moreover, in this case it is not clear whether
the limit even exists. From the fact that the universality problem can be correctly approximated, it follows
that even if the limit exists, in general it is not computable. We can, however, computeLimn(I (A,A′) =

1) = |{i:i≤n&I (Ai ,A
′
i)=1}|

n for anyn. This way, we might be able to reasonably estimate the chances that
a certain instance of the inclusion problem has a certain answer, at least if the problem is correctly
approximated.

To make clear what about these results is peculiar toSyS, we should add the following: we can
provide limit constructions for approximations of reachability for any recursive class of relations, for
example by taking the limit of reachability with words of length≤ n. The difference of this approach to
the ones we sketched here is that the former are always confined to finite stringsets; we never make the
step toinfinite languages approximating the target language. This is a fundamental shortcoming, as we
can never talk about infinitary properties. On the other side, the two methods might be combined: as we
have seen, our approximation of languages is always “from the top”, proceeding to smaller languages,
whereas a concept as “reachability with words of length≤ n” always comes from the bottom.

The following two interpretations of theorem 11 are more genuine toSyS, and there is no way to
get similar results without the fundamental properties of synchronous subsequential relations. We first
provide an interpretation of states which allows for a numeric approximation. It is based on the concept
of state-strings being allocated in a space, where for each two strings we have a unique real-valued
distance. A distance function onΩ∗ is any function f : Ω∗×Ω∗ → R+

0 , such thatf (w,w) = 0 for all
w∈ Ω∗, and f (w,v) = f (v,w). A distance function measureshow closea stringw is to another stringv.

This is a very general notion; we will consider more restrictive distance functions for the set{η(w) :
w∈ Ωω}. By gcp(w,v) we denote thegreatest common prefixof w,v, that is,gcp(aw,av) = a(gcp(w,v)),
andgcp(aw,bv) = ε if a 6= b. A normal distance function on Ω∗ is defined as follows:

1. there is a mapval : Ω+ → R, such that if�n ∈ pref(w), �n /∈ pref(v), thenval(w)> val(v).

2. For stringsw,w′,v, if |gcp(w,v)|> |gcp(w′,v)|, thendist(w,v)< dist(w′,v) – that is, the longer the
common prefix, the smaller the distance.

3. If v= wx, thendist(w,v) = val(x).

Note that 3. implies thatval(ε) = 0 anddist(ε ,w) = val(w). Therefore condition 1. only applies to
Ω+. An easy example of such a measure is if we let words representreal numbers in[0,1] (in |Ω|-ary
representation). We simply specify a linear order< on Ω. Thenval is just the map from the representa-
tion to the number it represents, anddist(x,y) is defined by|val(x)−val(y)|. Note that our definition is
independent on the order< in Ω! Given a normal distance measuredist, we call aconvex regionof Ω∗

a set of wordsM, such thatM = {w : dist(v,w) ≤ x for somev∈ Ω∗, x∈ R}; we also sayM hascenter
v. The following properties are easy to see:

1. For every normal distance functiondist, n∈ N, w∈ Ωω , η [ fω ◦σn(w)] forms a convex region in
the space defined bydist. We call such a space anormal subspaceof Ω∗.

2. Given two normal subspacesX,Y ⊆ Ω∗ and〈Σ,φ〉 ∈ SSyS, χφ (X×Y) is a regular language. This
follows from theorem 11, which is basically a statement on normal subspaces.

3. For any twox,y ∈ Ω∗, 〈Σ,φ〉 ∈ SSyS, we can effectively compute the languageχφ (X ×Y) for
arbitrarily small normal subspacesX,Y with centerx andy, respectively; moreover, this language
is regular.
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So there is an interpretation where our notion of approximation is very useful: if we consider a string
as representing a unique numeric value, wecannotdetermine whether the system can reach valuey from
valuex; but we can determine, for anyε > 0, whether we can reach the interval[y− ε ,y+ ε ] from the
interval [x− ε ,x+ ε ]. But of course, approximation works in scenarios which are much more general
than the interpretation of strings as real numbers. What is particularly interesting about this approach is
that it provides a numeric approximation in a purely symbolic setting.

There is a third interpretation which is based on the encoding of program semantics as strings. As
we have said, in order to be able to model a program in terms of relations inSyS, we need a linear
hierarchy of variables which can be thought of in terms of importance: because influence goes only in
one direction, the more to the left a variable is encoded in the string, the more important it is. Now
the approximation means: we reach the desired configurationat least as regards then-most important
parameters, for n→ ∞. Moreover, we can effectively compute the set of sequences of computation steps
which yield this result.

7.2 Complexity Issues

There is one most fundamental problem regarding the complexity of our approximation techniques,
which is the following: given a finite setR ⊆ SyS of relations, what is the complexity for computing
σn[R⊕]? On the positive side, we know from lemma 13 thatσn[R]⊕ = (σn[R])⊕; so the problem is surely
computable, asσn[R] is a finite set of finite relations.σn[R] is rather easily computed in some way or
other; the difficult thing is to compute the composition-closure. Asσn(R) is always a finite relation,
this will be computable in a finite number of steps. The problem is to find the smallestn such that
⋃

m≤n{Ri : i ∈ I}m = {Ri : i ∈ I}⊕. The bad thing is that thisn depends on the size ofM, whereM is
the underlying set from which tuple components in the relation are taken. For example, consider the
relationSk = {(n,n+1) : n∈ N,n< k} for somek ∈ N. This is a finite relation; still to get{Sk}

⊕, we
need no less thank iterated compositions. In our case, the underlying set isΩn for some alphabetΩ, and
it is easy to see that this grows exponentially by factor|Ω| in terms ofn. So assume for allR∈ R, we
haveR⊆ (Ω×Ω)∗; then in the worst case, in order to computeσn[R]⊕ we need at least|Ω|n computation
steps. Note that this is only the most fundamental of all problems, which is necessary in order to compute
for exampleχφ ( fω ◦σn[FR]) etc. This is where the notions of direct and subdirect product become in-
teresting, as for relations relations being (sub)directlydecomposable, the approximation is much easier.
This is however beyond our current scope.

The fact that computing approximations is exponential in terms ofn is discouraging, so our prelim-
inary results may not be fully satisfying. Still, in practical application many problems are not as hard
as in theory (which always takes the worst case). In the theory of infinite automata, there is a necessary
trade-off between expressiveness on the one hand and decidability issues on the other. Our notion of
SyS relations and results on approximation, other than exploring the space of possibilities, might serve
to establish some reasonable position in between the two.

8 Conclusion

In this paper, we have introduced the classSyS of synchronous subsequential relations and investigated
its properties for the theory of infinite automata.SyS covers many possible models of computation,
such as simple or embedded stacks (as in [13]) and many more. The underlying intuition is that there
is a linear hierarchy of program variables such that computations performed on higher variables affect
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computations on lower variables, but not vice versa. Thoughautomata with primitive transitions relations
in SyS have an undecidable reachability (and emptiness, universality and inclusion) problem, there is a
way to approximate the problem which does not seem to work formore expressive classes such as the
regular or subsequential relations, as it presupposes botha 1-1 correspondence of input- and output-
letters, and independence of computations of later computation steps. The method in itself seems to be
of some interest and is not necessarily bound toSyS (though it requires some fundamental properties
of SyS), so one might further investigate on it. We have given a sketch of how one might compute
the chances that an instance of a decision problem has a certain answer, and how the problem can be
approximated in the sense of numeric distances and the hierarchy of program variables. Finally, the
methods presented here are based on (algebraic) decompositions of relation monoids. There seems to be
rather little work in this vein, so we hope the application of(relation-)algebraic methods to the theory of
infinite automata, to which we have laid some fundamentals inthis paper, might open the road to further
interesting results.
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