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We study the data complexity of model-checking for logics with team semantics. For dependence
and independence logic, we completely characterize the tractability/intractability frontier of data
complexity of both quantifier-free and quantified formulas.For inclusion logic formulas, we reduce
the model-checking problem to the satisfiability problem ofso-calledDual-Horn propositional for-
mulas. Via this reduction, we give an alternative proof for the recent result showing that the data
complexity of inclusion logic is in PTIME.

1 Introduction

In this article we study the data complexity of model-checking of dependence, independence, and inclu-
sion logic formulas. Independence and inclusion logic [10,4] are variants of dependence logic [17] that
extends first-order logic by dependence atoms of the form=(x1, . . . ,xn) expressing that the value ofxn is
functionally determined by the values of the variablesx1, . . . ,xn−1. In independence and inclusion logic
dependence atoms are replaced by independence and inclusion atomsy ⊥x z andx ⊆ y, respectively.
The meaning of the independence atom is that, with respect toany fixed value ofx, the variablesy are
independent of the variablesz, whereas the inclusion atom expresses that all the values ofx appear also
as values fory.

Dependence logic is a new framework for formalizing and studying various notions of dependence
and independence pervasive in many areas of science. The novelty of dependence logic is in itsteam
semanticsin which formulas are interpreted using sets of assignments(with a common finite domain
{x1, . . . ,xn} of variables) instead of single assignments as in first-order logic. Reflecting this, dependence
logic has higher expressive power than classical logics used for these purposes previously. Dependence,
inclusion, and independence atoms are intimately connected to the corresponding functional, inclusion,
and multivalued dependencies studied in database theory, see, e.g., [11]. Interestingly, independence
atoms can also be viewed as a qualitative analogue of the notion of conditional independence in statistics,
see [7]. Furthermore, a variant of dependence logic is in theheart ofInquisitive Semanticswhich is a
novel approach in linguistics that analyzes information exchange through communication, see [1].

Dependence logic and its variants can be used to formalize and study dependence and independence
notions in various areas. For example, in the foundations ofquantum mechanics, there are a range
of notions of independence playing a central role in celebrated No-Go results such as Bell’s theorem.
Abramsky and Väänänen have recently showed that, under arelational view on these results, some of
these No-Go results can be logically formalized and syntactically derived using the axioms of indepen-
dence and dependence atoms. For another application of teamsemantics in quantum information theory,
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see [13]. Similarly, in the foundations of social choice theory, there are results such as Arrow’s Theorem
which can also be formalized in the team semantics setting.

For the applications it is important to understand the complexity theoretic aspects of dependence logic
and its variants. During the past few years, these aspects have been addressed in several studies. We will
next briefly discuss some previous work. The data complexityof inclusion logic is sensitive to the choice
between the two main variants of team semantics: under the so-called lax semantics it is equivalent
to positive greatest fixed point logic (GFP+) and captures PTIME over finite (ordered) structures [6].
On the other hand, under the strict semantics, inclusion logic is equivalent to ESO and hence captures
NP [5]. The question whether there is a natural fragment of dependence logic capturing PTIME was
recently considered in [3] and a fragment D∗-Horn satisfying D∗-Horn= SO∃-Horn= PTIME over
finite successor structures was identified.

In [2] the fragment of dependence logic allowing only sentences in which dependence atoms of arity
at mostk may appear (atoms=(x1, . . . ,xn) satisfyingn ≤ k+ 1) was shown to correspond to thek-ary
fragment ESOf (k-ary) of ESO in which second-order quantification is restricted toat mostk-ary func-
tions and relations. Also, the fragment D(k∀) in which at mostk variables are allowed to be universally
quantified was related to a fragment ESOf (k∀) of ESO consisting of Skolem normal form sentences
with at mostk universal first-order quantifiers. Similar results have been obtained for independence and
inclusion logic (for the strict semantics) in [5, 12].

The combined complexity of the model-checking problem of dependence logic, and many of its
variants, was recently shown to be NEXPTIME-complete [9]. On the other hand, the satisfiability prob-
lem for the two variable fragment of dependence logic was shown to be NEXPTIME-complete in [15].
Recently, this result has been generalized to cover many of the variants of dependence logic [16].

The starting point for the present work are the following results of [14] showing that the non-classical
interpretation of disjunction in team semantics makes the model-checking of certain quantifier-fee for-
mulas very complicated. Defineφ1 andφ2 as follows:

1. φ1 is the formula=(x,y)∨=(u,v), and

2. φ2 is the formula=(x,y)∨=(u,v)∨=(u,v).

Surprisingly, the data complexity of the model-checking problem ofφ1 andφ2 is already NL-complete
and NP-complete, respectively. In [14] it was also shown that model-checking forϕ ∨ψ whereϕ and
ψ are 2-coherentquantifier-free formulas of D is always in NL. A formulaϕ is calledk-coherent if,
for all A andX, A |=X φ , if and only if, A |=Y φ for all Y ⊆ X such that|Y| = k. Note that the left-to-
right implication is always true due to the downwards closure property of dependence logic formulas.
The downwards closure property also implies that, for dependence logic formulas, the strict and the lax
semantics are equivalent. For independence and inclusion logic formulas this is not the case.

In this article our goal is to give as complete picture as possible of the tractability frontier of data
complexity of model-checking of formulas of dependence, independence, and inclusion logic under the
lax team semantics. In order to state our results, we define a new syntactic measure called the disjunction-
width d∨(ϕ) of a formulaϕ . Our results show that, for quantifier-free formulasϕ of dependence logic,
the data complexity of model-checking is in NL ifd∨(ϕ) ≤ 2. Surprisingly, for independence logic
the case of quantifier-free formulas turns out to be more fine grained. We give a complete charac-
terization also in this case and, in particular, exhibit a quantifier-free formula withd∨(ϕ) ≤ 2 whose
data-complexity is NP-complete and a seemingly maximal fragment in NL. For quantified formulas, the
complexity is shown to be NP-complete already with simple formulas constructed in terms of existential
quantification and conjunction in the empty non-logical vocabulary.
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For inclusion logic, we show that model-checking can be reduced to the satisfiability problem of
dual-Horn propositional formulas. While interesting in its own right, this also provides an alternative
proof of the recent result of [6] showing that the data complexity of inclusion logic is in PTIME, and is
also analogous to the classical result of Grädel on certainHorn fragments of second-order logic [8].

2 Preliminaries

In this section we briefly discuss the basic definitions and results needed in this article.

Definition 1. Let A be a structure with domainA, andV = {x1, . . . ,xk} be a finite (possibly empty) set
of variables.

• A team Xof A with domain Dom(X) =V is a finite set of assignmentss: V → A.

• For a tuplex= (x1, . . . ,xn), wherexi ∈V, X(x) := {s(x) : s∈ X} is then-ary relation ofA, where
s(x) := (s(x1), . . . ,s(xn)).

• ForW ⊆V, X ↾W denotes the team obtained by restricting all assignments ofX toW.

• The set of free variables of a formulaϕ is defined as in first-order logic and is denoted by Fr(φ).

We are now ready to define team semantics. As now customary, wewill restrict attention to formulas
in negation normal form, and use the Lax semantics introduced in [4] that differs slightly from the
semantics defined in [17]. BelowA |=s α refers to the satisfaction in first-order logic, ands(m/x) is the
assignment such thats(m/x)(x) = m, ands(m/x)(y) = s(y) for y 6= x. The power set of a setA is denoted
by P(A).

Definition 2. Let A be a structure,X be a team ofA, andϕ be a first-order formula such that Fr(ϕ) ⊆
Dom(X).

lit: For a first-order literalα , A |=X α if and only if, for all s∈ X, A |=s α .

∨: A |=X ψ ∨θ if and only if, there areY andZ such thatY∪Z = X, A |=Y ψ andA |=Z θ .

∧: A |=X ψ ∧θ if and only if,A |=X ψ andA |=X θ .

∃: A |=X ∃xψ if and only if, there exists a functionF : X → P(A)\{ /0} such thatA |=X(F/x) ψ , where
X(F/x) = {s(m/x) : s∈ X,m∈ F(s)}.

∀: A |=X ∀xψ if and only if,A |=X(A/x) ψ , whereX(A/x) = {s(m/x) : s∈ X,m∈ A}.

A sentenceφ is true in A (abbreviatedA |= φ ) if A |={ /0} φ . Sentencesφ andφ ′ areequivalent, φ ≡ φ ′,
if for all modelsA, A |= φ ⇔ A |= φ ′.

First-order formulas satisfy what is known as theFlatnessproperty:A |=X φ , if and only if,A |=s φ
for all s∈ X. Next we will give the semantic clauses for the new dependency atoms:

Definition 3. • Let x be a tuple of variables and lety be another variable. Then=(x,y) is adepen-
dence atom, with the semantic rule

A |=X =(x,y) if and only if for all s,s′ ∈ X, if s(x) = s′(x), thens(y) = s′(y);

• Let x, y, and z be tuples of variables (not necessarily of the same length).Then x ⊥y z is a
conditional independence atom, with the semantic rule

A |=X x ⊥y z if and only if for all s,s′ ∈ X such thats(y) = s′(y), there exists as′′ ∈ X such that
s′′(xyz) = s(xy)s′(z).
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Furthermore, whenz is empty, we writex⊥y as a shorthand forx⊥zy, and call it apure indepen-
dence atom;

• Let x andy be two tuples of variables of the same length. Thenx⊆ y is an inclusion atom, with
the semantic rule

A |=X x⊆ y if and only if for all s∈ X there exists as′ ∈ X such thats′(y) = s(x).

The formulas of dependence logic, D, are obtained by extending the syntax of FO by dependence
atoms. The semantics of D-formulas is obtained by extendingDefinition 2 by the semantic rule defined
above for dependence atoms. Independence logic, FO(⊥c), and inclusion logic, FO(⊆), are defined
analogously using independence and inclusion atoms, respectively.

It is easy to see that the flatness property is lost immediately when FO is extended by any of the
above dependency atoms. On the other hand, it is straightforward to check that all D-formulas satisfy
the following strongDownwards Closureproperty: ifA |=X φ andY ⊆ X, thenA |=Y φ . Another basic
property shared by all of the above logics is calledLocality: A |=X φ , if and only if,A |=X↾Fr(φ) φ .

In this article we study the data complexity of model-checking of dependence, independence, and
inclusion logic formulas. In other words, for a fixed formulaϕ of one of the aforementioned logics, we
study the complexity of the following model-checking problem: given a modelA and a teamX, decide
whetherA |=X φ .

We assume that the reader is familiar with the basics of complexity theory.

3 Dependence and independence logics

In this section we consider the complexity of model-checking for quantifier-free and quantified formulas
of dependence and independence logic.

3.1 The case of quantifier-free formulas

In this section we consider the complexity of model-checking for quantifier-free formulas of dependence
and independence logic. For dependence logic the problem has already been essentially settled in [14].
The following theorems delineate a clear barrier between tractability and intractability for quantifier-free
dependence logic formulas.

Theorem 4 ([14]). The model checking problem for formula=(x,y)∨=(z,v) is NL-complete. More
generally, the model-checking forϕ ∨ψ whereϕ andψ are 2-coherent quantifier-free formulas ofD is
always inNL.

When two disjunctions can be used, the model checking problem becomes intractable as shown by
the following results.

Theorem 5([14]). The model checking problem for formula=(x,y)∨=(z,v)∨=(z,v) is NP-complete.

In order to give a syntactic analogue of Theorem 4, we define next the disjunction-width of a formula.

Definition 6. Let σ be a relational signature. The disjunction-width of aσ -formulaϕ , denotedd∨(ϕ),
is defined as follows:

d∨(ϕ) =























1 if ϕ is y⊥x zor=(x,y) or x⊆ y
0 if ϕ is R(x) or¬R(x), for R∈ σ ∪{=}
max(d∨(ϕ1),d∨(ϕ2)) if ϕ is ϕ1∧ϕ2

d∨(ϕ1)+d∨(ϕ2) if ϕ is ϕ1∨ϕ2

d∨(ϕ1) if ϕ is ∃xϕ1 or ∀ϕ1.
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The next theorem is a syntactically defined analogue of Theorem 4.

Proposition 7. The data complexity of model-checking of quantifier-freeD-formulasφ with d∨(φ) ≤ 2
is in NL.

Proof. We will first show that a formulaφ with d∨(φ) = 1 is 2-coherent. This follows by induction using
the following facts [14]:

• dependence atoms are 2-coherent, and first-order formulas are 1-coherent,

• if ψ is k-coherent, thenψ ∨φ is alsok-coherent assumingφ is first-order,

• if ψ is k-coherent andφ is k≤ j-coherent, thenψ ∧φ is j-coherent.

It is also straightforward to check that the data complexityof a formulaφ with d∨(φ) = 1 is in Logspace
(the formulaφ can be expressed in FO assuming the teamX with domainx = Fr(φ) is represented by
then-ary relationX(x)). We will complete the proof using induction onϕ with d∨(φ) = 2. Suppose that
ϕ = ψ ∨ φ , whered∨(ψ) = d∨(φ) = 1. Then the claim follows by Theorem 4. The caseϕ = ψ ∧ φ is
also clear. Suppose finally thatϕ = ψ ∨φ , whereφ is first-order. Note that by downward closure

A |=X ϕ ⇔ A |=X′ ψ ,

whereX′ = {s∈ X | A 6|=s φ}. Now sinceX′ can be computed in Logspace, the model-checking problem
of φ can be decided in NL by the induction assumption forψ .

In this section we examine potential analogues of Theorems 4and 5 for independence logic. It is
well-known that the dependence atom=(x,y) is logically equivalent to the independence atomy ⊥x y.
Hence, the following is immediate from Theorem 5 [14].

Corollary 8. The model checking problem for formula

y⊥x y∨v⊥z v∨v⊥z v

is NP-complete.

For independence logic, the situation is not as clear, in particular concerning tractability. In the
following we will exhibit a fragment of independence logic whose data complexity is in NL and which
is in some sense the maximal such fragment.

Definition 9. The Boolean closure of an independence atom by first-order formulas, denotedBC(⊥,FO),
is defined as follows:

• Any independence atomx⊥y z is in BC(⊥,FO).

• If ϕ ∈ BC(⊥,FO), then for any formulaφ ∈ FO,ϕ ∧φ andϕ ∨φ are inBC(⊥,FO).

Let ϕ ∈ BC(⊥,FO). Up to permutation of disjunction and conjunction,ϕ can be put into the follow-
ing normalized form:

ϕ ≡ ((. . . ((x ⊥z y∧φ1)∨ψ1)∧ . . .)∧φk)∨ψk

Let A be any structure,C+ =
⋂k

i=1 φi(A) andC− =
⋃k

i=1 ψi(A), where,φi(A) is the set of assign-
mentss: Fr(ϕ)→ A such thatA |=s φi . We can restate the fundamental property for satisfiabilityof an
independence atom in a team (and a structure) to tackle the case ofBC(⊥,FO) formulas. It holds that,
for anyϕ ∈ BC(⊥,FO), any teamX and structureA, A |=X ϕ if and only if:
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• for all s∈ X: eithers∈ [((..(ψ1∧φ2)∨ . . .)∧φk)∨ψk](A) or s∈ C
+, s 6∈ C

− and

• for all s1,s2 ∈ X such thats1,s2 ∈ C
+, s1,s2 6∈ C

−, ands1(z) = s2(z), there existss3 ∈ X such that:
s3(z) = s1(z),s3(x) = s1(x) ands3(y) = s2(y).

The first item is true by exhaustive case distinction. The second one comes from the fact that if a
tuplessatisfiess∈ C

+ ands 6∈ C
− then it is forced to be in the sub-team satisfyingx⊥z y.

In the rest of the paper, assignmentss1,s2 as in the second item will be saidcompatiblefor formula
ϕ and teamX ands3 is called awitnessof s1,s2 (for formulaϕ).

Since checking whether a tuples belongs to the query resultφ(A) of a first-order formula can be
done in logarithmic space, deciding whetherA |=X ϕ is in Logspace. The following tractability result
can be obtained.

Theorem 10. The data complexity of the model checking problem for formulas of the formϕ1∨ϕ2 with
ϕ1,ϕ2 ∈ BC(⊥,FO) is in NL.

Proof. The proof is given by a Logspace reduction to the satisfiability problem of 2-CNF formulas which
is well-known to be in NL. Given a structureA and a teamX we construct a 2-CNF propositional formula
Φ such that:

A |=X ϕ1∨ϕ2 ⇐⇒ Φ is satisfiable. (1)

Recall that if a teamX is such thatA |=X ϕ1∨ϕ2 then, there existsY,Z ⊆ X such thatY∪Z = X
andA |=Y ϕ1 andA |=Z ϕ2. For each assignments∈ X, we introduce two Boolean variablesY[s] and
Z[s]. Our Boolean formulaΦ will be defined below with these 2|X| variables the set of which is denoted
by Var(Φ). It will express that the set of assignments must split intoY andZ but also make sure that
incompatible assignments do not appear in the same subteam.

For each pairsi ,sj that are incompatible forϕ1 on teamX, one adds the 2-clause:¬Y[si ]∨¬Y[sj ].
The conjunction of these clauses is denoted byCY. Similarly, for each pairsi ,sj that are incompatible for
ϕ2 on teamX, one adds the clause:¬Z[si]∨¬Z[sj ] and callCZ the conjunction of these clauses.

Finally, the construction ofϕ is completed by adding the following conjunction:

C ≡
∧

s∈X

Y[s]∨Z[s].

It is not hard to see, due to the remark on compatible pairs, that the formulaΦ ≡C∧CY ∧CZ can be
built in Logspace. It remains to show that the equivalence (1) holds.

Assume that the left-hand side of the equivalence holds. Then, there existsY,Z⊆X such thatY∪Z=
X, A |=Y ϕ1 andA |=Z ϕ2. We construct a propositional assignmentI : Var(Φ)→ {0,1} as follows. For
all s∈Y, we setI(Y[s]) = 1 and for alls∈ Z, we set similarlyI(Z[s]) = 1.

Let us consider a clause¬Y[si ]∨¬Y[sj ] for incompatiblesi ,sj . Then,I(Y[si ]) = 0 or I(Y[sj ]) = 0
must hold. For a contradiction, suppose thatI(Y[si ]) = I(Y[sj ]) = 1. Then sinceA |=Y ϕ1 holds, by
constructionsi andsj must be compatible forϕ1. Hence we get a contradiction and may conclude thatI
satisfies¬Y[si ]∨¬Y[sj ]. The situation is similar for each clause¬Z[si]∨¬Z[sj]. Finally sinceX =Y∪Z,
I also satisfiesC.

Let us then assume thatΦ is satisfiable, and letI : Var(Φ)→{0,1} be a satisfying assignment forΦ.
SinceI |=C, we get thatI(Y[s]) = 1 or I(Z[s]) = 1 for all s∈ X. Let

XY = {s : I(Y[s]) = 1} andXZ = {s : I(Z[s]) = 1}.

Note thatXY ∪XZ = X. We will next show how the setsXY andXZ can be extended to setsY andZ
such thatA |=Y ϕ1 andA |=Z ϕ2. Note first that, sinceI satisfiesΦ, for all s1,s2 ∈ XY, Φ cannot have
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a clause of the form¬Y[s1]∨¬Y[s2], and hences1,s2 are compatible forϕ1. Analogously we see that
all s1,s2 ∈ XZ are compatible forϕ2. We will define the setsY andZ incrementally by first initializing
them toXY andXZ, respectively. Note that even ifXY∪XZ = X, no decision has been made regarding the
membership of assignmentss in Y (resp.Z) such thatI(Y[s]) = 0 (resp.I(Z[s]) = 0). Let us first consider
Y. Until no changes occur, we consider all pairss1,s2 ∈Y such thats1(z) = s2(z) and add intoY (if they
are not already in) all tupless3 ∈ X such thats3 is a witness for the pair(s1,s2) regarding propertyϕ1.
Since by constructions1,s2 are compatible then at least one suchs3 exists (but may be out ofY till now).
We prove below that this strategy is safe. First of all, it is easily seen that any pair among{s1,s2,s3} is
compatible forϕ1. Therefore, it remains to show that the new assignmentss3 are compatible with every
other elements added toY so far. Suppose this is not the case and that there existss∈Y \{s1,s2} such
thats3 ands are incompatible forϕ1. In passing one must haves3(z) = s(z). Sinces1,s2, ands are inY
they are all pairwise compatible. Hence, there existst1 such thatt1 is a witness for the pair(s1,s).

Then,t1(x) = s1(x) = s3(x), andt1(y) = s(y). Consequently,t1 is also a witness fors3,s hence,s3

ands are compatible which is a contradiction. Therefore, the assignments3 can be safely added toY.
The setZ is defined analogously. By the construction, it holds thatA |=Y ϕ1 andA |=Z ϕ2.

We will next show that a slight relaxation on the form of the input formula immediately yields
intractability of model-checking.

Theorem 11. The exists a formulaϕ1∨ϕ2 such thatϕ1 ∈ BC(⊥,FO) andϕ2 is the conjunction of two
independence atoms whose model-checking problem isNP-complete.

Proof. Define ϕ1 ≡ w 6= 1∧ x ⊥t y, ϕ2 ≡ c1 ⊥c c2 ∧ x ⊥z y. We will reduce 3-SAT to the model-
checking problem ofϕ1 ∨ ϕ2. Let Φ =

∧n
i=1Ci be a 3-SAT instance. EachCi = pi1 ∨ pi2 ∨ pi3 with

pi1, pi2, pi3 ∈ {v1, . . . ,vm,¬v1, . . . ,¬vm}. To this instance we associate a universeA and a teamX on
the variablesw,c,c1,c2,z,x,y, t. The structureA is composed ofm new elementsa1, . . . ,am and of
{v1, . . . ,vm,¬v1, . . . ,¬vm} ∪ {0,1}. For each clauseCi we add inX the 6 assignments displayed on
the left below, and for each variablevi , we add toX the 2 assignments on the right:

w c c1 c2 z x y t

0 i 1 1 i1 pi1 pi1 a6i+1

0 i 1 1 i2 pi2 pi2 a6i+2

0 i 1 1 i3 pi3 pi3 a6i+3

1 i 0 0 0 0 0 a6i+4

1 i 1 0 0 0 0 a6i+4

1 i 0 1 0 0 0 a6i+4

w c c1 c2 z x y t

0 0 0 0 i vi vi a6(n+1)+i

0 0 0 0 i ¬vi ¬vi a6(n+1)+i

We will next show thatΦ is satisfiable if and only ifA |=X φ .

⇒ Suppose there is an assignmentI : {v1, . . . ,vm} → {0,1} that evaluatesΦ to true, i.e., at least one
literal in each clause is evaluated to 1. We have to splitX into two sub-teamsX = Y ∪Z such
thatA |=Y (w 6= 1∧x⊥t y) andA |=Z (c1 ⊥c c2∧x⊥z y). We must put every assignments∈ X
such thats(w) = 1 in Z. There are exactly three such assignments per clause. We putin Z every
assignments such thats(x) = vi if I(vi) = 1, ands(x) = ¬vi if I(vi) = 0. The other assignments
are put intoY.

For each clauseCi , one literal pi1, pi2, pi3 is assigned to 1 byI . Then there is at least one as-
signments(c,c1,c2) = (i,1,1) in Z. In Z, the assignments mappingc to i map (c,c1,c2) to
(i,1,1),(i,1,0),(i,0,1) or (i,0,0). ThusA |=Z c1 ⊥c c2.
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If s1,s2 ∈ Z are such thats1(z) = s2(z) = i, thens1(x) (analogouslys2(x)) is vi if I(vi) = 1, ¬vi

otherwise. Therefore,s1(x) = s2(x) = s1(y) = s2(y), and henceA |=Z x⊥z y holds.

As for Y, it is immediate thatA |=Y w 6= 1. The only pair of assignmentss1,s2 in X such that
s1(t) = s2(t) are(0,0,0,0, i,vi ,vi ,ak) and(0,0,0,0, i,¬vi ,¬vi ,ak). Only one of them is inY (s1 if
I(vi) = 1, s2 otherwise). ThusA |=Y x⊥t y.

⇐ Suppose then thatX =Y∪Z such thatA |=Y (w 6= 1∧x⊥t y) andA |=Z (c1 ⊥c c2∧x⊥z y). Define
an assignmentI of the variables ofΦ by: I(vi) = 1 if st

i := (0,0,0,0, i,vi ,vi ,ak) is in Z, I(vi) = 0
if sf

i := (0,0,0,0, i,¬vi ,¬vi ,ak) is in Z. SinceA |=Z x⊥z y, sf
i (z) = st

i (z) and because there is no
s′ ∈ X such thats′(x) = sf

i (x),s
′(y) = st

i (y) ands′(z) = sf
i (z), for eachi at most one ofsf

i , st
i can be

in Z. Similarly, becauseA |=Y x⊥t y, only one of them can be inY. ThusI is indeed a function.

SinceA |=Z x⊥z y and there is no assignment inX such that(x,y) 7→ (vi ,¬vi), every pairs1,s2 ∈ Z
such thats1(z) = s2(z) = i must have the same value ofx andy. Every assignment representing
a clause inZ respects the choice ofI . Furthermore, sinceA |=Z c1 ⊥c c2 and (w,c,c1,c2) 7→
(1, i,0,0),(1, i,1,0),(1, i,0,1) are inZ, (1, i,1,1) must be inZ, i.e., at least one assignment per
clause is inZ. By the above we may conclude thatI satisfiesΦ: at least one literal per clause is
evaluate to 1 byI .

Hardness result of Proposition 8 concerns conditional independence atoms. We prove an analog for
the case of pure independence below.

Theorem 12. The model checking problem isNP-complete for formulaφ of the form

φ ≡ (x⊥ y)∨ (x⊥ y)∨ (x⊥ y)∨x 6= y

Proof. Let G= (VG,EG) be a graph,A=VG be a first order structure of the empty signature, andX be the
teamX = {(v,v) |v ∈VG}∪{(v1,v2),(v2,v1) |(v1,v2) ∈ EG} (we write an assignments with s(x) = v1

ands(y) = v2 succinctly as(v1,v2)). We are going to show thatG has a 3-clique cover if and only if
A |=X φ .

⇒ Suppose thatG has a 3-clique cover, i.e., there existsC1,C2,C3 three cliques such thatVG =VC1 ∪
VC2 ∪VC3. We have to proveA |=X φ . For i ∈ {1,2,3}, let

Xi = {(v,v) |v∈Ci }∪{(v1,v2),(v2,v1) |v1,v2 ∈Ci }

andX4 = X \ (X1∪X2∪X3).

Because it is a vertex cover, every assignment of the form(v,v) is contained inX1∪X2∪X3 and
not in X4, i.e.A |=X4 x 6= y.

Let i ∈ {1,2,3} ands,s′ ∈ Xi be two assignments. Ifs(x,y) = (v,v) ands′(x,y) = (v′,v′), then
v,v′ ∈Ci and there exists two assignmentss1,s2 in Xi such thats1(x,y) = (v,v′) ands2(x,y) = (v′,v)
by construction. Similarly ifs(x,y) = (v,v) ands′(x,y) = (v1,v2), there exists inXi the assignments
(v,v2) and (v1,v) (even if v1 = v or v2 = v). Finally, if s(x,y) = (v1,v2) ands′(x,y) = (v′1,v

′
2),

the assignments(v1,v1),(v2,v2),(v′1,v
′
1),(v

′
2,v

′
2) are inXi and so are(v1,v′2),(v

′
1,v2). The above

implies thatA |=Xi x⊥ y.
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⇐ Suppose thatA |=X (x⊥ y)∨ (x⊥ y)∨ (x⊥ y)∨x 6= y, thenX = X1∪X2∪X3∪X4 such thatA |=Xi

x⊥ y for i ∈ {1,2,3} andA |=X4 x 6= y. For i ∈ {1,2,3} let Ci be the graph whose vertices are
{v|(v,v) ∈ Xi } and edges are

{(v1,v2) |(v1,v2) ∈ Xi and(v2,v1) ∈ Xi }.

Note that someCi can be empty but they form a vertex cover ofG as no assignment(v,v) is in
X4. If v,v′ ∈ Ci then (v,v) and (v′,v′) are inXi. By independence,(v,v′) and (v′,v) are also in
Xi. Therefore the edge(v,v′) is in Ci: Ci is a clique. Therefore,G is covered by the three disjoint
cliquesC′

1 =C1, C′
2 =C2/C1 andC′

3 =C3/(C1∪C2).

3.2 The case of quantified formulas

In this section we show that existential quantification evenwithout disjunction makes the model checking
problem hard for both dependence and independence logic.
Theorem 13. There is a formulaϕ of dependence logic of empty non-logical vocabulary build with ∃
and∧ whose model-checking problem isNP-complete.

Proof. Define the formulaφ as follows:

φ ≡ ∃x=(x, r1, r2,e,m)∧=(v1,v2,x) .

We will reduce the problem of determining whether a graphG with n2 vertices isn-colorable to the
model-checking problem ofφ . This graph problem is easily seen to be NP-complete.

Let G be a graph withn2 verticesVG = {α0, . . . ,αn2−1}, A= {0, . . . ,n−1} a first order structure of
the empty signature andX = {sj

i | i ∈ {0, . . . ,n2−1}, 0≤ j ≤ i} be a team such that :

• sj
i (v1) = ⌊i/n⌋ andsj

i (v2) = i modn. In other words,sj
i (v1,v2) is the decomposition ofi in base

n.

• sj
i (r1) = ⌊ j/n⌋ andsj

i (r2) = j modn. In other words,sj
i (r1, r2) is the decomposition ofj in base

n.

• sj
i (m) = 0 if i 6= j andsi

i(m) = 1.

• si
i′(e) = 1, if i′ = i, or if there is an edge betweenαi andαi′ with i′ > i. Otherwisesi

i′(e) = 0.

For example, forn= 2 andEG = {(0,1);(1,2);(0,2); (2,3)}, we obtain the following team on the
universeA= {0,1}:

x v1 v2 r1 r2 m e
0 0 0 0 1 1
0 1 0 0 0 1
0 1 0 1 1 1
1 0 0 0 0 1
1 0 0 1 0 1
1 0 1 0 1 1
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 1
1 1 1 1 1 1
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G is n-colourable iffA |=X φ

We are going to demonstrate thatA |=X φ if and only if G is n-colourable.
First the left to right implication. SinceA |=X φ there exists a mappingF : X → P(A) \ { /0} such

thatA |=X(F/x) =(x, r1, r2,e,m)∧=(v1,v2,x). By downwards closure, we may assume without loss of
generality thatF(s) is a singleton for alls∈X. Since=(v1,v2,x) holds,F induces a mappingF ′ : VG →A,
by F ′(αi) = s0

i (x). If there is an edge betweenαi andαi′ , i′ > i, thensi
i′(e) = 1 = si

i(e). Furthermore,
si
i′(r1, r2) = si

i(r1, r2) = i butsi
i′(m) = 0 andsi

i(m) = 1 Therefore, because the atom=(x, r1, r2,e,m) holds,
we must havesi

i′(x) 6= si
i′(x) (andF ′(αi) 6= F ′(αi′)) if there is an edge betweenαi andαi′ . ThusF ′ is a

colouring ofG with |A|= n colours.
Let us then consider the right to left implication. Letc : VG → {0, . . . ,n−1} be ann colouring. We

extendX to variablex with a new teamX′ such thatsj
i (x) = c(αi). The value ofx depends only oni,

which is encoded in(v1,v2), i.e.,A |=X′ =(v1,v2,x).

Let sj
i ,s

j ′

i′ be two assignments ofX′. Suppose thatsj
i (r1, r2,e) = sj ′

i′ (r1, r2,e) but sj
i (m) 6= sj ′

i′ (m). In

this case we must check thatsj
i (x) is different fromsj ′

i′ (x) (becauseA |=X′ =(x, r1, r2,e,m)). Now it holds

that j = j ′ becausesj
i (r1, r2) = sj ′

i′ (r1, r2). Furthermore, sincesj
i (m) 6= sj ′

i′ (m), eitheri = j or i′ = j ′. Let

us supposei = j. Because 1= si
i(e) = sj

i (e) = sj ′

i′ (e) = si
i′(e), there is an edge betweenαi andαi′ in G.

Thereforec(i) 6= c(i′) andsj
i (x) 6= sj ′

i′ (x).

By encoding dependence atoms in terms of conditional independence atoms we get the analogous
results for free for independence logic.

Corollary 14. There is a formulaϕ of independence logic of empty non-logical vocabulary build with∃
and∧ whose model-checking problem isNP-complete.

We end this section by noting that existential quantifiers cannot be replaced by universal quantifiers
in the above theorems.

Proposition 15. The model-checking problem for formulas of dependence or independence logic using
only universal quantification and conjunction is inLogspace.

Proof. We first transformϕ into prenex normal-form exactly as in first-order logic [17]. We may hence
assume thatϕ has the form

∀x1 . . .∀xn

∧

θi(x1, . . . ,xn,y1, . . . ,ym),

whereθi is either a first-order, dependence, or independence atom. Let A be a model, andX be a
team ofA with domain{x1, . . . ,xn,y1, . . . ,ym}. As in [17], the formula

∧

θi(x1, . . . ,xn,y1, . . . ,ym) can be
expressed by a first-order sentenceψ when the teamX is represented by then+m-ary relationX(x,y),
that is,

A |=X

∧

θi(x1, . . . ,xn,y1, . . . ,ym)⇔ (A,X(x,y)) |= ψ .

SinceX(x,y) is a first-order definable extension ofX(y) it is clear that we can construct a FO-sentence
ψ ′ such that

A |=X ∀x
∧

θi(x,y)⇔ (A,X(y)) |= ψ ′,

holds for all structuresA and teamsX with domain{y1, . . . ,ym}. The claim follows from the fact that the
data complexity of FO is in Logspace.
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4 Inclusion Logic

In this section we show that the model-checking problem of inclusion logic formulas can be reduced to
the satisfiability problem ofdual-Hornpropositional formulas. A propositional formulaΦ in conjunctive
normal form is called dual-Horn if each of its clauses contain at most one negative literal.

For a teamX, x = {xi1, ...,xin} ⊆ dom(X), ands∈ X, we denote bys(x) the restriction ofs to the
variablesxi1, ...,xin. In this section,σ denotes a relational signature.

Proposition 16. There exists an algorithm which, givenϕ ∈ FO(⊆), a structureA overσ , and a team X
such thatϕ ⊆ dom(X), outputs a propositional formulaΨ in dual-Horn form such that:A |=X ϕ ⇐⇒ Ψ
is satisfiable. Furthermore, whenϕ is fixed, the algorithm runs in logarithmic space in the size of A and
X.

Proof. Let ϕ ,A,X be as above andrX = |dom(X)|. For any teamX, we will consider the setX of propo-
sitional variablesX[s] for s∈ ArX . Starting fromϕ , A, andX we decompose step by step formulaϕ into
subformulas (until reaching its atomic subformulas) and different teamsY, Z, ... and control the rela-
tionships between the different teams by propositional dual-Horn formulas built over the propositional
variables issued fromX,Y,Z, ..... Let S = {(ϕ ,X, rX)} andC = {X[s] : s∈ X}∪{¬X[s] : s 6∈ X}. The
propositional formulaΨ is now constructed inductively as follows.

As long asS 6= /0, we apply the following rule: Pick(ϕ ,X, r) in S and apply the following rules.

• If ϕ is R(x) with R∈ σ then:S :=S \{(ϕ ,X, r)} andC :=C ∪{X[s]→R(s(x)) : for all s∈Ar}.
Clearly, it holds thatA |=X R(x) iff

∧

s(x) 6∈R¬X[s] is satisfiable.

• If ϕ is x⊆ y then:S := S \{(ϕ ,X, r)} and

C := C ∪{X[s]→
∨

s′∈Ar ,s′(y)=s(x)X[s′] : s∈ Ar}.

It holds thatA |=X x⊆ y iff
∧

s∈Ar (X[s]→
∨

s′∈Ar ,s′(y)=s(x)X[s′]) is satisfiable.

• If ϕ is ∃xψ , then:S := (S \{(ϕ ,X, r)})∪{(ψ ,Y, r +1)}and

C := C ∪{X[s]→
∨

s′=(s,a), a∈AY[s′] : s∈ Ar},

where theY[s], s∈ Ar+1 are new propositional variables (not used inC ). If A |=X ∃xψ then, there
exists a functionF : X → P(A) \{ /0}, such thatA |=X(F/x) ψ . In other words,A |=Y ψ for some
teamY defined by the solutions of the constraint

∧

s∈Ar X[s] →
∨

s′=(s,a), a∈AY[s′] (which define a
suitable functionF). Conversely, ifA |=Y ψ for a teamY as above defined fromX, then clearly
A |=X ∃xψ .

• If ϕ is ∀xψ , then:S := (S \{(ϕ ,X, r)})∪{(ψ ,Y, r +1)} and

C := C ∪{X[s]→Y[s′] : s∈ Ar ,s′ ∈ Ar+1 s.t. s′(x) = s(x)},

where theY[s], s∈ Ar+1 are new propositional variables (not used inC ). The conclusion is similar
as for the preceding case.

• If ϕ is ψ1 ∧ψ2 then: S := (S \{(ϕ ,X, r)})∪{(ψ1,X, r),(ψ2,X, r)} andC is unchanged. By
definition,A |=X ϕ iff A |=X ψ1∧ψ2.
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• If ϕ is ψ1∨ψ2 then:S := (S \{(ϕ ,X, r)})∪{(ψ1,Y, r),(ψ2,Z, r)} and

C := C ∪{X[s]→Y[s]∨Z[s] : s∈ Ar}∪{Y[s]→ X[s],Z[s]→ X[s] : s∈ Ar}

where again theY[s] andZ[s], s∈ Ar are new propositional variables (not used inC ). Here again,
A |=X ϕ if and only ifA |=Y ψ1 andA |=Z ψ2 for some suitableY andZ such thatY∪Z= X which
is exactly what is stated by the Boolean constraints.

Observe that each new clause added toC during the process is of dual-Horn form, i.e., contains at
most one negative literal. Observe also, that applied to some (ϕ ,X, r), the algorithm above only adds
triplesS whose first component is a proper subformula ofϕ and eliminates(ϕ ,X, r). When the formula
ϕ is atomic, no new triple is added afterwards. Hence the algorithm will eventually terminate with
S = /0. SettingΨ :=

∧

C∈C C, it can easily be proved by induction that:A |=X ϕ iff Ψ is satisfiable.
Observe also that each clause inC can be constructed fromX andA by simply running through their

elements (using their index) hence in logarithmic space.

Remark 1. The construction of Proposition 16 can be done in principle for any kind of atom: depen-
dence, independence, exclusion, constancy etc. To illustrate this remark, one could translate in the above
proof a dependence atom of the form=(x,y) by (using the notations of the proof):

∧

s,s′∈Ar

s(x)=s′(x)∧s(y) 6=s′(y)

(¬X[s]∨¬X[s′]).

The additional clauses are of length two. A similar treatment can be done for independence atoms
x ⊥y z. In the two cases however, the resulting formula is not in Dual-Horn form anymore and there is
no way to do so (unless PTIME= NP).

Since deciding the satisfiability of a propositional formula in dual-Horn form can be done in polyno-
mial time we obtain the following already known corollary.

Corollary 17. The data complexity ofFO(⊆) is in PTIME.

5 Conclusion

We have studied the tractability/intractability frontierof data complexity of both quantifier-free and quan-
tified dependence and independence logic formulas. Furthermore, we defined a novel translation of inclu-
sion logic formulas into dual-Horn propositional formulas, and used it to show that the data-complexity
of inclusion logic is in PTIME. It is an interesting open question whether the translation of Proposition
16 can be generalized to hold for some interesting extensions of FO(⊆) by further dependency atoms.
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