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We consider simulation games played between Spoiler and Duplicator on two Büchi automata in
which the choices made by Spoiler can be buffered by Duplicator in several buffers before she ex-
ecutes them on her structure. We show that the simulation games are useful to approximate the
inclusion of trace closures of languages accepted by finite-state automata, which is known to be un-
decidable. We study the decidability and complexity and show that the game with bounded buffers
can be decided in polynomial time, whereas the game with one unbounded and one bounded buffer is
highly undecidable. We also show some sufficient conditions on the automata for Duplicator to win
the game (with unbounded buffers).

1 Introduction

Simulation is a pre-order between labeled transition systems T and T ′ that formalizes the idea that “T ′

can do everything that T can”. Formally, it relates the states of the two transition systems such that each
state t′ in T ′ that is connected to some t in T can mimic the immediate behaviour of t, i.e. it carries the
same label, and whenever t has a successor then t′ has a matching one, too.

Simulation relations have become popular in the area of automata theory because they can be used to
efficiently under-approximate language inclusion problems for automata on finite or infinite words and
trees and to minimise such automata [7, 9, 11, 1]. One advantage of these simulation relationships is
that they are often computable in polynomial time whereas language inclusion problems are PSPACE-
complete for typical (finite, Büchi, parity, etc.) automata on words and EXPTIME-complete for such
automata on trees. To reason about simulation relations, one very often characterises them by the exis-
tence of winning strategies of the second player in certain two-player games. These are played on the
state spaces of two automata where one player (Spoiler) reveals a run of the first automaton piece-wise
and the second player (Duplicator) has to produce a corresponding run of the second automaton (where
“corresponding” often means “on the same word or tree”). The simplest such game requires Spoiler to
produce one step of his run per round and Duplicator to answer immediately by one step of her run.
With this game, it is very easy to construct pairs of automata such that language inclusion holds but
simulation does not (i.e., Duplicator has no winning strategy). Intuitively, Duplicator is too weak to
capture language inclusion. This observation has led to the study of several extensions of simulation
relations and games with the aim of making Duplicator stronger or Spoiler weaker whilst retaining a
better complexity than language inclusion. Examples in this context are multi-pebble simulation [8],
multi-letter simulation [13, 5], buffered simulations [14], and delayed games [12]. In all these contexts,
the winning condition is a regular set of infinite words over the set of pairs of letters (this is explicit in
[12] and implicit in [8, 13, 5, 14] where Duplicator aims to produce the same word).

In this paper, we aim at approximating the inclusion of the Mazurkiewicz trace closure of two regular
languages using simulation technology. More precisely, we are given two Büchi automata A and B and
a trace alphabet and we ask whether, for every infinite word accepted by A, there is a trace-equivalent
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word accepted by B. This problem was shown to be undecidable by Sakarovitch [19] (and [10] can be
used to prove that it is even highly undecidable). To approximate this problem, we use a game approach
as indicated above, i.e., Spoiler and Duplicator reveal runs of A and B piece-wise producing, in the
limit, a pair of runs. In doing so, Duplicator tries to produce a run on a trace-equivalent word. Since the
set of pairs of trace-equivalent words is not regular, Duplicator’s winning condition is not a regular set.
Hence the results from [12, 8, 13, 5, 14] are not applicable.

To overcome this problem, we first restrict Duplicator’s moves in such a way that she is forced to
produce a prefix of some trace-equivalent word. This is done using several buffers, i.e., extending the
idea of buffered simulation from [14]: instead of using only one buffer, there are several buffers of certain
capacities and associated (not necessarily disjoint) alphabets. Whenever Spoiler chooses a letter, it is
written to all those buffers whose alphabet contains that letter. Dually, Duplicator can only use those
letters that are available at all the associated buffers. Duplicator can only win if she does not leave any
letter in any of the buffers for ever. With this setup of game and winning condition, Duplicator effectively
attempts to produce a trace-equivalent word. The second part of the winning condition is standard: if
Spoiler produces an accepting run, then Duplicator’s run has to be accepting as well.

Our main results in this context are the following:

• If Duplicator has a winning strategy, then the language of the first automaton is contained in
the trace closure of the language of the second automaton (Thm. 3). While the latter property is
undecidable, the existence of a winning strategy with buffers of finite capacities is decidable in
polynomial time (provided the number and capacities of buffers are unchanged, Thm. 4).

• From [14], we know that buffered simulation (using a single unbounded buffer) is decidable. Sec-
tion 4 proves that adding a single bounded buffer yields a highly undecidable simulation relation,
as hard as recursive Büchi games and therefore hard for the class of all Boolean combinations of
Σ1

1-problems (Thm. 9).

• Section 5 describes the simulation relations in terms of continuous functions between the accepting
runs of the two automata. This yields completeness results in the sense that multi-buffer simulation
implies trace-closure inclusion in certain cases.

2 Büchi Automata and Trace Languages

Let Σ be an alphabet. Then Σ∗ denotes the set of finite words over Σ, Σω is the set of all infinite words
over Σ, and Σ∞ = Σ∗∪Σω. For a natural number k, we set [k] = {1,2, . . . ,k}.

A nondeterministic Büchi automaton or NBA is a tuple A = (Q,Σ,qI, δ,F) where Q is a finite set of
states, Σ is an alphabet, qI ∈ Q is the initial state, δ : Q×Σ→P(Q) is the transition function, and F ⊆ Q
is the set of accepting states.

Let w = a0a1a2 · · · ∈ Σω be an infinite word over Σ. A run of A on w is an alternating sequence of
states and letters ρ = (q0,a0,q1,a1, . . . ) with q0 = qI and qi+1 ∈ δ(qi,ai) for all i ≥ 0. This run is accepting
if qi ∈ F for infinitely many i ∈ N. The language L(A) of A is the set of infinite words that admit an
accepting run.

The main motivation of this paper is to approximate inclusion of trace languages. Therefore we
shortly introduce the notions of finite and infinite traces, for a detailed treatment see [6].

A trace alphabet is a tuple σ = (Σi)i∈[k] of not necessarily disjoint alphabets (note that k is arbitrary).
Let Σ =

⋃
i∈[k] Σi and, for a ∈ Σ, let σ(a) = {i ∈ [k] | a ∈ Σi} which is by construction nonempty. The

idea is that the letter a ∈ Σ denotes an action that is performed by the set of processes σ(a). For i ∈ [k],



M. Hutagalung, N. Hundeshagen, D. Kuske, M. Lange & E. Lozes 215

πi : Σ∞→ Σ∞i is the natural projection function that deletes from each word all letters that do not belong
to Σi. We call two words u,v ∈ Σ∞ σ-equivalent if πi(u) = πi(v) for all i ∈ [k]. In this case, we write
u ∼σ v. The relation ∼σ is called trace equivalence.

The restriction of ∼σ to Σ∗ has an alternative characterisation (that is the traditional definition of
trace equivalence): let D =

⋃
i∈[k] Σi ×Σi ⊆ Σ2 denote the set of pairs (a,b) with σ(a)∩σ(b) , ∅. This

reflexive and symmetric relation is called the dependence relation associated with σ. Then the restriction
of ∼σ to Σ∗ is the least congruence on the free monoid Σ∗ with ab ∼σ ba for all (a,b) < D.1 The quotient
M(σ) = Σ∗/∼σ is called trace monoid, its elements are finite traces. The quotient R(σ) = Σω/∼σ is the set
of real or infinite traces. The trace closure of a language L ⊆ Σ∞ w.r.t. σ is the language [L]σ = {v ∈ Σ∞ |

∃u ∈ L : u ∼σ v}. The language L is trace closed if it equals its trace closure.

Example 1. Let Σ = {a,b,c} with σ(a) = {1}, σ(b) = {1,2}, and σ(c) = {2}. Then a∗(bc)∗ is trace closed,
the trace closure of a∗c∗ is the language {a,c}∗ and the trace closure of (ac)∗ is the language of all words
u ∈ {a,c}∗ with the same numbers of occurrences of a and c, resp.

Let the mapping σ be such that the induced independence relation Σ2 \D is not transitive. Then,
given a regular language L ⊆ Σ∗, it is undecidable whether its trace closure [L]σ is regular [19]. Even
more, it is undecidable whether the closure is universal, i.e., equals Σ∗. Consequently, for two regular
languages K and L, it is undecidable whether K ⊆ [L]σ (which is equivalent to [K]σ ⊆ [L]σ). These
negative results also hold for languages of infinite words and their trace closures.

3 Multi-Buffer Simulations

Let σ = (Σi)i∈[k] be a trace alphabet and A = (QA,Σ, pI , δ
A,FA) and B = (QB,Σ,qI , δ

B,FB) be two
automata over the alphabet Σ. We aim at finding an approximation to the undecidable question of
L(A) ⊆ [L(B)]σ via simulation relations. In these, we have k FIFO buffers and σ(a) ⊆ [k] is interpreted
as the set of buffers that are used to transmit the letter a. Let κ : [k]→ N∪{ω} be a function that assigns
a capacity to each buffer, i.e. the maximum number of letters that this buffer can contain at any time. We
will often write such a function as a tuple (κ(1), . . . , κ(k)).

The multi-buffer game Gκσ(A,B) is played on these two automata and the k buffers between players
Spoiler and Duplicator as follows. Configurations are tuples (p,β1,β2, . . . ,βk,q) ∈QA×Σ∗1× . . .×Σ∗k×QB

with |βi| ≤ κ(i) for all i ∈ [k]. The first and last component can be seen as the places of two tokens on
the state spaces of A and B respectively; the others denote the current buffer contents. The initial con-
figuration is (pI , ε, . . . , ε,qI). A round consists of a move by Spoiler followed by a move by Duplicator.
Spoiler choses a ∈ Σ, moves the token in A forward along an a-transition of his choice, and pushes a
copy of the a-symbol to each of the buffers from σ(a). Then Duplicator either skips her turn or chooses
a non-empty word a1 . . .an ∈ Σ+ and moves the token in B along some a1 . . .an-labeled path. While doing
so, for every i, she pops an ai from each of the buffers from σ(ai). More formally, in a configuration of
the form (p,β1, . . . ,βk,q),

1. Spoiler picks a letter a ∈ Σ and a state p′ ∈ QA such that p a
−−→ p′, and outputs ap′.

2. Duplicator picks a finite run qv1q1v2q2 · · ·vnq′ from q in the automaton B such that πi(a)βi =

βi
′πi(v1v2 . . .vn) for all b ∈ [k]. She outputs v1q1v2q2 · · ·vnq′.

The play proceeds in the configuration (p′,β1
′, . . . ,βk

′,q′).

1Given a reflexive and symmetric relation D ⊆ Σ2, one can always find a tuple (Σi)i∈[k] that induces D (where k depends on
D.)
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Since (p′,β1
′, . . . ,βk

′,q′) is a configuration, we implicitely have |βi
′| ≤ κ(i), i.e., the size of the buffers

is checked after the round. So Spoiler can write into a “full” buffer (i.e., with |βi| = κ(i)) and it is
Duplicator’s responsibility to shorten the buffer again. In particular, Duplicator has to read all letters
from buffers with capacity 0 in the very same round. Furthermore, if Spoiler uses buffers of finite
capacity infinitely often, then Duplicator cannot skip forever.

A finite play is lost by the player that got stuck (which, for Spoiler, means that he gets trapped in a
sink ofA while, for Duplicator, it means that she should shorten a buffer but cannot do so). An infinite
play produces an infinite run ρA ofA over some infinite word wA ∈ Σω, and a finite or infinite run ρB of
B over some word wB ∈ Σ∞. This play is won by Duplicator iff

• ρA is not an accepting run, or

• ρB is an infinite accepting run and every letter written by Spoiler into a buffer will eventually be
read by Duplicator (formally: for every letter a ∈ Σ, the numbers of occurrences of a in wA and in
wB are the same).

We writeAvκσB if Duplicator has a winning strategy for the game Gκσ(A,B).

Example 2. Consider the trace alphabet σ with Σ1 = {a,b}, Σ2 = {b} and Σ3 = {c} and the following two
NBAA (top) and B (below) over the alphabet Σ.

We have Av(ω,2,0)
σ B. Note that in this game, a and

b get put into an unbounded buffer, b also gets put into a
buffer of capacity 2, and c gets put into a buffer of capac-
ity 0, i.e. Duplicator has to respond immediately to any c-

b b
a c

a

c b b c

a
move made by Spoiler. Duplicator’s winning strategy consists of skipping her turn until Spoiler pro-
duces a c. Note that he cannot produce more than 2 b’s beforehand, hence he cannot win by exceeding the
capacity of the second buffer. Note also that he cannot loop on the first a-loop for ever, otherwise he will
lose for not producing an accepting run. Once Spoiler eventually produced a c, Duplicator consumes it
together with the entire content of the second buffer and moves to the accepting state in her automaton.
After that she can immediately respond to every state-changing move by Spoiler.

The following theorem shows indeed that multi-buffer games approximate the inclusion between the
trace closures of the languages of two NBA.

Theorem 3. Let σ = (Σi)i∈[k] be a trace alphabet and let κ be a capacity function for k buffers. Let A
and B be two NBA over Σ withAvκσB. Then L(A) ⊆ [L(B)]σ.

Proof. Let wA = a0a1a2 · · · ∈ L(A) be arbitrary. Then Spoiler can play such that ρA is an accepting run
over wA. Since Duplicator has a winning strategy, she can play in such a way that also ρB is an accepting
run and no letter remains in a buffer for ever. Now let 1 ≤ i ≤ k. Then πi(wA) ∈ Σ∞i is the sequence of
letters that Spoiler writes into the buffer i during the play. Since Duplicator can only execute letters
that are available at the corresponding buffers, the word πi(wB) is a prefix of πi(wA). If it is a proper
prefix, then Duplicator failed to read all letters written into buffer i. As Duplicator plays according to
her winning strategy, this is not the case. Hence πi(wA) = πi(wB). Since this holds for all i ∈ [k], we have
wA ∼σ wB and therefore L(A) ⊆ [L(B)]σ. �

This yields, together with the following observation, a sound (but not necessarily complete) approx-
imation procedure for trace language inclusion problems using bounded buffers.

Theorem 4. Uniformly in the trace alphabet σ = (Σi)i∈[k] and the capacity function κ : [k]→ N, the
relation vκσ is decidable on automata with m and n states, resp., in time O((k + 1) · (mn|Σ|r+k(k + 1))2.5)
where r = κ(1) + . . .+ κ(k).
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If we fix k and the capacity function κ, then this time bound reduces to a polynomial in mn|Σ|, i.e., in
the size of the automataA and B.

Proof. Let A and B be automata with m and n states, resp. Then Gκσ(A,B) can be understood as a
game whose positions consist of a configuration and an element of {0,1, . . . ,k} to store one of the buffers
Duplicator used in her last move (0 stands for “Duplicator skiped her move”), i.e., of finite size ≤
m ·n ·

∏k
i=1 |Σi|

κ(i)+1 · (k + 1) ≤ mn · |Σ|r+k · (k + 1). Its winning condition is a strong fairness condition (“if
Spoiler visits final states infinitely often then so does Duplicator”) together with k Büchi-conditions
(“infinitely often, Duplicator reads some letter from buffer i or buffer i is empty”). By [4], such games
can be solved in time O((k + 1) · (mn|Σ|r+k(k + 1))2.5). �

Multi-buffer simulations form a hierarchy in the sense that Duplicator’s power strictly grows with
the buffer capacities.

Theorem 5. Let σ = (Σi)i∈[k] be a trace alphabet and let κ,κ′ be capacity functions for k buffers.
If κ(i) ≤ κ′(i) for all i ∈ [k], then vκσ ⊆ v

κ′
σ .

Moreover, if there are a ∈ Σi and b ∈ Σ with σ(a)∩σ(b) = ∅ and κ(i) < κ′(i), then there are automata
A and B such thatA@κσB butAvκ

′

σ B.

Proof. We immediately get vκσ ⊆ v
κ′
σ for κ ≤ κ′ since any winning strategy for Duplicator in Gκσ(A,B) is

also a winning strategy for her in Gκ
′

σ (A,B).
For the strictness part suppose w.l.o.g. a ∈ Σ1, b ∈ Σ2, σ(a)∩σ(b) = ∅,

and κ(1) < κ′(1). Then consider these two NBA A (top) and B (be-
low) over Σ. Duplicator wins the game Gκ

′

σ (A,B) by simply choosing
baκ(1)+1 every κ(1)+1 rounds (and skipping in the other rounds). Spoiler
wins the game Gκσ(A,B) choosing a in the first κ(1)+1 rounds such that
Duplicator is forced to skip in the first

· · ·
a a a

b

· · ·
a a a

b

κ(1) + 1

κ(1) + 1 rounds (since no b is available in the second buffer) which exceeds the capacity of the second
buffer. �

Thms. 3, 4 and 5 can be used for an incremental inclusion test: suppose we want to check whether
L(A) ⊆ [L(B)]σ holds for the trace alphabet σ = (Σi)i∈[k]. First consider κ0 with κ0(i) = 0 for all i ∈ [k].
If Avκ0

σ B, then L(A) ⊆ L(B) ⊆ [L(B)]σ. If this is not the case, chose κ1 with κ0(i) ≤ κ1(i) for all i and
κ0(i) < κ1(i) for some i. If Avκ1

σ B, then L(A) ⊆ [L(B)]σ. If, again, this fails, then extend the buffer
capacities to some κ2 etc. Sect. 5 analyses completeness of this procedure, i.e. the possibility for this to
prove trace language non-inclusion.

4 Undecidability

It is not hard to show that multi-buffer simulation is in general undecidable by a reduction from Post’s
Correspondence Problem (PCP) adapting the argument used for the reachability problem for commu-
nicating finite state machines [2, 3] and yielding Π0

1-hardness of v(ω,ω)
({a,b},{c,d}). There is a variant of PCP

called ωPCP(REG) that is known to be Σ1
1-complete [10]. It asks for the existence of an infinite solution

word that additionally belongs to some ω-regular language. It is not difficult to adjust the reduction to the
v

(ω,ω)
({a,b},{c,d})-problem such that Spoiler’s accepting runs correspond to valid solutions. This would yield

Π1
1-hardness of v(ω,ω)

({a,b},{c,d}).
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We do not give details of this reduction here because it is still possible to strengthen the undecidability
result in two ways: (1) we will show that a single unbounded buffer suffices for undecidability. Note that
v

(ω)
Σ

is decidable in EXPTIME [14]. Hence, the question is how many additional bounded buffers are
needed to establish undecidability. We provide a tight result in this respect showing that v(ω,0)

({a,b},{c}) is
undecidable already, i.e. the addition of a minimal number of buffers of minimal capacity (contrary to
this, v(ω,0)

({a},{c,d}) is shown to be decidable). (2) We will show that the level of undecidability is genuinely
higher than Π1

1 by considering the problem of solving a Büchi game played on a recursive game graph.
A recursive Büchi game (RBG) is a graph G = (V,E,Own,Fin,vI) such that V is a decidable set of

nodes, Own and Fin are decidable subsets of V , vI is a designated starting node, and E ⊆ V ×V is a
decidable set of edges. The game is played between players 0 and 1 starting in v0 := vI. Whenever
it reaches a node vi and vi ∈ Own then player 0 chooses vi+1 ∈ V such that (vi,vi+1) ∈ E and the play
continues with vi+1. Otherwise player 1 chooses such a node vi+1.

A player wins a play if the opponent is unable to choose a successor node. Moreover, player 0 wins
an infinite play v0,v1, . . . if there are infinitely many i such that vi ∈ Fin. The recursive Büchi game
problem is to decide, given such a game represented using Turing machines, whether or not player 0 has
a winning strategy for this game.

The existence of a winning strategy for player 0 in an RBG is a typical Σ1
2-statement (“there exists a

strategy for player 0 such that all plays (vi)i≥0 conforming to this strategy satisfy ∀n ∈ N∃m ∈ N : vm+n ∈

Fin”), i.e., the RBG problem belongs to Σ1
2. By determinacy of Borel (and therefore of Büchi) games [16],

the existence of a winning strategy for player 0 is equivalent to the non-existence of a winning strategy
for player 1 (i.e., to “for all strategies of player 1 there exists a play conforming to this strategy satisfying
∀n ∈N∃m ∈N : vm+n ∈ Fin”). Hence the RBG problem also belongs to Π1

2 and therefore to Σ1
2∩Π1

2. This
class does not contain any complete problems [18, Thm. 16.1.X], but we can show the following lower
bound for the RBG problem.

Theorem 6. The recursive Büchi game problem is hard for the class BΣ1
1 of all Boolean combinations of

problems from Σ1
1.

Proof. To see this, recall that the set of (pairs of Turing machines accepting the nodes and edges of)
recursive trees with an infinite branch is Σ1

1-hard [15]. It follows that the class of tuples (S i,Ti)1≤i≤n

of recursive trees such that, for some 1 ≤ i ≤ n, the tree S i has an infinite branch while Ti does not,
is complete for the class BΣ1

1. We reduce this problem to the recursive Büchi game problem. So let
(S i,Ti)1≤i≤n be a tuple of recursive trees. We build a Büchi game as follows: First, to any tree S i, we
add a node gi together with edges from all nodes (including gi itself) to gi. The set Own equals the set
of nodes of S i plus this additional node gi. Next, we replace every edge by a path of length 2 (i.e., with
two edges). The set Fin of winning nodes are the original nodes from S i. Starting in v0, player 0 has a
winning strategy of this Büchi game Gi iff the tree S i contains an infinite path.

Similarly, to any tree Ti, we add a node hi together with edges from all nodes (including hi itself) to
hi. Next, we replace every edge by a path of length 2. The set Own consists of these new nodes. The
node hi and the unique successor node h′i (that originates from the replacement of the edge (hi,hi) by a
path of length 2) are the only winning nodes from Fin. Starting in the root of Ti, player 0 has a winning
strategy in this Büchi game Hi iff Ti does not contain any infinite path. Note that once a play enters a
winning node it will continue with winning nodes ad infinitum.

For any i with 1 ≤ i ≤ n, we construct the direct product of the two games Gi and Hi described above:
Nodes are of the form (g,h) where g is a node from Gi and h a node from Hi with g ∈ OwnGi ⇐⇒ h ∈
OwnGi . The set Own equals OwnGi ×OwnHi . There is an edge from (g,h) to (g′,h′) iff there are edges
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from g to g′ in Gi and from h to h′ in Hi. Finally, a node (g,h) belongs to Fin iff both g and h are winning.
Clearly, any play in this game GHi “consists” of two plays in Gi and in Hi, resp. Since a play in S i cannot
leave the set of winning nodes, a play in this game is won by player 0 if both component plays are won
by player 0 in Gi and in Hi, resp. Hence player 0 has a winning strategy iff S i contains an infinite branch
while Ti does not.

Finally, we consider the disjoint union of all the games GHi and add a node vI ∈ Own. In addition,
we add edges from vI to the starting nodes of all the games GHi. Now it is rather obvious that player 0
wins this game iff it wins one of the games GHi and therefore iff, for some 1 ≤ i ≤ n, the tree S i contains
an infinite branch and Ti does not.

From Turing machines that describe the trees S i and Ti, we can construct Turing machines that
describe this game. Hence, we reduced a BΣ1

1-complete problem to the RBG problem. �

The rest of this section is devoted to showing that v(ω,0)
({a,b},{c,d}) is computationally at least as difficult

as solving general RBGs. We present a reduction from the RBG problem to v(ω,0)
({a,b},{c,d}). Let G be a RBG.

Using standard encoding tricks we can assume that its node set is {0,1}+, Own = 0{0,1}∗, the initial node
is 1, and Fin = {0,1}∗1. The edge relation of G is decided by a deterministic Turing MachineMwith state
set Q, tape alphabet Γ, and transition function δ : Q×Γ→ Q×Γ×{−1,0,1}. W.l.o.g., we can assume that
M has designated initial / accepting / rejecting states init / acc / rej and that the tape alphabet Γ equals
{0,1,#, ., /} including a division symbol # and two end-of-tape markers / and .. Apart from the usual
assumption thatM uses the end-of-tape markers sensibly, we presume the following.

• There are two designated states acc and rej that the machine uses to signal acceptance and rejec-
tion.

• When started in the configuration .w#v init/ with v,w ∈ {0,1}+, the machine eventually halts in
.wacc/ if w is a successor of v; otherwise it halts in .w rej/. Thus, we assume it to reproduce
the name of the node that it checked for being a successor node to v. This helps a subsequent
computation to be set up. Also note that we assume the machine’s tape to be infinite to the left and
that it starts reading its input from the right. This is purely done for presentational purposes since
it better matches the use of buffers in the constructed multi-buffer games.

In order to ease the presentation we derive a function δ̂ : (Γ∪Q)4→ (Γ∪Q)≤5 from the transition function
δ such that, for any configuration .a1a2 . . .ak/, the unique successor configuration equals

δ̂(.,a1,a2,a3) δ̂(a1,a2,a3,a4) δ̂(a2,a3,a4,a5) . . . δ̂(ak−2,ak−1,ak, /) .

If .,/ < {b1,b2,b3,b4}, then we have |δ̂(b1,b2,b3,b4)| = 1, |δ̂(.,b1,b2,b3)| ∈ {2,3}, |δ̂(b1,b2,b3, /)| ∈ {3,4},
and |δ̂(.,b1,b2, /)| ∈ {4,5}.

The construction of two automata A and B from the RBG G hinges on a simple correspondence
between winning strategies in G and those in G(ω,0)

σ (A,B): Spoiler and Duplicator simulate the RBG
by players 1 and 0, respectively. The ω-buffer is used to name current nodes of the RBG. Its alphabet
contains all symbols used to form configurations: Σ1 := Γ∪Q. The alphabet of letters that can be put into
the capacity-0 buffer contains a special new symbol and a copy of every Σ1-symbol: Σ2 := {c}∪ {cx | x ∈
Σ1}.

We need to show how three aspects of the simulation can be realised:

1. The choice of a successor node by player 1 in G. This is easy since player 1 is simulated by
Spoiler. It is easy to construct aAchs that allows Spoiler to choose a v ∈ {0,1}+ and put .v into
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c c0
c1c.
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.

c
cc

c0

c0c1
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Σ1,Σ2
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Figure 1: Letting Duplicator force Spoiler to put something from . {0,1}+ into the ω-buffer.

the buffer. The automaton is shown on the right. It has two states
marked with incoming and outgoing edges. These are used to in-
dicate in which state a play should begin and where it should end

0,1 0 1
.

according to the specification in these three cases. Later the constructed automata will be plugged
together by merging such marked states forming NBA with infinite runs. We use final states at
this point only in special sinks that make one of the players win, i.e. make the opponent lose
immediately.

2. The choice of a successor node by player 0 in G. This is trickier, because we need to make
Duplicator name a new node but it is only Spoiler who puts letters into the buffers. We will show
in Lemma 7 below how the capacity-0 buffer can be used in order for Duplicator to force Spoiler
to produce a certain content for the ω-buffer.

3. The check that a newly chosen node is indeed a successor of the current node. We make Spoiler
produce a sequence of Turing machine configurations in the ω-buffer and Duplicator check that
they form an accepting computation. This is where the assumption of M being deterministic is
needed because it forces Spoiler to produce an accepting computation if one exists. Lemma 8
below shows how this can be done.

Lemma 7. There are Afrc and Bfrc with the following properties. Suppose the game G(ω,0)
(Σ1,Σ2)(Afrc,Bfrc)

is played with the initial content of the ω-buffer being #v init/. For every w ∈ {0,1}+, Duplicator has a
strategy in the game G(ω,0)

(Σ1,Σ2)(Afrc,Bfrc) to reach a configuration in which the buffer content is .w#v init/.

Proof. Afrc is shown on the left of Fig. 1. Bfrc is shown on the right using the abbreviations ca = Σ2 \{ca}.
Suppose the two players play on these automata starting in the states marked with incoming edges.

Spoiler must open the game by playing c, and Duplicator can respond to this synchronisation move
going to a state that has exactly one outgoing edge that does not lead to the accepting state, labeled with
either c0 or c1. Spoiler is now forced to play this ci for otherwise Duplicator will win by moving to
the accepting state. In repsonse, Duplicator moves to the top left state and then Spoiler puts i into the
ω-buffer. So, effectively, Duplicator has forced him to put i ∈ {0,1} into the buffer with her choice in
response to the c-move and the game proceeds with Spoiler in the initial state and Duplicator in the
top left state. Note that here, the situation is similar, the only difference is that Duplicator now has the
choice to go to three states as opposed to two before. If Duplicator (in repsonse to Spoiler’s opening
c-move) goes to his third option, then Spoiler is forced to put . into the buffer and the play has reached
the states marked with outgoing edges, and the content of the ω-buffer is of the form .w#v init/ with a
w ∈ {0,1}+ chosen by Duplicator, if it was #v init/ at the beginning. �

Lemma 8. There areAchk andBchk with the following properties. Suppose the gameG(ω,0)
(Σ1,Σ2)(Achk,Bchk)

is played on these automata, and the content of the ω-buffer is C = .w#v init/. Then both players have a
strategy to reach a configuration in which the buffer contains #w init/ without losing in the meantime, iff
M reaches an accepting configuration when started in C.



M. Hutagalung, N. Hundeshagen, D. Kuske, M. Lange & E. Lozes 221

ca1 cana1
an

cacc init

c0 c1

c.
0 1

#

w v

a1 an

a1 an a1
an

c
δ̂(w)

c δ̂(w) c
δ̂(v)

Σ1 Σ2 cacc
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Figure 2: Two automata used to simulate computations of the Turing machineM.

Proof. The automaton Achk is shown in Fig. 2 on the left, assuming that Σ1 \ {acc, /, .,#} = {a1, . . . ,an′},
n = n′ − 3, an−2 = /, an−1 = ., an = #. Its structure forces Spoiler to do the following: if he wants to
put a symbol from Σ1 into the ω-buffer then he first has to announce this by playing the corresponding
Σ2-copy. This tells Duplicator immediately what the next symbol in the ω-buffer will be because of
this synchronisation via the 0-buffer. Moreover, in order for Spoiler to form a run that passed through
this automaton infinitely often and for this run to be accepting, Spoiler has to eventually announce via
cacc that he would put acc into the ω-buffer. However, at this point he actually puts init in instead
and afterwards can only put in letters from Γ. This way he immediately sets up the buffer for the next
simulation; remember thatM is assumed to halt in .wacc/ when started in .w#v/. The same trick of
announcing a symbol from a final configuration but putting a different one into the ω-buffer is used to
turn the end-marker . into # in order to set up the buffer for the start of the next simulation.
Bchk is more difficult to depict. It is sketched on the right of Fig. 2. Its initial state is followed by

a tree of depth 4 that is used to read words of the form a1a2a3a4 from the ω-buffer. This is used by
Duplicator to remember the first 4 symbols from the ω-buffer which is supposed to be the beginning of a
configuration ofM. Now she starts to accept synchronisation letters given by Spoiler who has begun to
construct the next configuration. Remember that he can only play a synchronisation action ca if he puts
a into the ω-buffer right away. This way Duplicator can control that he does indeed construct the valid
successor configuration.

Each state at depth 4 of this tree that can be reached by reading the word w = a1a2a3a4 ∈ (Σ1)4 has
two successors: with cδ̂(w) it can reach the state corresponding to reading a2a3a4 one level below in the
tree. This is used when Spoiler correctly chooses the next symbol of the unique successor configuration
and transmits this through cδ̂(w). This is shown on the leftmost state of the tree structure. The rightmost
state corresponding to, say v, shows an exception: if δ̂(v) = acc then Spoiler is about to produce the
last configuration ofM’s computation, then Duplicator can move to the right and finish the simulation.
The ω-buffer is then set up for the next simulation already since Spoiler puts init instead of acc into the
ω-buffer.

The other successor of the states corresponding to reading w ∈ (Σ1)4 from the ω-buffer is reached
with Σ2 \{cδ̂(w)}, here abbreviated as cδ̂(w). This corresponds to Spoiler producing a symbol that is not the
next one in the unique successor configuration, and this takes Duplicator to a state that makes Spoiler
lose. Formally, Bchk has states (Σ1)≤4∪{sink,done} and the following transitions with initial state ε.
w a
−−→wa, for w ∈ (Σ1)≤3,a ∈ Σ1 w cacc−−−−→done, for w ∈ (Σ1)4 aw

cδ̂(aw)
−−−−−→w , for w ∈ (Σ1)3

w c
−−→sink, for w ∈ (Σ1)4,c < {cδ̂(w),cacc} sink x

−−→sink, for every x ∈ Σ1∪Σ2 �

Theorem 9. Given a RBG G, one can construct two NBAA and B such thatAv(ω,0)
(Σ1,Σ2)B iff player 0 has

a winning strategy for G.

Proof. We construct A and B by plugging (variants of) Achs, Afrc, Achk, Bfrc and Bchk together as
follows. First of all, we modify Achk and Bchk such that they remember if the buffer content that is
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produced in the end according to Lemma 8 is #1w init/ or #0w init/ for some w ∈ {0,1}∗. Thus, they have
two different states each that would be marked with outgoing edges. Intuitively, they distinguish the case
in which player 0, resp. player 1 is the owner of the current RBG node and therefore needs to perform a
choice next.

Moreover, we use an automaton A′chk that is obtained from Achk by appending
crej

rej to
its initial state. Remember that this automaton is used by Spoiler to produce a computation of the Turing
machineMwhich is checked for being valid and accepting by DuplicatorwithBchk. WithAchk, Spoiler
has a strategy not to lose if in the game with initial buffer content .w#v init/ if w is a valid successor
of node v. Thus, it can be used to verify Spoiler’s choices of such a successor node that were made
with Achs. However, if Duplicator proposed w instead, and it is not a valid successor of v in G, then
Duplicator should lose. This happens using A′chk: the simulation of M’s computation will ultimately
reach a rejecting configuration which allows Spoiler to move to the accepting sink which Duplicator
cannot match.

The following picture shows howA (left) and B (right) are obtained. A dashed line is drawn in order
to indicate that outgoing states (on the right in the automata) are merged with incoming states (on the
left). For those automata that have two outgoing states we use the convention that the upper one is used
when the next chosen node belongs to player 1 and the lower one otherwise.

Achs Achk Afrc A′chk
#1 init/

Bchk Bfrc

The part at the beginning in A ensures that the ω-buffer is filled with #1/, i.e. the initial game node
which is owned by Spoiler. He then uses Achs to choose a successor, leading to a buffer content of the
form .w#1 init/. The play then proceeds in Achk which requires Duplicator to make moves in Bchk,
finally leading to the buffer content #w init/ according to Lemma 8. Depending on whether w starts with
1 or 0, the corresponding player makes choices to fill the buffer to a content of .v#w init/, either Spoiler
usingAchs or Duplicator using Bfrc with Spoiler executing her wishes inAfrc, according to Lemma 7.

Finally, we need to make sure that Duplicator wins iff the underlying play in G visits states of the
form w1 infinitely often. We make the last states of Achs and Afrc final. Then any run of Spoiler in
which he produces finite simulations of the Turing machine and performs choices of finite nodes in the
RBG, is accepting. Hence, we need to give Duplicator the ability to answer with an accepting run if it
corresponds to a play in the RBG that was winning for her because it visits infinitely many states of the
form {0,1}∗1. This can easily be done by letting her go through an accepting state in Bchk only if Spoiler
has signalled to her that the last configuration of the simulated computation is of the form .w1acc/
which can easily be checked by adding a few more states to this automaton. At last, we also need to give
Spoiler the ability to win when Duplicator does not do her part in the simulation process properly. This
can occur in Bfrc which Duplicator should use to force Spoiler to put a finite .w for w ∈ {0,1}+ into the
buffer. So we need to make sure that she eventually terminates this forcing process. This is easily done
by making the first state inAfrc accepting for Spoiler. �

Remark 10. Given a RBG G, one can construct two NBA A and B over the alphabet {a,b,c} such that
Av

(ω,0)
({a,b},{c})B iff player 0 has a winning strategy for G.

Proof. Consider the automaton A constructed in the proof above. The crucial property is that this au-
tomaton can at most perform two consecutive transitions labeled in Σ2. Now enumerate all nonempty
words over Σ2 of length at most 2 as w1,w2, . . . ,wn. The automaton A′ is obtained from A by deleting
all transitions labeled in Σ2 and replacing any path of labeled by a word wi by a path labeled by ci. Doing
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the analogous changes in B, we obtain B′. Now it should be clear thatA′v(ω,0)
(Σ1,{c})

B′ holds if and only if

Av
(ω,0)
(Σ1,Σ2)B, i.e., if and only if player 0 wins G. �

Putting this together with the lower bound for solving recursive Büchi games established above, we
obtain the following result that is in stark contrast to the EXPTIME-decidability of vω

Σ
.

Corollary 11. The relation v(ω,0)
({a,b},{c}) is BΣ1

1-hard.

Proof. All that is left is a coding of the alphabet Σ1 by words over the binary alphabet {a,b}. �

Clearly, the same lower bound holds for any multi-buffer simulation involving at least two buffers of
which at least one is unbounded such that |Σ1 \Σ2| ≥ 2 and Σ2 \Σ1 , ∅.

However, if |Σ1 \Σ2| = 1, then the multi-buffer game is decidable.

Theorem 12. The relation v(ω,0)
({(a)},{c,d}) is decidable.

Proof. Let A = (QA,Σ, pI , δ
A,FB) and B = (QB,Σ,qI , δ

B,FB) be two NBA over the alphabet {a,c,d}.
Consider the following 1-counter automaton: The set of states equals QA ×QB × {c,d, ε} × {0,1}, and
all transitions are ε-transitions. For all transitions p a

−−→ p′ in A, the 1-counter automaton has an ε-
transition from (p,q, ε,0) to (p′,q, ε,1) that increments the counter. For all transitions p c

−−→ p′ in A, the
1-counter automaton has an ε-transition from (p,q, ε,0) to (p′,q,c,1) that leaves the counter unchanged
(and similarly for transitions p d

−−→ p′). From any state (p,q, ε,1), there is an ε-transition to (p,q, ε,0) that
does not change the content of the counter. For all transitions q a

−−→q′ in B, the 1-counter automaton has
ε-transitions from (p,q, ε,1) to (p,q′, ε,0) and to (p,q′, ε,1) that decrement the counter. For all transitions
q c
−−→q′ in B, the 1-counter automaton has ε-transitions from (p,q,c,1) to (p,q′, ε,0) and to (p,q′, ε,1)

that leave the counter unchanged (and similarly for transitions q d
−−→q′).

The set of configurations of this 1-counter automaton equals QA×QB×{c,d, ε}× {0,1}×N . We now
define a game whose nodes are the configurations: Configurations of the form (p,q, x,0,n) belong to
player 0, the other configurations belong to player 1. The moves are given by the transitions of the
1-counter automaton. A finite play is lost by the player that got stuck. An infinite play (pi,qi, xi,ni)i≥0
is won by player 1 if pi ∈ FA for only finitely many i ∈ N or qi ∈ FB for infinitely many i ∈ N and the
counter increases only finitely often or decreases infinitely often.

Then player 1 wins this game G iff Duplicator wins the game G(ω,0)
({a},{c,d})(A,B). The existence of a

winning strategy of player 1 can be expressed as a MSO-formula talking about the configuration graph of
the 1-counter automaton. Since the MSO-theories of 1-counter automata are uniformly decidable [17],
the existence of a winning strategy for player II in the game G can be decided. �

5 Completeness

In Section 3, we have shown that if Duplicator wins a multi-buffer game between A,B over the trace
alphabet σ = (Σi)i∈[k], then [L(A)]σ ⊆ [L(B)]σ. In this section, we characterize the relation vκσ for un-
bounded buffers analogously to the one-buffer case [14]. More precisely, we will show that unbounded
multi-buffer simulation is equivalent to the existence of a continuous function that maps accepting runs
ofA to accepting runs of B with trace-equivalent words.

Notation. Throughout this section, let k ∈ N be fixed, let κω be the capacity function for k buffers with
κω(i) = ω for all i ∈ [k], and let σ = (Σi)i∈[k] be an arbitrary trace alphabet. Furthermore, we fix two
automataA = (QA,Σ, pI, δ

A,FA) and B = (QB,Σ,qI, δ
B,FB).
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First recall that an infinite run of some NBAA is an infinite word over QA∪Σ. We denote the set of
runs ofA by Run(A) and the set of accepting runs by ARun(A).

Given a set ∆, the set ∆ω of infinite words over ∆ is equipped with the standard structure of a metric
space. The distance d(x,y) between two distinct infinite sequences x0x1x2 . . . and y0y1y2 . . . is inf{2−i |

x j = y j for all j < i}. Intuitively, two words are “significantly close” if they share a “significantly long”
prefix.

We call a function f : ARun(A)→ ARun(B) trace-preserving if for all accepting runs ρ ∈ ARun(A),
the run f (ρ) is accepting and the words of these two runs are trace equivalent. Consequently, [L(A)]σ ⊆
[L(B)]σ iff there exists a trace-preserving function f : ARun(A)→ ARun(B). Throughout this section,
we will show that the existence of a continuous and trace-preserving function characterizesAvκωσ B.

Lemma 13. IfAvκωσ B, then there exists a continuous trace-preserving function f : ARun(A)→ARun(B).

Proof. Suppose Duplicator wins Gκωσ (A,B) with some winning strategy θ. We define f (ρ) = ρ′ such that
ρ,ρ′ are the output of Gκωσ (A,B), in which Spoiler plays ρ and Duplicator plays according to θ. The
function f is trace-preserving since θ is a winning strategy for Duplicator.

Let ρ1 ∈ ARun(A) be an accepting run of A and let n ∈ N. Since f (ρ1) ∈ ARun(B) is the output of
Duplicator’s moves according to the winning strategy θ, there is some round m such that Duplicator’s
output after that round has length at least n. Now let ρ2 be another run ofA that agrees with ρ1 in the first
m transitions, i.e., with d(ρ1,ρ2) ≤ 2−(2m+3). Then, in the first m rounds, Duplicator does not see any dif-
ference between Spoiler’s runs ρ1 and ρ2. Hence Duplicator (playing according to the strategy θ) makes
the same moves. This implies that f (ρ1) and f (ρ2) agree in the first n positions, i.e., d( f (ρ1), f (ρ2))< 2−n.
Thus, we showed that f is continuous. �

Example 14. Under the assumption Avκωσ B, of the lemma, there need not be a continuous function
f : Run(A) → Run(B) (let alone a continuous function from (QA ∪ Σ)ω to (QB ∪ Σ)ω) that is trace-
preserving and maps accepting runs to accepting runs.

Consider these two NBA A (above) and B (below), and the trace
alphabet σ = ({a,b}). We have Avκωσ B, since Duplicator has the fol-
lowing winning strategy: if, in state q0 or q1, Duplicator sees a in the
buffer, then she moves to q1. If, in state q0 or q2, Duplicator sees b in
the buffer, then she moves to q2. In all other cases, Duplicator skips her
move. This is a winning strategy since the only accepting run (p0a)ω of
A is answered by the accepting run q0a (q1a)ω of B.

p0 p1

q0

q1

q2

a

b

b

a

b

a a

b

Now let f : Run(A) → Run(B) be a continuous and trace-preserving function that maps accept-
ing runs of A to accepting runs of B. Since f is trace-preserving, we get f ((p0a)m p0b(p1b)ω) =

(q0a)mq0b(q2b)ω for all m ∈ N. Note that, when m grows, the runs (p0a)m p0b(p1b)ω converge to the
run (p0a)ω and their f -images (q0a)mq0b(q2b)ω converge to (q0a)ω. Since f is continuous, this implies
f ((p0a)ω) = (q0a)ω, i.e., the accepting run (p0a)ω of A is mapped to the non-accepting run (q0a)ω of
B. Hence, indeed, there is no continuous and trace preserving function f : Run(A)→ Run(B) that maps
accepting runs to accepting runs.

We are interested in the reverse direction of Lemma 13 because it shows that continuity is the weakest
condition that implies multi-buffer simulation on unbounded buffers. We will use a delay game as in [12].
In this game, the winning condition is given by some function f : ARun(A)→ ARun(B), and Duplicator
is allowed to form a run without considering any buffers.

Let A,B be NBAs and f : ARun(A)→ ARun(B) be a function that maps accepting runs of A to
accepting runs of B. The delay game G f

del(A,B) is played between players Spoiler and Duplicator on
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A and B, where in each round each player tries to extend a run. A configuration is a pair of finite runs
(rA,rB) on A and B, respectively (the pair (pI,qI) is the initial configuration). For every round i > 0,
with configuration (rA,rB): Spoiler tries to extend rA with one step: r′

A
:= rAap, and Duplicator tries to

extend rB with n ≥ 0 steps: r′
B

:= rBb1q1 . . .bn pn. They continue to the next round with the configuration
(r′
A
,r′
B

).
A play builds two runs: an infinite run ρ of A (chosen by Spoiler) and a finite or infinite run ρ′ of

B (chosen by Duplicator). We say that Duplicator wins the play iff ρ is not accepting or f (ρ) = ρ′. We
writeAv f

del B as shorthand for “Duplicator has a winning strategy in the delay game G f
del(A,B)”.

Note that if f : ARun(A)→ ARun(B) is continuous, then A v f
del B. The winning strategy for Du-

plicator is to move properly according to f : on configuration (rA,rB), if there exists (b,q) ∈ Σ×QB

such that for any ρ ∈ ARun(A) with prefix rA, rBbq is a prefix of f (ρ), then Duplicator extends rB to
r′
B

:= rBbq. Otherwise, Duplicator skips her move. In this way, Duplicator always forms a run that is
the image of f .

Lemma 15. Let f : ARun(A)→ ARun(B) be a continuous function. ThenAv f
del B.

Suppose k = 1, i.e., we are in the one-buffer case and let f : ARun(A) → ARun(B) be continu-
ous and trace-preserving. Then, as we saw above, Duplicator has a winning strategy θ in the delay
game G f

del(A,B). In [14], it was shown that this strategy is also a winning strategy in the buffer game
G
κω
(Σ)(A,B). The following example shows that this is not the case in the multi-buffer game: θ may tell

Duplicator to output a letter that has not already been played by Spoiler.

Example 16. Consider the following two NBAA (left) and B (right) and the trace alphabet
σ = ({a}, {b}). Take the continuous function f : ARun(A) →
ARun(B) that maps all infinite runs of A to the unique infi-
nite run of B. Duplicator wins G f

del(A,B) with strategy θ:

b
a

b
a

b

in the first round she forms q0aq1, in the second round she forms q0aq1bq1, and so on. However, Du-
plicator cannot use θ to win Gκωσ (A,B), since Spoiler may not output a in the first round. Nevertheless,
Duplicator wins Gκωσ (A,B) by simply waiting for the first a in buffer 1 and then emptying both buffers
and, from then on, follows the strategy θ.

More generally, we can derive a winning strategy for Duplicator on Gκωσ (A,B), from some winning
strategy θ on G f

del(A,B), as stated in the following lemma.

Lemma 17. Let f : ARun(A)→ ARun(B) be a continuous and trace-preserving function. ThenAvκωσ B.

Proof. We naturally extend the projection functions πi : Σ∞→ Σi
∞ to πi : (Q×Σ×Q)∞→ Σi

∞ by setting
πi(p,a,q) = πi(a).

By Lemma 15, Duplicator has a winning strategy θ in the delay game G f
del(A,B). To win the multi-

buffer game Gκσ(A,B), Duplicator tries to mimic this strategy θ. Her problem is that in some situation,
θ tells her to play some transition, but the letter of this transition is not available in the buffers.

We next describe the modified strategy θ′ of Duplicator: Suppose Spoiler has played the finite run
rA in the delay game G f

del(A,B). Let r be Duplicator’s answer according to her strategy θ. Let rB be
the maximal prefix of r such that, for all i ∈ [k], the word πi(rB) is a prefix of πi(rA). Then Duplicator’s
strategy θ′ shall ensure that she outputs this run rB in response to Spoiler playing rA.

We first verify that Duplicator can play according to this strategy: so suppose Spoiler extends his
run rA to r′

A
= rAap. Then Duplicator’s answer r′ in the delay game extends the run r. The maximal

prefix r′
B

of r′ such that πi(r′B) is a prefix of πi(r′A) = πi(rA)πi(a) for i ∈ [k] extends rB by some word
x ∈ (QB∪Σ)∗. Then, clearly Duplicator can play the difference x between rB and r′

B
.
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L(A) ⊆ [L(B)]σ ex. trace-preserving function f : ARun(A)→ ARun(B)

Av
(ω,ω,...,ω)
σ B ex. trace-preserving cont. function f : ARun(A)→ ARun(B)

AvκσB

by definition of f

Thm. 18

Thm. 3

Thm. 5

Figure 3: Characterising trace inclusion and multi-buffer simulation.

It remains to be shown that θ′ is a winning strategy. To this aim, let ρA be an accepting run of A.
Since θ is winning in the delay game G f

del(A,B), the accepting run ρ = f (ρA) is Duplicator’s answer
in this game to Spoiler playing ρA. Let ρB be Duplicator’s answer according to the strategy θ′ in the
simulation game Gκωσ (A,B). We show ρ = ρB: Clearly, by the construction of θ′, any finite prefix of ρB
is a prefix of ρ. Conversely, let rB be a finite prefix of ρB. There is a finite prefix rA of ρA such that,
once Spoiler has played rA in the simulation game, Duplicator’s answer according to θ′ is at least rB.
The rules of the simulation game imply πi(rB) ≤ πi(rA) for all i ∈ [k].

Since f is trace-preserving, we get πi(ρA) = πi(ρ) for all i ∈ [k]. Hence we have, for all i ∈ [k],
πi(rB) ≤ πi(rA) ≤ πi(ρA) = πi(ρ) . It follows that there is a finite prefix r or ρ such that πi(rB) ≤ πi(r) for
all i ∈ [k]. Since both, rB and r are prefixes of ρB, this implies that rB is a prefix of r and therefore of ρ.
Consequently, ρB = ρ = f (ρA). Since f maps the accepting run ρA to an accepting run, ρB is accepting.
Furthermore, since f is trace-preserving, the words of ρA and ρB are equivalent. Hence θ′ is a winning
strategy for Duplicator. �

Putting Lemmas 13, 15 and 17 together we obtain the following characterisation of a case in which
multi-buffer simulation is complete for trace inclusion, namely that in which there is not only a trace-
preserving function between the runs but one that is additionally continuous.

Theorem 18. LetA, B be two NBA over the trace alphabet σ = (Σi)i∈[k]. We haveAvκωσ B if and only if
there exists a continuous trace-preserving function f : ARun(A)→ ARun(B).

6 Conclusion and Further Work

We have defined multi-buffer simulation relations on Büchi automata and analysed them with respect to
their usability for inclusion problems between trace languages defined by NBA. Fig. 3 presents a picture
of how these concepts are related. There are (at least) three ways for the work presented here to be
continued.

1. As can be seen from Fig. 3, the question of whether there is a characterisation of bounded multi-
buffer simulation is still open. For single-buffer simulations, a matching criterion is known, namely that
of a Lipschitz continuous function between the runs of the automata. However, it is possible to give
examples which show that Lipschitz continuity is neither sufficient nor necessary for bounded multi-
buffer simulation. We suspect that an additional condition on the looping structure of the automata in
terms of the underlying dependency relation needs to be given such that Lipschitz continuity captures
bounded multi-buffer simulation.

2. In the whole of this article we have assumed that all the used concepts like automata and games
are defined w.r.t. a fixed trace alphabet. It is possible to relax this and study the effect that varying
the independence relation has on the results, e.g. whether or not this also induces strict hierarchies w.r.t.
expressive power. This could be used to refine the approximation sketched at the end of Sect. 3. This may
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not make sense for trace inclusion problems but may yield better approximations for related problems
like transducer inclusion which feature a very restricted form of independence on their alphabets.

3. Finally, recall that vω
Σ

is EXPTIME-complete. There is a variant that is “only” PSPACE-complete
[14]; it is obtained by requiring Duplicator to either skip turns or flush the entire buffer. It is not clear
what the complexity of such a restricted multi-buffer game is. Note that the undecidability proof for
v

(ω,0)
(Σ1,Σ2) (Thm. 9) heavily relies on Duplicator’s ability to constantly keep some content in the buffer,

namely the last configuration of a Turing machine in its simulation.
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