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We introducep-equivalenceby asymptotic probabilities, which is a weak almost-equivalence based
on zero-one laws in finite model theory. In this paper, we consider the computational complexities
of p-equivalence problems for regular languages and provide the following details. First, we give an
robustness ofp-equivalence and a logical characterization forp-equivalence. The characterization
is useful to generate some algorithms forp-equivalence problems by coupling with standard results
from descriptive complexity. Second, we give the computational complexities for thep-equivalence
problems by the logical characterization. The computational complexities are the same as for the
(fully) equivalence problems. Finally, we apply the proofsfor p-equivalence to some generalized
equivalences.

1 Introduction

The study of the equivalence problem of regular languages dates back to the beginning of formal language
theory. This problem is a fundamental problem and regular languages have many applications (see e.g.,
[1]). Regular expressions (REG), nondeterministic finite state automaton (NFA), and deterministic finite
state automaton (DFA) are normally used to represent regular languages. Both the equivalence problem
for NFAs and REGs are known as PSPACE-complete [15] and the equivalence problem for DFAs is
known as NL-complete [12].

In recent years, somealmost-equivalencesfor regular languages were introduced. These equiva-
lences are weaker than the (fully) equivalence. For example, two languages,L1 andL2, are f -equivalent
[2, 3] if their symmetric difference,L1 △ L2

1, is a finite set; and two languages,L1 and L2, are E-
equivalent[8] if their symmetric difference,L1 △ L2, is a subset ofE, whereE is a regular language.
In [8], it is pointed out that bothf -equivalence problems andE-equivalence problems for NFAs are
PSPACE-complete; and bothf -equivalence problems andE-equivalence problems for DFAs are NL-
complete, where the regular languageE is given by a DFAAE as an input. In this paper, we define
another almost-equivalence (p-equivalence). p-equivalence is defined as follows. Letµn(L) be

µn(L) =
the number of strings of lengthn that are inL

the number of strings of lengthn
.

That is, µn(L) is the probability that a randomly chosen string of lengthn is in a languageL. The
asymptotic probabilityof L, µ(L), is defined asµ(L) = limn→∞ µn(L) if the limit exists. Then, we define
that two languages,L1 andL2, arep-equivalentif µ(L1△L2) = 0.

1L1 △ L2 = (L1\L2)∪ (L2 \L1)
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The definition is based on the asymptotic probabilities in finite model theory, which are defined as
follows. Letµn(Φ) be

µn(Φ) =
the number of finite graphs withn nodes that satisfyΦ

the number of finite graphs withn nodes
.

That is,µn(Φ) is the probability that a randomly chosen graph withn nodes satisfies a first-order sen-
tenceΦ. (Note that this definition can be extended to any finiteσ -structures from finite graphs.) The
asymptotic probability ofΦ, µ(Φ), is defined asµ(Φ) = limn→∞ µn(Φ) if the limit exists. Then, we
define thatΦ is almost surely validif µ(Φ) = 1.

In finite model theory, the next two theorems are some interesting results in decidability between
validity and “almost surely” validity.

Theorem 1.1(Trakhtenbrot [26]). For any vocabularyσ with at least one binary relation symbol, it is
undecidablewhether a first-order sentenceΦ of vocabularyσ is valid over finiteσ -structures.

Theorem 1.2 (see e.g., Corollary 12.11 [13]). There is an algorithm that given as input a finiteσ -
structure and a first-order sentenceΦ of vocabularyσ , decides whetherΦ is almost surely valid.

Relative to finiteσ -structures, Theorem 1.2 tells us that it isdecidablewhether a sentence is almost
surely valid, whereas Theorem 1.1 tells us that it isundecidablewhether a sentence is valid. One of our
main motivation to considerp-equivalence is as follows: Does there exist some differences in decidability
or in computational complexity between equivalence andp-equivalence?

(In this paper, however, in the class of regular languages, we prove that there is no differences in
computational complexity between equivalence and p-equivalence, e.g., the p-equivalence problem for
REGs is also PSPACE-complete.)

Our results and contributions.

In this paper, we give the computational complexities of thep-equivalence problems for regular lan-
guages. Moreover, we also give these complexities of some generalized equivalence problems.

First, we give a simple characterization ofp-equivalence, coupled with standard results from descrip-
tive complexity [11], which is used to decide the p-equivalence problem for various representations of
regular languages.

Second, we prove the computational hardness for thep-equivalence problems by modifying the
proofs of the computational hardness for (fully) equivalence problems.

Finally, we give the computational complexities for equivalence problems for some generalized
equivalences based on the proofs for thep-equivalence problems. These results give a robustness of
equivalence problems for regular languages in terms of the computational complexities when the equiv-
alence is generalized.

Paper outline.

The remainder of this paper is organized as follows: Section2 gives the necessary definitions and ter-
minology for languages, automaton, andp-equivalence; Section 3 shows some fundamental results of
p-equivalence; Section 4 describes the computational complexity upper bounds of both thep-equivalence
problems and some generalized equivalence problems; Section 5 describes the computational complexity
lower bounds of both thep-equivalence problems and some generalized equivalence problems; Section
6 remarks about the problem to decide whether a given regularlanguage obeys zero-one law [20] based
on previous sections.
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2 Preliminaries

In this paper, we consider three well-known standard modelsfor regular languages,regular expression
(REG),deterministic finite state automaton(DFA), andnondeterministic finite state automaton(NFA).

Let A be a finite alphabet and letA∗ [An] be the set of all strings [of lengthn] overA.

REG The syntax for REG is defined as follows:

α := 0 | 1 | a∈ A | α1 ·α2 | α1∪α2 | α∗
1

Then,L(α) (the language of REGα) is inductively defined as follows:
(1) L(0) = /0; (2) L(1) = {ε}; (3) L(a) = {a}; (4) L(α1 ·α2) = L(α1) ·L(α2); (5) L(α1 ∪α2) =

L(α1)∪ L(α2); and (6)L(α∗
1) =

⋃

n≥0

n times
︷ ︸︸ ︷

L(α1) · . . . ·L(α1), where the concatenation operation· is
defined asL(α1) · L(α2) = {s1s2 | s1 ∈ L(α1),s2 ∈ L(α2)}. We may omit· (i.e., α1α2 denotes
α1 ·α2). ε denotes the empty string.

DFA A DFA A is a 5-tuple(Q,A,δ ,q0,F), where (1)Q is a finite set of states; (2)A is a finite alphabet;
(3) δ : Q×A→ Q is a transition function; (4)q0 ∈ Q is the initial state; and (5)F ⊆ Q is a set of
acceptance states. We inductively defineδ (q,s) by using the definition ofδ (q,a) as follows. If
s= ε , thenδ (q,s) = q. Otherwise (i.e,s= as′), δ (q,s) = δ (δ (q,a),s′).
Then,L(A ) = {s∈ A∗ | δ (q0,s) ∈ F}.

NFA A NFA A is a 5-tuple(Q,A,δ ,q0,F), where (1)Q is a finite set of states; (2)A is a finite alphabet;
(3) δ : Q×A→ 2Q is a transition function; (4)q0 ∈ Q is the initial state; and (5)F ⊆ Q is a set of
acceptance states. Letδ (Q′,a) =

⋃

q∈Q′ δ (q,a), whereQ′ ⊆ Q and we inductively defineδ (Q′,s)
by using the definition ofδ (Q′,a) as follows. Ifs= ε , thenδ (Q′,s) = Q′. Otherwise (i.e,s= as′),
δ (Q′,s) = δ (δ (Q′,a),s′).

Then,L(A ) = {s∈ A∗ | ∃q∈ δ (q0,s).q∈ F}.

Reachable(q,q′) in DFA[NFA] means that there exists a stringssuch thatδ (q,s) = q′[q′ ∈ δ ({q},s)].

2.1 The almost equivalence by asymptotic probabilities andthe zero-one law for formal
language theory

The zero-one law in finite model theory is a property which means “almost surely true” or “almost surely
false” (see e.g., [13, Section 12]). In formal language theory, zero-one law is investigated by Sin’ya [20]
as follows; A languageL obeys zero-one law if almost all strings are inL or almost all strings are not in
L. In other words, a languageL obeys zero-one law ifL is “almost empty” or “almost full”. Formally,
“almost empty” and “almost full” are defined by asymptotic probabilities. LetL be a language. We
define

µn(L) =
|{s∈ An | s∈ L}|

|An|

That is,µn(L) is the probability that a string ofn length given by uniform randomly is inL. We then
define theasymptotic probabilityof L asµ(L) = limn→∞ µn(L) if the limit exists. We say thatL is almost
emptyif µ(L) = 0 andL is almost fullif µ(L) = 1. We say thatL obeyszero-one lawif L is almost empty
or almost full.

In this paper, we now definep-equivalenceby asymptotic probabilities as follows; we say that two
languages,L1 andL2, arep-equivalentif µ(L1∆L2) = 0. L1 ≃p L2 denotes thatL1 andL2 arep-equivalent
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andα1 ≃p α2 denotes thatL(α1) ≃p L(α2) for two regular expressions,α1 andα2. Note that whether
two languages arep-equivalent is relative to a given alphabetA.

Example2.1. We first consider a few simple examples about the asymptotic probabilitiesµ .

• Obviously,µ(A∗) = 1 andµ( /0) = 0.

• Let α1 = (AA)∗. Then,µn(L(α1)) =

{

1 (if n is even)

0 (if n is odd)
. Hence,µ(L(α1)) does not exist.

• Let A= {a1,a2} andα2 = a∗1. Then,µn(L(α2)) =
1
2n . Hence,µ(L(α2)) = 0.

• Let A= {a1} andα3 = a∗1. Then,µn(L(α3)) = 1. Hence,µ(L(α3)) = 1.

Example2.2. We now consider a few simple examples aboutp-equivalence.

• Let A= {a1,a2}, α1 = A∗ andα ′
1 = a1A∗. Then,µn(L(α1) △ L(α ′

1)) =
|a2An−1|
|An| = 1

2.

Hence,α1 ≃p α ′
1 doesnot hold (by thatµ(L(α1) △ L(α ′

1)) =
1
2).

• Let A= {a1,a2,a3}, α2 = (a1∪a2)
∗, andα ′

2 = 0. Then,µn(L(α2) △ L(α ′
2)) =

2n

3n .
Hence,α2 ≃p α ′

2 holds (by thatµ(L(α2) △ L(α ′
2)) = 0).

• Let A= {a1,a2}, α3 = (a1∪a2)
∗, andα ′

3 = 0. Then,µn(L(α3) △ L(α ′
3)) = 1.

Hence,α3 ≃p α ′
3 doesnot hold (by thatµ(L(α3) △ L(α ′

3)) = 1).

Remark.The numerator of the definition ofµn(L), |{s∈ An | s∈ L}|, is called thedensityof L, denoted
dL(n) [17, Chapter IX Section 2.2]. In particular, it is said thatL haspolynomial density[24] if dL(n) =
O(nk) for some integerk > 0. This property is similar top-equivalence. Actually, when|A| ≥ 2, if L
has polynomial density, thenµ(L) = 0 holds. However, these properties are not equivalent because the
converse does not clearly hold.

Remark.The asymptotic probability over finite strings is like a concrete example of the asymptotic
probability over finiteσ -structures. Precisely, these are different in that the former is for languages
and the latter is for formulas. As for regular languages, regular languages are precisely those definable in
monadic second-order logic over finite strings (MSO[<]) [6]. Thus, the asymptotic probability for regular
languages is regarded as a concrete example of the asymptotic probability over finiteσ -structures. In
additon, the zero-one law considered in this paper is not about “without order”, but about “with order”.
(This difference is important. For example, first-order logic without order (FO) has zero-one law, while
first-order logic with order (FO[<]) does not [13].)

2.2 Descriptive Complexity

In this paper, we use the following results from descriptivecomplexity.

Theorem 2.1([11, Corollary 9.22]). FO(TC) = NL

Theorem 2.2([11, Theorem 9.11]). FO(DTC) = L

Theorem 2.3([11, Corollary 10.29]). SO(TC) = PSPACE

TC is a special function such that, for any binary relationR, TC(R) is the transitive closure ofR. DTC
is also a special function such that, for anydeterministicbinary relationR (i.e, (q,q′)∈R∧(q,q′′)∈R→
q′ = q′′), DTC(R) is the transitive closure ofR.
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3 Fundamental results ofp-equivalence

In this section, we give some fundamental results ofp-equivalence.
First, p-equivalence is an equivalence relation (i.e.,≃p is (1) reflective :L1 ≃p L1, (2) symmetric

: L1 ≃p L2 ⇒ L2 ≃p L1, and (3) transitive :L1 ≃p L2∧ L2 ≃p L3 ⇒ L1 ≃p L3. ). 1 and 2 obviously

hold. 3 is proved by the following inequality. 0≤ |(L1△L3)∩An|
|An| ≤ |(L1△L2)∩An|

|An| + |(L2△L3)∩An|
|An| = µn(L1 △

L2)+ µn(L2 △ L3). On the right hand side, by the assumption, limn→∞ µn(L1 △ L2)+ µn(L2 △ L3) = 0.
Therefore, by the squeeze theorem,µ(L1 △ L3) = 0. Hence,L1 ≃p L3.

3.1 p-equivalence andf -equivalence

In this subsection, we show a relationship betweenp-equivalence andf -equivalence.

Proposition 3.1.

(1) =⊆≃ f ⊆≃p.

(2) When|A| ≥ 2, ≃ f (≃p.

(3) When|A|= 1, ≃ f is equal to≃p.

Proof. (1) ≃ f ⊆ ≃p is followed by that, ifL1 △ L2 is a finite set, thenµ(L1 △ L2) = 0. (2) It is proved
by thatα2 ≃p α ′

2 holds, whereasα2 ≃ f α ′
2 does not hold, whereα2 andα ′

2 are the regular expressions in
Example 2.2. (3) We are enough to prove that≃ f ⊇≃p. We prove the contraction , i.e., ifL1 6≃ f L2, then
L1 6≃p L2. Note thatµn(L1 △ L2) is 0 or 1 because|A|= 1 and then|An|= 1. If L1 6≃ f L2, thenL1 △ L2

is an infinite set, i.e.,µn(L1 △ L2) = 1 occurs infinitely. Therefore, limn→∞ µn(L1 △ L2) 6= 0. Hence,
L1 6≃p L2.

3.2 A robustness ofp-equivalence

We have defined the asymptotic probability ofL as (1)µn(L) =
|{s∈An|s∈L}|

|An| . However, some other defi-

nitions of the asymptotic probability ofL have been considered, for example, (2)µ∗
n(L) =

|{s∈A<n|s∈L}|
|A<n|

and (3)δn(L) =
∑n−1

k=0 µk(L)
n , whereA<n =

⋃

0≤k<n Ak. (µn is used by [4], Salomaa and Soittola [19], Sin’ya
[20], and us;µ∗

n is used by Berstel [4];δn is used by Berstel et al. [5]. More details are written in [21].)
Let µ∗(L) = limn→∞ µ∗

n(L) andδ (L) = limn→∞ δn(L) in the same way asµ(L).
Proposition 3.2 says that the three almost equivalences defined byµ , µ∗, andδ are all equivalent

over regular languages. To prove it, we recall the followingtwo theorems.

Theorem 3.1(Stolz-Cesàro theorem (See e.g., [16])). If limn→∞
an+1−an
bn+1−bn

= l, then limn→∞
an
bn

= l, where
{an}

∞
n=0 is a sequence of integers,{bn}

∞
n=0 is a sequence of integers and strictly monotone, and l is a real

number.

Theorem 3.2(Lynch [14]). For any regular language L, there exists a positive integer asuch that, for
any integer0≤ b< a, limn→∞ µan+b(L) exists. (Let lb be limn→∞ µan+b(L).)

Proposition 3.2. For any regular language L, the following three conditions are all equivalent. (1)µ(L)=
0; (2) µ∗(L) = 0; and (3)δ (L) = 0.

Proof. 1. ⇒ 2. and 1.⇒ 3. are proved directly by Theorem 3.1. (This part holds even if L is not a
regular language.)
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Conversely, 3.⇒ 1. is proved by the following inequality.

δn(L) =
n−1

∑
k=0

µk(L)
n

≥
a−1

∑
b=0

∑m−1
k′=0 µak′+b(L)

am
×

am
n

,wherem= ⌊n
a⌋ anda is an integer enjoying the properties stated in Theorem 3.2.Then, by Theorem

3.1 (Letam = ∑m−1
k′=0 µak′+b(L) andbm = am), the limit of the above formula asn approaches infinity is

∑a−1
b=0

lb
a . By limn→∞ δn(L) = 0 and the squeeze theorem,lb = 0 for everyb. Hence, limn→∞ µn(L) = 0.

Moreover, 2.⇒ 1. is proved by the following inequality.

µ∗
n(L) =

n−1

∑
k=0

µk(L)×|A|k

∑n−1
k=0 |A|

k
≥

a−1

∑
b=0

∑m−1
k′=0 µak′+b(L)×|A|ak′+b

∑m−1
k′=0 |A|

ak′+b
×

∑m−1
k′=0 |A|

ak′+b

∑a−1
b′=0∑m−1

k′=0 |A|
ak′+b′

×
∑a−1

b′=0∑m−1
k′=0 |A|

ak′+b′

∑n−1
k=0 |A|

k

=
a−1

∑
b=0

∑m−1
k′=0 µak′+b(L)×|A|ak′+b

∑m−1
k′=0 |A|

ak′+b
×

|A|b

∑a−1
b′=0 |A|

b′
×

∑a−1
b′=0∑m−1

k′=0 |A|
ak′+b′

∑n−1
k=0 |A|

k

,wherem= ⌊n
a⌋ anda is an integer enjoying the properties stated in Theorem 3.2.Then, by Theorem

3.1 (Let am = ∑m−1
k′=0 µak′+b(L)× |A|ak′+b andbm = ∑m−1

k′=0 |A|
ak′+b), the limit of the above formula asn

approaches infinity is∑a−1
b=0 lb ×

|A|b

∑a−1
b′=0

|A|b′
. By limn→∞ µ∗

n(L) = 0 and the squeeze theorem,lb = 0 for

everyb. Hence, limn→∞ µn(L) = 0.

3.3 The DFA condition

In [20], thezero-one lawregarding the above asymptotic probabilities is introduced and some algebraic
characterizations are given. We now give the DFA condition,which is different from the characterisations
in [20, Theorem 1]. This condition is very useful to construct the algorithms in the following section.
(This condition can be proved via [20, Theorem 1]. However, in this paper, we give a proof more directly
and simply.)

Lemma 3.1. For any DFAA = (Q,A,δ ,q0,F),

µ(L(A )) 6= 0 ⇐⇒ ∃q∈ F.(Reachable(q0
,q)∧∀q′ ∈ Q.(Reachable(q,q′)→ Reachable(q′,q)))

µ(L(A )) 6= 0 means that either the limit does not exist, or the limit exists and is not equal to 0.

Proof. Let µn(q) =
{s∈An|δ (q0,s)=q}

|A|n and letµn(Q′) = ∑q∈Q′ µn(q). (Note thatµn(L(A )) = µn(F).)

(⇒) We prove the contraposition. (i.e., if∀q ∈ F.(Reachable(q0,q) → ∃q′ ∈ Q.(Reachable(q,q′)∧
¬Reachable(q′,q))), thenµ(L(A )) = 0.)

Let Rq = {q′ ∈ Q | Reachable(q′,q)}. Then,

0≤ µk(F) = ∑
q∈F

µk(q)≤ ∑
q∈F

µk(Rq)≤ ∑
q∈F

(1−
1

|A||Q|
)×µk−|Q|(Rq) (1)

≤ . . .

≤ ∑
q∈F

(1−
1

|A||Q|
)
⌊ k
|Q|

⌋
×µ(k mod |Q|)(Rq)

(by using (1) repeatedly)

≤|F |× (1−
1

|A||Q|
)
⌊ k
|Q| ⌋
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(1) is proved as follows. It is enough to prove that, for anyq′′ ∈ Rq, there exists a strings′ such
that the length is|Q| andδ (q′′,s′) 6∈ Rq. First, there exists a strings′1 such thatδ (q′′,s′1) 6∈ Rq by
the assumption. We can assume that the length ofs′1 is at most|Q| because the shortest length of
strings′1 satisfyingδ (q′′,s′1) 6∈ Rq is at most|Q|. Second,δ (q′′,s′1s′2) 6∈ Rq for any strings′2 by the
definition ofRq. Then,s′ = s′1s′2 satisfies the above condition by choosing a strings′2 whose length
is |Q|− |s′1|.

Hence, by that limk→∞ |F|× (1− 1
|A||Q| )

⌊ k
|Q| ⌋ = 0 and the squeeze theorem,µ(L(A )) = µ(F) = 0.

(⇐) Let s0 be a string such thatδ (q0,s0) = q and letSq be the SCC (Strongly Connected Compo-
nent) containingq. Note thatSq is a sink SCC by the assumption (∀q′ ∈ Q.(Reachable(q,q′) →
Reachable(q′,q))). Then, by thatSq is a sink SCC,µk(Sq)≥

1
|A||s0|

for anyk≥ |s0|. By the pigeon

hole principle and thatSq is a sink SCC, for anyk ≥ |s0|, there exists a stateq′ ∈ Sq such that

µk(q′) ≥
µk(Sq)
|Sq|

. Let s′ be a string such thatδ (q′,s′) = q and|s′| ≤ |Sq| (note that we can reachq

from any stateq′ ∈ Sq at most|Sq| steps.). Then,

µk+|s′|(q) ≥µk(q
′)×

1

|A||s′|
(by δ (q′,s′) = q)

≥
µk(Sq)

|Sq|
×

1

|A||s′|
≥ (

1

|A||s0|
×

1
|Sq|

)×
1

|A||Sq|
≥ (

1

|A||Q|
×

1
|Q|

)×
1

|A||Q|

for anyk≥ |s0|. We can prove thatµ(L(A )) = 0 (i.e.,∀ε > 0.∃N.∀n> N.|µn(F)|< ε) is not true
by the above inequality. (ε = 1

|A||Q| ×
1
|Q| ×

1
|A||Q| is a counter example.) Therefore,µ(L(A )) 6= 0.

We now introduce the xor automatons of two DFAs.

Definition 3.1. Let A1 = (Q1,A,δ1,q0
1,F1) andA2 = (Q2,A,δ2,q0

2,F2) be DFAs. Then, the xor automa-
ton ofA1 andA2, A1⊕A2, is the DFA(Q1×Q2,A,δ ′,(q0

1,q
0
2),F

′), where

(1) δ ′((q1,q2),a) = (δ1(q1,a),δ2(q2,a)); and

(2) F ′ = {(q1,q2) | q1 ∈ F1 xor q2 ∈ F2}.

Then, the next proposition easily follows.

Proposition 3.3. For any DFAsA1 andA2, L(A1⊕A2) = L(A1) △ L(A2).

Moreover, note that we can constructA1⊕A2 from A1 andA2 in logarithmic space.

4 The computational complexity upper bounds ofp-equivalence prob-
lems

In this section, we show the computational complexity upperbounds ofp-equivalence problems. In
particular, in terms of the (fully) equivalence problems for REGs, some algorithms have already been
developed. One approach is to transform two regular expressions into two equivalent NFAs by Meyer
and Stockmeyer [22, Proposition 4.11]. We now give algorithms for thep-equivalence problems by
using standard results from descriptive complexity [11]. These algorithms are given by the condition in
Lemma 3.1. We prove the next theorem.
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Theorem 4.1.

1. The p-equivalence problem for DFAs is in NL.

2. The p-equivalence problem for unary DFAs is in L.

3. The p-equivalence problem for NFAs is in PSPACE.

4. The p-equivalence problem for unary NFAs is in coNP.

Proof.

1. We first give a reduction from a DFA to a first-order structure. LetM A = 〈Q,{Ra}a∈A,R−,q0,F〉 be
the first-order structure corresponding to a DFAA = (Q,A,δ ,q0,F), where (1)Ra ⊆ Q2 is a binary
relation such that(q1,q2) ∈ Ra ⇐⇒ δ (q1,a) = q2 for anya∈ A; and (2)R− ⊆ Q2 is a binary relation
such that(q1,q2) ∈ R− ⇐⇒ ∃a ∈ A.(q1,q2) ∈ Ra. (Note that we can constructM A from A in
logarithmic space.)

Let A1 = (Q1,A,δ1,q0
1,F1) and A2 = (Q2,A,δ2,q0

2,F2) be two given DFAs. Then, the first-order
structureM A1⊕A2 can be constructed in logarithmic space. The DFA condition in Lemma 3.1,∃q∈
F ′.Reachable(q0,q)∧∀q′ ∈ Q1×Q2.Reachable(q,q′)→ Reachable(q′,q), can be written in FO(TC)
as∃q.(F(q)∧R∗

−(q
0,q)∧∀q′.(R∗

−(q,q
′)→ R∗

−(q
′,q))), whereR∗

−
2 is the reflective transitive closure

of R−. Thus, by NL = FO(TC) (Theorem 2.1), thep-equivalence problem for DFAs is in NL.

2. In the case of|A| = 1, the sentence written in FO(TC),∃q.(F(q) ∧R∗
−(q

0,q) ∧ ∀q′.(R∗
−(q,q

′) →
R∗
−(q

′,q))), is also written in FO(DTC) becauseR− is deterministic by thatA1 ⊕A2 is also unary
DFA. Therefore, by L = FO(DTC) (Theorem 2.2), thep-equivalence problem for unary DFAs is in L.

3. Let A1 = (Q1,A,δ1,q0
1,F1) and A2 = (Q2,A,δ2,q0

2,F2) be two given NFAs. Then, we construct
a second-order structure from these NFAs. LetM A1⊕A2 = 〈Q1 ⊎Q2,{Ra}a∈A,R−,Q0,F ′〉 be the
second-order structure, where (1)Ra ⊆ ℘(Q1 ⊎ Q2)

2 is a binary second-order relation such that
(Q′,Q′′) ∈ Ra ⇐⇒ δ1(Q′ ∩Q1,a)∪ δ2(Q′ ∩Q2,a) = Q′′ for any a ∈ A; (2) R− ⊆℘(Q1 ⊎Q2)

2 is
a binary second-order relation such that(Q′,Q′′) ∈ R− ⇐⇒ ∃a.(Q′,Q′′) ∈Ra; (3) Q0 = {q0

1,q
0
2}; and

(4) F ′ ⊆℘(Q1⊎Q2) is a unary second-order relation such thatQ′ ∈ F ′ ⇐⇒ (∃q1 ∈ Q′ ∩Q1.q1 ∈
F1) xor (∃q2 ∈ Q′ ∩Q2.q2 ∈ F2). (Note that we can constructM A1⊕A2 from A1 andA2 in polyno-
mial space.) This structure corresponds to the xor automaton of the two DFAs given by powerset
construction of these NFAs.

Then, the DFA condition in Lemma 3.1 can be written in SO(TC) as ∃Q.(F(Q) ∧ R∗
−(Q

0,Q) ∧
∀Q′.(R∗

−(Q,Q′) → R∗
−(Q

′,Q))), whereR∗
− is the reflective transitive closure ofR−. Therefore, by

PSPACE = SO(TC) (Theorem 2.3), thep-equivalence problem for NFAs is in PSPACE.

4. In this case, we give a coNP algorithm for thep-equivalence problem directly because it may be easier
than using Fagin’s Theorem [11].

Let A be then×n adjacency matrix generated from a unary NFAA = ({1, . . . ,n},{0},δ ,1,F ). More
precisely,A is an adjacency matrix such that (1)(A)i, j = 1 if j ∈ δ (i,0), and (2)(A)i, j = 0 if j 6∈ δ (i,0).
It is immediate that 0n ∈ L(A ) if and only if there exists a numberj ∈ F such that(An)1, j = 1. The
following algorithm (Algorithm 1) is based on the next lemma.

Lemma 4.1. For any unary NFAs,A1 andA2, L(A1) 6≃p L(A2) ⇐⇒ there exists n such that

1. 2|Q1|+|Q2| ≤ n< 21+|Q1|+|Q2|; and

2. 0n ∈ L(A1) △ L(A2).

2R∗
−(q,q

′) denotesTC(R−)(q,q′)∨q= q′.
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Proof. Note thatL(A1)≃p L(A2) if and only if L(A1)≃ f L(A2) by that these NFAs are unary NFAs
and Proposition 3.1. Then, it is enough to prove thatL(A1) △ L(A2) is a infinite set if and only
if there existsn such that (1) 2|Q1|+|Q2| ≤ n < 21+|Q1|+|Q2|; and (2) 0n ∈ L(A1) △ L(A2). Let vk =
(Ak

1 ·e1,Ak
2 ·e1), whereA1 andA2 are the adjacency matrices generated fromA1 andA2, respectively;

ande1 is the unit vector(1,0, . . . ,0). It is immediate that, for anyk≥ 2|Q1|+|Q2|, vk occurs infinitely in
the sequence{vk}

∞
k=0 because the number of the pattern ofvk is at most 2|Q1|+|Q2|. Moreover, for any

v occurring infinitely in the sequence{vk}
∞
k=0, there existsk′ such that 2|Q1|+|Q2| ≤ k′ < 2×2|Q1|+|Q2|

andv = vk′ because the period of the sequence{vk}
∞
k=0 is at most 2|Q1|+|Q2|. Hence, this Lemma is

proved.

Then, we give an algorithm (Algorithm 1) to search a numbern such that satisfies the condition 1 and
the condition 2 in Lemma 4.1. Nondeterministically “guess”the binary representation ofn, and test
whether there is a path in the adjacency matrix ofA1 andA2 of lengthn to accepting states. This idea
is based on [15, Theorem 6.1] that states that the equivalence problem for unary NFAs is in coNP. The
algorithm runs in nondeterministically polynomial time.

Algorithm 1 p-equivalence Problem for unary NFA
Ensure: L(A1)≃p L(A2)? (Trueor False)

(A′
1,A

′
2)⇐ (A1,A2), whereA1 andA2 are the adjacency matrices generated from two unary NFAs,A1

andA2, respectively.
d ⇐ 1
while d < 1+ |Q1|+ |Q2| do

(A′
1,A

′
2)⇐ (A′

1×A′
1,A

′
2×A′

2) or (A′
1,A

′
2)⇐ (A′

1×A′
1×A1,A′

2×A′
2×A2) (nondeterministically)

d ⇐ d+1
end while
if (∃ j.(A′

1)1, j = 1) xor (∃ j.(A′
2)1, j = 1) then

returnFalse
else

returnTrue
end if

In Algorithm 1, if any process in the algorithm returnsTrue, it is shown thatL(A1) ≃p L(A2). Oth-
erwise (i.e., if there exists a process such that returnsFalse), it is shown thatL(A1) 6≃p L(A2).

Therefore, thep-equivalence problem for unary NFAs is in coNP.

4.1 Some generalized equivalence problems

We conclude this section with a result for some generalized equivalence problems.

Corollary 4.1. Let x-equivalence problem be an equivalence problem satisfying that the x-equivalence
problem for DFAs is logarithmic space reducible to theΦx-model-checking problem (i.e, the problem to
decide whetherM satisfiesΦx for a given modelM , whereΦx is a first-order sentence with transitive
closure). Then,

1. The x-equivalence problem for DFAs is in NL.

2. The x-equivalence problem for unary DFAs is in L.
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3. The x-equivalence problem for NFAs is in PSPACE.
For example, f -equivalence [2, 3] andE-equivalence [8] satisfy the condition ofx-equivalence,

whereE is a finite set. The DFA conditions of these equivalences can be easily written in a first-order
sentence with transitive closure.

5 The computational complexity lower bounds ofp-equivalence problems

In this section, we show the computational complexity lowerbounds ofp-equivalence problems.
Theorem 5.1.
1. The p-equivalence problem for DFAs is NL-hard.

2. The p-equivalence problem for unary REGs is coNP-hard.

3. The p-equivalence problem for REGs is PSPACE-hard.

Proof. 1. We reduce the GAP (Graph Accessibility Problem) to these problems, whereGAP= {G |
is ann×n adjacency matrix that has a path from node 1 to noden}. (This proof is based on [12, The-
orem 26].) Note that GAP is NL-hard [12]. We define the DFAAG = ({−1,1, . . . ,n},{1, . . . ,n},δ ,1,
{n}), where (1)δ (i, j) = j if (i, j) is an edge ofG and 1≤ i < n; (2) δ (n, j) = n; and (3)δ (i, j) =−1
for all other values ofi, j. In this reduction, once you visit atn, you will not get out fromn. Then,
it is immediate thatG∈ GAP ⇐⇒ L(AG) 6≃p /0 and note that this reduction is in logarithmic space.
Hence, thep-equivalence problem for DFAs is coNL-hard. By NL = coNL [10,23], thep-equivalence
problem is also NL-hard.

2. This part can be solved by the same reduction as [15, Theorem 6.1]. This is a reduction from the
complement of the equivalence problem to 3-SAT. Note that 3-SAT is a well-known NP-hard problem
[7]. Let the regular expressionE and thek-th prime numberpk be the same as [15, Theorem 6.1].
Intuitively, a string 0i corresponds to an assignment in 3-SAT whosek th variable is True[False] if and
only if i ≡ 1[0](mod pk) andE corresponds to a given formula. 0i 6∈ L(E) means that the assignment
corresponding to 0i satisfies the formula corresponding toE.

Then, we can easily show thatL(E) = A∗ ⇐⇒ L(E)≃ f A∗ because, for any two numbers,i1 andi2,
such thati1 ≡ i2(mod ∏n

k=1 pk), 0i1 ∈ L(E) ⇐⇒ 0i2 ∈ L(E) holds. Therefore, by Proposition 3.1,
L(E) = A∗ ⇐⇒ L(E)≃p A∗. Hence, thep-equivalence problem for unary REGs is coNP-hard.

3. It is enough to prove that thep-equivalence problem for REGs is NLINSPACE-hard because a lan-
guage that is CSL-hard (i.e, NLINSPACE-hard) is also PSPACE-hard [9, Lemma 1.10.(1)]. The
reduction of this proof is based on [9, Proposition 2.4], which is about that the equivalence problem
for REGs is PSPACE-hard. Intuitively, in these two reductions, a regular expressionαs

M corresponds
to a given nondeterministic linear-space bounded Turing machineM and a given input strings and a
strings′ 6∈ L(αs

M) corresponds to an accepting sequence ofM on inputs.

LetM =(Q,AM,δ ,q0,qa) be a nondeterministic linear-space bounded Turing machineands= a1 . . .an

be an input string, where (1)Q is a finite set of states; (2)AM is a finite alphabet, whereAM always
contains the blank symbol ; (3) δ : Q×AM →℘(Q×AM×{L,R}) is a transition function; (4)q0 ∈Q
is the initial state; and (5)qa ∈ Q is the acceptance state. We also require that once the machine enters
its acceptance states, it never leaves it.M accepts an inputs if the machine can reach an acceptance
stateqa from the initial configuration (i.e, the header is at the leftmost position, the state isq0, and the
tape isa1 . . .an) by finitely transitions. Then, we construct the REGαs

M = α1∪α2∪α3 as follows3;

3A finite set{s1, . . . ,sn} denotes the regular expressions1∪·· ·∪sn andA\c denotesA\{c}.
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(a) A= {#}∪AM ∪ (Q×AM),

(b) (input error)α1 = ((A\#)∪#((A\ (q0,a1))∪ (q0,a1)((A\a2)∪a2((A\a3)∪a3(. . . )))))A∗,

(c) (acceptance error)α2 = (A\ (
⋃
{qa}×AM))

∗,

(d) transition error)α3 =
⋃

c1,c2,c3∈A(A\ (
⋃
{qa}×AM))

∗c1c2c3An−2(A3\ fM(c1,c2,c3))A∗, and

(e) fM : A3 →℘(A3) is the transition function forM. Formally, eachfM(c1,c2,c3) is the smallest
set that satisfies the following conditions:

(i.) If c1 = (q,a1), c2 = a2, and(q′,a′1,R) ∈ δ (q,a1), then(a′1,(q
′,a2),c3) ∈ fM(c1,c2,c3);

(ii.) If c1 = (q,a1) and(q′,a′1,L) ∈ δ (q,a1), then(a′1,c2,c3) ∈ fM(c1,c2,c3);
(iii.) If c2 = (q,a2), c3 = a3, and(q′,a′2,R) ∈ δ (q,a2), then(c1,a′2,(q

′,a3)) ∈ fM(c1,c2,c3);
(iv.) If c2 = (q,a2), c1 = a1, and(q′,a′2,L) ∈ δ (q,a2), then((q′,a1),a′2,c3) ∈ fM(c1,c2,c3);
(v.) If c3 = (q,a3), c2 = a2, and(q′,a′3,L) ∈ δ (q,a3), then(c1,(q′,a2),a′3) ∈ fM(c1,c2,c3);

(vi.) If c3 = (q,a3) and(q′,a′3,R) ∈ δ (q,a3), then(c1,c2,a′3) ∈ fM(c1,c2,c3);
(vii.) If c1 = a1, c2 = a2, andc3 = a3, then(c1,c2,c3) ∈ fM(c1,c2,c3).

Note that the regular expressionαs
M can be constructed in polynomial time. Then, we prove the next

Lemma. This Lemma gives a relationship betweenL(αs
M) and acceptance runs ofM on the inputs.

Lemma 5.1. For any regular expressionαs
M constructed in the above manner and for any string s′,

s′ 6∈ L(αs
M) if and only if s′ is in the form of

#(q0
,a0

1) . . .a
0
n#. . .#ai

1 . . . (q
i
,ai

ki
) . . .ai

n#. . .#am
1 . . .(qm

,am
km
)cm+1 . . .cl

, where (a) s= a0
1 . . .a

0
n; (b) q0 is the initial state in M; (c) qm is the acceptance state in M; and

(d) for each i (1≤ i < m),#ai
1 . . . (q

i ,ai
ki
) . . .ai

n denotes the i th configuration (i.e., in step i, each j-th
(1≤ j ≤ n) character is aij , the state is qi , and the header is at the ki-th position) and this configuration
is obtained from the i−1 th configuration by a transition.

Proof.

(only if) (a) and (b) are followed by (input error); (c) (i.e.,qa occurs ins′) is followed by (acceptance
error); (d) is followed by (transition error).

(if) First,s′ 6∈ L(α1) is followed by thats′ is form of #(q0,a0
1) · · ·a

0
n · · · . Second,s′ 6∈ L(α2) is followed

by thatqa occurs ins′. Third, s′ 6∈ L(α3) is followed by thats′ represents valid configurations
until qa does not occur ins′. Therefore,s′ 6∈ L(αs

M).

It is immediate that anys′ satisfying the conditions in Lemma 5.1 corresponds to an acceptance run
of M on the inputs; and, for any acceptance run ofM on the inputs, there exists a strings′ such that
satisfies the conditions in Lemma 5.1. Then, we can prove the next Lemma.

Lemma 5.2. For any nondeterministic linear-space bounded Turing machine M and for any string s,
the following three conditions are equivalent.

(a) M does not accept the input s.

(b) L(αs
M) = A∗.

(c) L(αs
M)≃p A∗.
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Proof. (a)⇔ (b) is followed by Lemma 5.1 and the above consideration. (b)⇒ (c) is easily followed
by =⊆≃p. We only prove (c)⇒ (b). We prove the contraposition.

WhenL(αs
M) 6= A∗, let s′ be a string not inL(αs

M). It is immediate that, for any strings′′, s′s′′ is also
in the form of #(q0,a0

1) . . .a
0
n#. . .#ai

1 . . . (q
i ,ai

ki
) . . .ai

n#. . .#am
1 . . . (qm,am

km
)cm+1 . . .cl . (Note that any

string matchescm+1 . . .cl .)

Therefore,µn′(L(αs
M)) ≤ 1− 1

|A||s′ |
andµn′(L(αs

M) △ A∗) = 1− µn′(L(αs
M)) ≥ 1− (1− 1

|A||s′ |
) = 1

|A||s′ |

hold, wheren′ ≥ |s′|. Hence, byµn′(L(αs
M) △ A∗) 6= 0, L(αs

M) 6≃p A∗.

Thus, we can reduce the membership problem for nondeterministic linear-space bounded Turing ma-
chine to thep-equivalence problem for REGs. Therefore, thep-equivalence problem for REGs is
PSPACE-hard.

Remark.The principal difference between this reduction and the reduction of [9, Proposition 2.4] is only
(transition error). By this modification,L(α)≃p A∗ ⇐⇒ L(α) = A∗ holds.

The next theorem is obtained from Theorem 4.1 and Theorem 5.1.

Theorem 5.2.

1. The p-equivalence problem for DFAs is NL-complete.

2. The p-equivalence problem for unary DFAs is in L.

3. The p-equivalence problems for NFAs and REGs are PSPACE-complete.

4. The p-equivalence problems for unary NFAs and unary REGs are coNP-complete.

Proof. We can transform any regular expressionα into an NFAAα such thatL(α) = L(Aα) in poly-
nomial time (e.g., Thompson’s construction [25, 18]). For example, it is an easy consequence that the
p-equivalence problem for REGs is in PSPACE by the construction and Theorem 4.1. It is also an easy
consequence that thep-equivalence problem for NFAs is PSPACE-hard by the construction and Theorem
5.1.

5.1 Some generalized equivalence problems

We conclude this section with a result for some generalized equivalence problems.

Corollary 5.1. Let x-equivalence problem be an equivalence problem satisfying that= ⊆ ≃x ⊆ ≃p.
Then,

(1) The x-equivalence problems for REGs and NFAs are PSPACE-hard.

(2) The x-equivalence problem for DFAs is NL-hard.

(3) The x-equivalence problems for unary REGs and unary NFAsare coNP-hard.

Proof. We first show thatL(αs
M)≃x A∗ ⇐⇒ L(αs

M)≃p A∗.

(⇒) It is followed by that≃x ⊆≃p.

(⇐) By L(αs
M) = A∗ ⇐⇒ L(αs

M)≃p A∗ (Lemma 5.2),L(αs
M) = A∗. Then,L(α)≃x A∗ is followed by

=⊆≃x.
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Therefore, we can reduce the membership problem for nondeterministic linear-space bounded Turing
machine to thex-equivalence problem for REGs by using the same reduction inTheorem 5.1. Hence, (1)
is proved.

(2) and (3) are also proved in the same way as (1). (2) is followed by thatL(AG) 6≃p /0 ⇐⇒ L(AG) 6=
/0 is described in Theorem 5.1. (3) is followed by thatL(E) ≃p A∗ ⇐⇒ L(E) = A∗ is described in
Theorem 5.1.

Moreover, the next corollary is obtained from Corollary 4.1and Corollary 5.1

Corollary 5.2. Let x-equivalence problem be an equivalence problem satisfying that (1) the x-equivalence
problem for DFAs is logarithmic space reducible to theΦx-model-checking problem; and (2)=⊆≃x ⊆
≃p. Then,

(1) The x-equivalence problems for REGs and NFAs are PSPACE-complete.

(2) The x-equivalence problem for DFAs is NL-complete.

For example,f -equivalence andE-equivalence satisfy the condition ofx-equivalence, whereE is a
finite set. Hence, for any finite setE, theE-equivalence problem for NFAs [8] is also PSPACE-complete,
whereasE is fixed.

6 The computational complexities of zero-one law

We define thezero-one problemas the problem to decide whether a given languageL obeys zero-one law
[20] (i.e.,µ(L) = 0 or µ(L) = 1). (In terms of time complexity, the zero-one problem for DFA is O(|A|n)
[20], where|A| is the size of alphabet andn is the number of states.)

In this section, we show that the zero-one problem and thep-equivalence problem are the same in
terms of the computational complexities.

Corollary 6.1.

1. The zero-one problem for REG and NFA are PSPACE-complete.

2. The zero-one problem for DFA is NL-complete.

3. The zero-one problem for unary REG and unary NFA are coNP-complete.

4. The zero-one problem for unary DFA is in L.

Proof. First, each zero-one problem can be solved by twop-equivalence problems asL ≃p /0∨ L ≃p

A∗. Therefore, the zero-one problems are not harder thanp-equivalence problems. For example, if
p-equivalence problem for REGs is in PSPACE, then zero-one problem for REG is also in PSPACE.

It is also proved that the computational hardness of the zero-one problems are given in the almost
same way as the computational hardness for thep-equivalence problems as follows.

REG and NFA In Theorem 5.1, for any regular expressionαs
M constructed fromM ands, L(αs

M) 6≃p /0 is
easily followed by thatL(##A∗)⊆ L(αs

M). Therefore,L(αs
M) has zero-one law⇐⇒ L(αs

M)≃p A∗.

DFA In Theorem 5.1, we intentionally create a path to 0 by a new charactere. More precisely, we
define the DFAAG = ({0,1, . . . ,n},{e,1, . . . ,n},δ ,1,{n}), where (1) if i 6= n, thenδ (i,e) = 0;
(2) if i = n, thenδ (i,e) = n; and (3) otherwise,δ (i, j) is the same asδ (i, j) in Theorem 5.1. Then,
L(AG) 6≃p A∗ is easily followed by that, for any strings∈ L(eA∗), s 6∈ L(AG). Therefore,L(AG)
has zero-one law⇐⇒ L(AG)≃p /0.
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unary REG and unary NFA We can use the reduction in [15, Theorem 6.1]. In [15, Theorem6.1.], E
is always an infinite set. Therefore,L(E) 6≃ f /0. By Lemma 4.1,L(E) 6≃p /0. Hence,E has zero-one
law ⇐⇒ L(E)≃p A∗.

7 Conclusion and Future Work

We have got the following results (Table 1). In regular languages, thep-equivalence problems and the
(fully) equivalence problems are the same in terms of the computational complexities. Moreover, we
have got the same complexity computational results for somegeneralized equivalence problems.

One of the possible future works is to study aboutp-equivalence for more complex language classes
(e.g., context free languages). In connection with almost-equivalence, it is also interesting to characterize
hyper-minimization based onp-equivalence like [3, Theorem 3.4].

unary alphabet (|A|= 1) general case
REG DFA NFA REG DFA NFA

equivalence coNP-c in L coNP-c PSPACE-c NL-c PSPACE-c
[15] [12] [15] [15] [12] [15]

p-equivalence coNP-c in L coNP-c PSPACE-c NL-c PSPACE-c
(Th.5.2) (Th.4.1) (Th.5.2) (Th.5.2) (Th.5.2) (Th.5.2)

zero-one coNP-c in L coNP-c PSPACE-c NL-c PSPACE-c
(Cor.6.1) (Cor.6.1) (Cor.6.1) (Cor.6.1) (Cor.6.1) (Cor.6.1)

Table 1: The computational complexities of some problems for regular languages
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[1] Roland Backhouse, Dexter Kozen & Bernhard Möller, editors (2001):Applications of Kleene Algebra. 01081,
Dagstuhl-Seminar-Report. Available athttps://www.dagstuhl.de/Reports/01/01081.pdf.

[2] Andrew Badr (2008):Hyper-Minimization in O(n2). In: Proceedings of the 13th International Conference on
Implementation and Applications of Automata, CIAA ’08, Springer-Verlag, Berlin, Heidelberg, pp. 223–231,
doi:10.1007/978-3-540-70844-5_23.

[3] Andrew Badr, Viliam Geffert & Ian Shipman (2009):Hyper-minimizing minimized deterministic finite state
automata. RAIRO - Theoretical Informatics and Applications43, pp. 69–94, doi:10.1051/ita:2007061.

[4] Jean Berstel (1973):Sur la densit́e asymptotique de langages formels. In: International Colloquium on
Automata, Languages and Programming (ICALP, 1972), North-Holland, pp. 345–358.

[5] Jean Berstel, Dominique Perrin & Christophe Reutenauer(2010):Codes and automata. 129, Cambridge Uni-
versity Press. Available athttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.
9934.
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7. Available athttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.375.1193.

[18] Jacques Sakarovitch (2009):Elements of automata theory. Cambridge University Press, doi:10.1017/

CBO9781139195218.

[19] Arto Salomaa & Matti Soittola (1978):Automata-theoretic aspects of formal power series. Springer Science
& Business Media, doi:10.1007/978-1-4612-6264-0.

[20] Ryoma Sin’ya (2015):An Automata Theoretic Approach to the Zero-One Law for Regular Languages: Algo-
rithmic and Logical Aspects. In: Proceedings Sixth International Symposium on Games, Automata, Logics
and Formal Verification, GandALF 2015, Genoa, Italy, 21-22nd September 2015., pp. 172–185, doi:10.
4204/EPTCS.193.13.

[21] Ryoma Sin’ya (2016):Zero-One Law for Regular Languages. Ph.D. Thesis, Tokyo Insutitute of Technology,
Japan. Available athttp://t2r2.star.titech.ac.jp/rrws/file/CTT100701584/ATD100000413/.

[22] Larry Joseph Stockmeyer (1974):The complexity of decision problems in automata theory and logic. Avail-
able athttps://dspace.mit.edu/handle/1721.1/15540.
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