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Modal logic is a paradigm for several useful and applicable formal systems in computer science.
It generally retains the low complexity of classical propositional logic, but notable exceptions exist
in the domains of description, temporal, and spatial logic,where the most expressive formalisms
have a very high complexity or are even undecidable. In search of computationally well-behaved
fragments, clausal forms and other sub-propositional restrictions of temporal and description logics
have been recently studied. This renewed interest on sub-propositional logics, which mainly focus
on the complexity of the various fragments, raise natural questions on their the relative expressive
power, which we try to answer here for the basic multi-modal logic KN. We consider the Horn and
the Krom restrictions, as well as the combined restriction (known as the core fragment) of modal
logic, and, orthogonally, the fragments that emerge by disallowing boxes or diamonds from positive
literals. We study the problem in a very general setting, to ease transferring our results to other
meaningful cases.

1 Introduction

The usefulness and the applicability of modal logic is well-known and accepted. Propositional modal
logic generally retains the decidability of the satisfiability problem of classical propositional logic, but
extends its language withexistential modalities(diamonds, to expresspossibility) and theiruniversal
versions (boxes, to expressnecessity), allowing one to formalize a much wider range of situations. To
simply cite a few, modal logic has been applied not only to philosophical reasoning (e.g., epistemolog-
ical, or metaphysical reasoning - see [7, Chapter 1] for an historical perspective), but also to computer
science, being paradigmatic of the whole variety of description logics [6], temporal logics [15], and
spatial logics [1].

Until very recently, clausal fragments of modal logic has received little or no attention, with the
exception of a few works which are limited to the Horn fragment [12, 14, 20]. An inversion in this
tendency is mainly due to the newborn interest in sub-propositional fragments of temporal description
logics [3], temporal logics [2], and interval temporal logics [4, 10]. Such results, which mainly concern
the complexity of various sub-propositional fragments of description and temporal logics raise natural
questions on their the relative expressive power, which we try to answer here in a very general form.
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There are two standard ways to weaken the classical propositional language based on the clausal
form of formulas: theHorn fragment, that only allows clauses with at most one positive literal [17], and
theKrom fragment, that only allows clauses with at most two (positive and negative) literals [19]. The
core fragmentcombines both restrictions. Orthogonally, one can restrict a modal language in clausal
form by disallowing either diamonds or boxes in positive literals, obtaining weaker fragments that we
call, respectively, thebox fragmentanddiamond fragment. By combining these two levels of restrictions,
one may obtain several sub-propositional fragments of modal logic, and, by extensions, of description,
temporal, and spatial logics. The interest in such fragments is originated by the quest of computationally
well-behaved logics, and by the observation that meaningful statements can be still expressed under
the sub-propositional restrictions. The satisfiability problem for classical propositional Horn logic is
P-complete [13], while for classical propositional Krom logic (also known as the 2-SAT problem) it
is NLOGSPACE-complete [21], and the same holds for the core fragment. Interestingly enough, the
satisfiability problem for quantified propositional logic (QBF), which is PSPACE-complete in its general
form, becomes P when formulas are restricted to binary (Krom) clauses [5].

Sub-propositional modal logic has been studied mainly under the Horn restriction. The basic modal
logic K, which is PSPACE-complete, remains so under the Horn restriction, but the satisfiability prob-
lem for other cases becomes computationally easier, such asS5, which goes from being NP-complete
to P-complete [12, 14]. In [2, 11], the authors study different sub-propositional fragments of Linear
Temporal Logic (LTL). By excluding the Since and Until operators from the language, and keeping
only the Next/Previous-time operators and the Future and Past box modalities, it is possible to prove
that the Krom and core fragments are NP-hard, while the Horn fragment is still PSPACE-complete (the
same complexity of the full language). Moreover, the complexity of the Horn, Krom, and core fragments
without Next/Previous-time operators range from NLOGSPACE (core), to P (Horn), to NP-hard (Krom).
Where only a universal (anywhere in time) modality is allowed their complexity is even lower (from
NLOGSPACE to P). Temporal extensions of the description logic DL-Litehave been studied under simi-
lar sub-propositional restrictions, and similar improvements in the complexity of various problems have
been found [3]. Sub-propositional fragments of the undecidable interval temporal logicHS [16], have
also been studied. The Horn, Krom, and core restrictions ofHS are still undecidable [10], but weaker re-
strictions have shown positive results. In particular, theHorn fragment ofHS without diamonds becomes
P-complete in two interesting cases [4, 9]: when it is interpreted over dense linear orders, and when the
semantics of its modalities becomes reflexive. On the bases of these results, sub-propositional interval
temporal extensions of description logics have been introduced in [4]. Other clausal forms of temporal
logics, not included in the above classification, have been developed to synthesize systems from logical
specifications, as the logical counterpart of deterministic automata. The most relevant example is the
fragmentGR(1) of LTL [8], for which synthesis is exponentially more efficient than for full LTL.

The purpose of this paper is to consider sub-propositional fragments of the multi-modal logicKN,
and study their relative expressive power in a systematic way. We consider two different notions of
relative expressive power for fragments of modal logic, andwe provide several results that give rise to
two different hierarchies among them, leaving only a few open problems. To the best of our knowledge,
this is the first work where sub-Krom and sub-Horn fragments of KN have been considered.

2 Preliminaries

Let us fix a unary modalsimilarity typeas the setτ of modalitiesα1,α2, . . . ,αN ∈ τ , and a denumerable
setP of propositional letters. Themodal languageKN associated toτ andP contains all and only the
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formulas generated by the following grammar:

ϕ ::=⊤ | p | ¬ϕ | ϕ ∨ϕ |✸α ϕ | ✷αϕ , (1)

wherep∈ P, andα ∈ τ labels thediamond✸α andbox✷α . Other classical operators, such as→ and
∧, can be considered as abbreviations. AKripke τ-frame is a relationalτ-structureF = (W,{R}α∈τ ),
where the elements ofW 6= /0 are calledpossible worlds, and, for eachα ∈ τ , Rα ∈W×W is anacces-
sibility relation. AKripke structureover theτ-frameF is a pairM = (F ,V), whereV : W → 2P is an
evaluation function, and we say thatM modelsϕ at the worldw, denoted byM,w ϕ , if and only if:

• ϕ =⊤;
• p∈V(w), if ϕ = p;
• M,w 6 ψ , if ϕ = ¬ψ ;
• M,w ψ or M,w ξ , if ϕ = ψ ∨ ξ ;
• There existsv such thatwRαv andM,v ψ , if ϕ =✸α ψ .
• For everyv such thatwRαv, it is the case thatM,v ψ , if ϕ =✷α ψ .

In this case, we say thatM is amodelof ϕ ; in the following, we (improperly) use the terms models and
structures as synonyms.

In order to define sub-propositional fragments ofKN we start from theclausal formof KN-formulas,
whose building blocks are thepositive literals:

λ ::=⊤ | p |✸α λ | ✷αλ , (2)

and we say thatϕ is in clausal formif it can be generated by the following grammar:

ϕ ::= λ | ¬λ | ∇(¬λ1∨¬λ2∨ . . .∨¬λn∨λn+1∨λn+2∨ . . .∨λn+m) | ϕ ∧ϕ , (3)

where∇ =✷αi✷α j . . .
︸ ︷︷ ︸

s

ands≥ 0. Sometimes, we write clauses in their implicative form:

∇(λ1∧ . . .∧λn → λn+1∨ . . .∨λn+m),

and we use⊥ as a shortcut for¬⊤. By md(λ ) we mean themodal depthof λ , that is, the number of
boxes and diamonds inλ . Sub-propositionalfragments ofKN can be now defined by constraining the
cardinality and the structure of clauses: the fragment ofKN in clausal form where each clause in (3)
is such thatm≤ 1 is calledHorn fragment, and denoted byKHorn

N , and when each clause is such that
n+m≤ 2 it is calledKrom fragment, and it is denoted byKKrom

N . When both restrictions apply we
denote the resulting fragment, thecore fragment, byKcore

N . We useKBool
N instead ofKN to highlight

that no restrictions apply. It is also interesting to study the fragments that can be obtained from both
the Horn and the Krom fragments by disallowing, respectively, the use of✷αor ✸α in positive literals.
In this way, the fragment ofKHorn

N obtained by eliminating the use of diamonds (resp., boxes) in (2) is
denoted byKHorn,✷

N (resp.,KHorn,✸
N ). By applying the same restrictions toKKrom

N andKcore
N , one obtains

the pairKKrom,✸
N andKKrom,✷

N from the former, and the pairKcore,✸
N andKcore,✷

N , from the latter. All such
sub-Horn, sub-Krom, and sub-core fragments are generally calledboxanddiamondfragments.

It should be noted that in the literature there is no unified definition of the different modal or temporal
sub-propositional logics. Our definition follows the one byNguyen [20], with a notable difference: while
the definition of clauses is the same, we choose a more restrictive definition of what is a formula. Hence,
a formula ofKHorn

N by our definition is also a Horn formula by [20], but not vice versa. However, since
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every Horn formula by [20] can be transformed into a conjunction of Horn clauses, the two definitions
are equivalent. The definition of [12, 14] is equivalent to that of Nguyen, and hence to our own. Other
approaches force clauses to be quantified using auniversalmodality that asserts the truth of a formula in
every world of the model. The universal modality is either assumed in the language [2] or it is definable
using the other modalities [9, 10], but the common choice in the literature of modal (non-temporal) logic
is simply excluding the universal modality. Our results hold in either case: when the universal modality
is present (as part of the language or defined), and clauses are always universally quantified, they become
even easier to prove.

There are many ways to compare the expressive power of different modal languages. In our context,
two different concepts of expressive equivalence arise naturally. The first one, that we callweak expres-
sivity, compares formulas (and models) with the same set of propositional letters. More formally, given
two modal logicsL andL′ interpreted in the same class of relational framesC , we say thatL′ is weakly
at least as expressive asL if, fixed a propositional alphabetP, there exists an effective translation(·)′

from L to L′ such that for every modelM in C , world w in M, and formulaϕ of L, we haveM,w ϕ if
and only ifM,w ϕ ′. We denote this situation withL �w

C
L′, and we omitC if it is clear from the con-

text. The second notion, that we callstrong expressivity, allows the translations to use a finite number of
new propositional letters, and can be formally defined as follows. For every modelM = (F ,V) based on
the set of propositional lettersP and everyP ′ ⊇ P, we say that the modelMP ′

= (F ,VP ′
) based on

P ′ is aextensionof M if V|P =V ′|P . Then, we say thatL′ is at least as expressive asL if there exists
an effective translation(·)′ that transforms anyL-formulaϕ written in the alphabetP into aL′-formula
written in a suitable alphabetP ′ ⊇P, such that for every modelM in C and worldw in M, we have that
M,w ϕ if and only if there exists an extensionM′ of M such thatM′,w ϕ ′. We denote this situation
with L �C L′. Now, we can say thatL andL′ areweakly equally expressiveif L �w

C
L′ andL′ �w

C
L,

and they areequally expressiveif L �C L′ andL′ �C L; in the former case we writeL ≡w L′, and in the
latter case we writeL ≡ L′. Finally, L is weakly less expressive thanL′ if L �w

C
L′ andL 6≡w

C
L′, and

L is less expressive thanL′ if L �C L′ andL 6≡C L′; in the former case we writeL ≺w
C

L′, while in the
latter one we writeL ≺C L′. Clearly, two logics can be equally expressive and not weakly so, but not the
other way around.

GivenL andL′ such thatL is a syntactical fragment ofL′, in order to prove thatL is (weakly) less
expressive thanL′ we show a formulaψ that can be written inL′ but not inL. To this end we proceed
by contradiction, assuming that a translationϕ ∈ L does exist, and by building a model forψ that is
not (and, in the case of strong relative expressiveness, cannot be extended to) a model ofϕ , following
three different strategies: we modify the labeling (Theorem 1 and Theorem 2), we modify the structure
(Theorem 8 and Theorem 9), or we exploit a property ofL′ that L does not possess (Theorem 5 and
Theorem 7). The two different levels that emerged from the above discussion give rise to two different
hierarchies:(i) a weakhierarchy that compares fragments within the same propositional alphabet, and
(ii) astronghierarchy that takes into account any finite extension of thepropositional alphabet.

Adding new propositional letters to facilitate translations from a fragment to another is a common
practice, for example, to prove that everyn-ary clause in propositional logic can be transformed into
an equi-satisfiable set of ternary clauses. In this sense, itcan be argued that the weak hierarchy is less
general; nonetheless, both the weak and the strong hierarchies contribute to the comprehension of the
relative expressive power of sub-propositional fragments. Indeed, both notions have been already studied
under different names [18]: our weak hierarchy captures thenotion ofequivalently rewritability, while
the strong one captures the notion ofmodel-conservative rewritability.
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3 Horn, Krom, and Core Fragments

In this section, we study the relative expressive power of the basic multi-modal logicKBool
N and its sub-

propositional fragments with both boxes and diamonds. Fromnow on, we focus on the class of all
relational frames, and we omit it from the notation. We startby comparing the Horn fragmentKHorn

N
with the full propositional language.

Theorem 1. KHorn
N ≺w KBool

N .

Proof. SinceKHorn
N is a syntactical fragment ofKBool

N , we know thatKHorn
N �w KBool

N . It remains to be
proved that there exists a formula that belongs toKBool

N and that cannot be translated toKHorn
N within the

same propositional alphabet. Consider theKBool
N -formula

ψ ≡ p∨q,

and suppose, by contradiction, that there exists aKHorn
N -formulaϕ such that for every modelM over the

propositional alphabet{p,q}, and every worldw, we have thatM,w ψ if and only if M,w ϕ . We
can assume thatϕ = ϕ1∧ . . .∧ϕl , where eachϕi is a positive literal, the negation of a positive literal, or
a Horn clause. To simplify our argument, ifϕi = λ (resp.,ϕi = ¬λ ) we shall think of it as the clause
(⊤ → λ ) (resp.,(λ → ⊥)). Let us denote byC(ϕi) the set of propositional letters that occur in the
consequent ofϕi: clearly,C(ϕi) is always a singleton, or it is the empty set. Now, consider a model
M = 〈F ,V〉, whereF is based on the set of worldsW, and letw∈W be a world such thatM,w 6 ψ .
Such a model must exist sinceψ is not a tautology. Sinceϕ is a conjunction of Horn clauses, we have
that there must exist at least one clauseϕi = ∇(λ1∧ . . .∧λn → λ ) such thatM,w 6 ϕi. Hence, there must
exist a worldw′ such thatM,w′  λ1∧ . . .∧λn but M,w′ 6 λ . At this point, only three cases may arise
(since we are in a fixed propositional alphabet):

• C(ϕi) = {p}. In this case, we can build a new modelM′ = 〈F ,V ′〉 such that:

V ′(p) =V(p) andV ′(q) =W.

Sinceq holds on every world of the model, we have thatM′ satisfiesψ on every world, and, in
particular, onw. However, beingλ1, . . . ,λn positive literals, they are true onM′ whenever they
were true onM, which means thatM′,w′  λ1∧ . . .∧λn. Now, consider the positive literalλ , we
want to prove that, for each worldv∈ W, M,v 6|= λ implies M′,v 6|= λ . We reason by induction
on md(λ ). If md(λ ) = 0, thenλ = p; sinceM andM′ agree on the valuation of the proposition
p, we have the claim. Suppose, now, thatmd(λ ) > 0. Clearly,λ =✸α λ ′ or λ = ✷αλ ′; assume,
first, thatλ =✸αλ ′. If M,v 6✸αλ ′, then, for everyt ∈W such thatvRα t, we have thatM, t 6 λ ′;
by inductive hypothesis, for everyt ∈W such thatvRα t, we have thatM′, t 6 λ ′, proving that, in
fact, M′,v 6 ✸αλ ′. Now, assume thatλ = ✷α λ ′. If M,v 6 ✷α λ ′, then for somet ∈W such that
vRαt we have thatM, t 6 λ ′; by inductive hypothesis,M′, t 6 λ ′, which implies thatM′,v 6✷α λ ′.
SinceM,w′ 6 λ , the above argument proves thatM′,w′ 6|= λ , which means thatM′,w′ 6|= ϕi. This
means thatM′,w ψ andM′,w 6 ϕ , contradicting the fact thatψ is a translation ofϕ .

• C(ϕi) = {q}. In this case one can apply the same argument as before, by simply switching the
roles ofp andq.

• C(ϕi) = /0. In this case, we can build a new modelM′ = 〈F ,V ′〉 such that:

V ′(p) =V ′(q) =W.
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Since p and q hold on every world of the model, we have thatM′ satisfiesp∨ q everywhere,
and, in particular, onw. However, since the truth ofλ does not depend on the valuations of the
propositional letters, we have that, as before,M′,w′  λ1∧ . . .∧λn butM′,w′ 6|= λ , from which we
can conclude thatM′,w 6 ϕ .

Therefore,ϕ cannot exist, and this means thatψ cannot be expressed inKHorn
N within the same proposi-

tional alphabet. So, the claim is proved.

Now, we turn our attention to the relationship betweenKKrom
N andKBool

N .

Theorem 2. KKrom
N ≺w KBool

N .

Proof. SinceKKrom
N is a syntactical fragment ofKBool

N , we know thatKKrom
N �w KBool

N . It remains to be
proved that there exists a formula that belongs toKBool

N and that cannot be translated toKKrom
N within the

same propositional alphabet. Now, consider theKBool
N -formula

ψ ≡ p∧q→ r,

and suppose, by contradiction, that there exists aKKrom
N -formulaϕ , written in the propositional alphabet

{p,q, r}, such that for every modelM and every worldw we have thatM,w ψ if and only if M,w ϕ .
As before, we can assume thatϕ = ϕ1∧ . . .∧ϕl ; as in Theorem 1, ifϕi is a literal, we treat it as a special
clause. Let us denote byP(ϕi) the set of propositional letters that occur inϕi. Now, consider a model
M = 〈F ,V〉, whereF is based on the set of worldsW, and letw∈W be a world such thatM,w 6 ψ .
Such a model must exist sinceψ is not a tautology. Sinceϕ is a conjunction of Krom clauses, we have
that there must exist at least one clauseϕi = ∇(λ1∨ λ2) such thatM,w 6 ϕi. Hence, there must exist
a world w′ such thatM,w′ 6 (λ1 ∨ λ2). At this point, three cases may arise (since we are in a fixed
propositional alphabet, and we deal with clauses at most binary):

• P(ϕi)⊆ {p,q}. In this case, we can build a new modelM′ = 〈F ,V ′〉 such that:

V ′(p) =V(p), V ′(q) =V(q), andV ′(r) =W.

Sincer holds on every world of the model, we have thatM′ satisfiesψ everywhere, and in particular
onw. However, since the valuation ofp andq are the same ofM, and since the relational structure
has not changed, we have thatM′,w′ 6|= λ1∨λ2, from which we can conclude thatM′,w 6 ∇(λ1∨
λ2) and thus thatw do not satisfyϕ .

• P(ϕi)⊆ {p, r}. In this case, we can build a new modelM′ = 〈F ,V ′〉 such that:

V ′(p) =V(p), V ′(r) =V(r), andV ′(q) = /0.

Sinceq is false on every world of the model, we have thatM′ satisfiesψ everywhere, and in
particular onw. However, since the valuation ofp andr are the same ofM, and since the relational
structure has not changed, we have thatM′,w′ 6|= λ1∨λ2, from which we can conclude thatM′,w 6
∇(λ1∨λ2) and thus thatw do not satisfyϕ .

• P(ϕi) ⊆ {q, r}. In this case, we can apply the same argument as before, by simply switching the
roles ofp andq.

Therefore,ϕ cannot exist, and this means thatψ cannot be expressed inKKrom
N within the same proposi-

tional alphabet.
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Corollary 3. The following results hold:

1. KHorn
N andKKrom

N are�w-incomparable;
2. Kcore

N ≺w KKrom
N ,KHorn

N .

Proof. As we have seen in Theorem 1, theKKrom
N -formula p∨q cannot be translated intoKHorn

N within
the same propositional alphabet, and, as we have seen in Theorem 2, theKHorn

N -formula p∧ q → r
cannot be translated intoKKrom

N under the same conditions. These two observations, together, prove
that we cannot compareKHorn

N and KKrom
N , under the weak notion of expressivity. As an immediate

consequence, sinceKcore
N = KHorn

N ∩KKrom
N , we have thatKcore

N ≺w KHorn
N andKcore

N ≺w KKrom
N .

4 Box and Diamond Fragments

In this section, we study the relative expressive power for box and diamond fragments, starting with sub-
Horn fragments without diamonds. First of all, we prove the following useful property of the fragments
KHorn,✷

N and Kcore,✷
N . Consider two modelsM1,M2 such that allMi = (F ,Vi) are based on the same

relational frame. We define theintersectionmodel as the unique modelMM1∩M2 = (F ,VV1∩V2), where,
for eachw∈W, VV1∩V2(w) =V1(w)∩V2(w).

Lemma 4. KHorn,✷
N is closed under intersection of models.

Proof. Let ϕ = ϕ1∧ . . .∧ϕl aKHorn,✷
N -formula such thatM1,w ϕ andM2,w ϕ , whereM1 = (F ,V1)

and M2 = (F ,V2); we want to prove thatMM1∩M2,w  ϕ . Suppose, by way of contradiction, that
MM1∩M2,w 6 ϕ . Then, there must be someϕi such thatMM1∩M2,w 6 ϕi . As in Theorem 1, we can
assume thatϕi is a clause of the type∇(λ1∧ . . .∧λn → λ ). This means thatMM1∩M2,w

′  λ1∧ . . .∧λn

andMM1∩M2,w
′ 6 λ for somew′. We want to prove that, for each 1≤ j ≤ n, bothM1 andM2 satisfyλ j

atw′. To see this, we reason by induction onmd(λ j). If md(λ j) = 0, thenλ j = p for some propositional
letter p; but if MM1∩M2,w

′  p, thenp∈V1(w′)∩V2(w′), which means thatM1,w′  p andM2,w′  p. If
md(λ j) > 0, thenλ j = ✷αλ ′. SinceMM1∩M2,w

′  ✷αλ ′, for everyv such thatw′ Rα v it is the case that
MM1∩M2,v λ ′. Thus, for everyv such thatw′ Rα v, we know by inductive hypothesis thatM1,v  λ ′

andM2,v λ ′. But this immediately implies thatM1,w′ ✷αλ ′ andM2,v✷αλ ′, which completes the
induction. Now, we know thatM1,w′  λ1∧ . . .∧λn andM2,w′  λ1∧ . . .∧λn; therefore,M1,w′  λ and
M2,w′  λ . A similar inductive argument shows thatMM1∩M2,w

′  λ , implying thatMM1∩M2,w ϕi; but
this contradicts our hypothesis thatMM1∩M2,w 6 ϕ .

Theorem 5. The following relationships hold:

1. KHorn,✷
N ≺ KHorn

N ;
2. Kcore,✷

N ≺ Kcore
N .

Proof. SinceKHorn,✷
N (resp.,Kcore,✷

N ) is a syntactical fragment ofKHorn
N (resp.,Kcore

N ), we know that
KHorn,✷

N � KHorn
N andKcore,✷

N � Kcore
N . It remains to be proved that there exists a formula that belongs

to KHorn
N (resp.,Kcore

N ) and that cannot be translated toKHorn,✷
N (resp.,Kcore,✷

N ) over any finite extension
of the propositional alphabet. Here, we prove that this is the case for aKcore

N -formula (which is aKHorn
N -

formula as well) that cannot be translated toKHorn,✷
N (and, therefore, toKcore,✷

N , either). LetP = {p},
consider theKHorn

N -formula
ψ =✸α p,
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and suppose by contradiction that there exists a propositional alphabetP ′ ⊇ P and aKHorn,✷
N formula

ϕ written overP ′ such that for every modelM over the propositional alphabetP and every worldw
we have thatM,w  ψ if and only if there existsMP ′

such thatMP ′
,w  ϕ . Let M1 = (F ,V1) and

M2 = (F ,V2), whereF is based on the setW = {w0,w1,w2}. Let w0 Rα w1 andw0 Rα w2, and define
the valuation functionsV1,V2 as follows:

Vi(w j) =

{
{p} if i = j,
/0 otherwise.

Clearly, M1,w0  ψ andM2,w0  ψ ; sinceϕ is a KHorn,✷
N -translation ofψ , it must be the case that,

for some extensionsMP ′

1 andMP ′

2 , we have thatMP ′

1 ,w0  ϕ andMP ′

2 ,w0  ϕ . By Lemma 4, their
intersection modelMMP′

1 ∩MP′
2

is such thatMMP′
1 ∩MP′

2
,w0  ϕ . But p 6∈VVP′

1 ∩VP′
2

(w) for everyw∈W, so
MMP′

1 ∩MP′
2
,w 6 ψ . This contradicts the hypothesis thatϕ is a translation ofψ .

To establish the expressive power ofKHorn,✸
N andKcore,✸

N with respect to other fragments, we now
prove a closure property similar to Lemma 4. Consider two models M1 = (F1,V1), M2 = (F2,V2)
based on two (possibly different) relational framesF1 = (W1,{R1}α∈τ) andF2 = (W2,{R2}α∈τ). We
define theproductmodel as the unique modelMM1×M2 = (FF1×F2,VV1×V2), where:(i) FF1×F2 = (W1×
W2,{RR1×R2}α∈τ), that is, worlds are all and only the pairs of worlds fromW1 andW2; (ii) for everyα ∈ τ ,
(w1,w2)RR1×R2,α(w

′
1,w

′
2) if and only if w1R1,αw′

1 andw2R2,αw′
2, that is, worlds inFF1×F2 are connected

to each other as the component worlds were connected inF1 and F2; and (iii) VV1×V2((w1,w2)) =
V1(w1)∩V2(w2).

Lemma 6. KHorn,✸
N is closed under product of models.

Proof. Let ϕ = ϕ1∧ . . .∧ϕl be aKHorn,✸
N -formula such thatM1,w1  ϕ andM2,w2  ϕ . We want to

prove thatMM1×M2,(w1,w2)  ϕ ; suppose by way of contradiction, thatMM1×M2,(w1,w2) 6 ϕ . Then,
there must be someϕi such thatMM1×M2,(w1,w2) 6 ϕi. As in Theorem 1, we can assume thatϕi

is a clause of the type∇(λ1 ∧ . . .∧ λn → λ ). This means thatMM1×M2,(w
′
1,w

′
2)  λ1 ∧ . . .∧ λn and

MM1×M2,(w
′
1,w

′
2) 6 λ for some(w′

1,w
′
2). We want to prove that, for each 1≤ j ≤ n, M1 andM2 satisfy

λ j at, respectively,w′
1 andw′

2. To see this, we reason by induction onmd(λ j). If md(λ j) = 0, then
λ j = p for some propositional letterp: by the definition of product, we have thatMM1×M2,(w

′
1,w

′
2)  p

iff p ∈ V1(w′
1)∩V2(w′

2), which means thatM1,w′
1  p and M2,w′

1  p. If md(λ j) > 0, thenλ j =
✸α λ ′. SinceMM1×M2,(w

′
1,w

′
2) ✸αλ ′, then there exists(v1,v2) such that(w′

1,w
′
2)RR1×R2,α(v1,v2) and

MM1×M2,(v1,v2)  λ ′. We know by inductive hypothesis thatM1,v1  λ ′ and M2,v2  λ ′ and that,
by definition of product,w′

1R1,αv1 and w′
2R2,αv2. But this immediately implies thatM1,w′

1  ✸αλ ′

and M2,w′
2  ✸α λ ′, which completes the induction. Now, we know thatM1,w′

1  λ1 ∧ . . .∧ λn and
M2,w′

2  λ1∧ . . .∧λn; therefore,M1,w′
1  λ andM2,w′

2  λ . A similar inductive argument shows that
MM1×M2,(w

′
1,w

′
2)  λ , implying thatMM1×M2,(w1,w2)  ϕi, in contradiction with the hypothesis that

MM1×M2,(w1,w2) 6 ϕ .

Theorem 7. The following relationships hold:

1. KHorn,✸
N ≺ KHorn

N ;
2. Kcore,✸

N ≺ Kcore
N .

Proof. SinceKHorn,✸
N (resp.,Kcore,✸

N ) is a syntactical fragment ofKHorn
N (resp.,Kcore

N ), we know that
KHorn,✸

N � KHorn
N andKcore,✸

N � Kcore
N . It remains to be proved that there exists a formula that belongs
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to KHorn
N (resp.,Kcore

N ) and that cannot be translated toKHorn,✸
N (resp.,Kcore,✸

N ) over any finite extension
of the propositional alphabet. Here, we prove that this is the case for aKcore

N -formula (which is aKHorn
N -

formula as well) that cannot be translated toKHorn,✸
N (and, therefore, toKcore,✸

N , either). LetP = {p,q},
consider theKHorn

N -formula
ψ =✷α p→ q,

and suppose by contradiction that there exists a propositional alphabetP ′ ⊇ P and aKHorn,✸
N formula

ϕ written overP ′ such that for every modelM over the propositional alphabetP and every worldw
we have thatM,w  ψ if and only if there existsMP ′

such thatMP ′
,w  ϕ . Let M1 = (F1,V1) and

M2 = (F2,V2), whereF1 is based on the setW = {w0,w1} and such thatw0 Rα w1, while F2 is based
on {v0} and such thatRα= /0. Define the valuation functionV1 as always empty, and letq ∈ V2(v0).
Clearly,M1,w0  ψ andM2,v0  ψ . Sinceϕ is aKHorn,✸

N -translation ofψ , it must be the case that, for
some extensionsMP ′

1 andMP ′

2 , we have thatMP ′

1 ,w0  ϕ andMP ′

2 ,v0  ϕ . By Lemma 6, their product
modelMMP′

1 ×MP′
2

is such thatMMP′
1 ×MP′

2
,(w0,v0)ϕ . Notice thatq 6∈VVP′

1 ×VP′
2
(w0,v0) and that(w0,v0)

has noRα -successors. Hence, we have thatMMP′
1 ×MP′

2
,(w0,v0)  ✷α p but MMP′

1 ×MP′
2
,(w0,v0) 6 q, in

contradiction with the hypothesis thatϕ is a translation ofψ . Therefore,ϕ cannot exist, and this means
thatψ cannot be expressed inKHorn,✸

N within any finite extension of the propositional alphabet.

The argument of Theorem 5, based on the intersection of models, cannot be replicated to establish
the relationship betweenKKrom,✷

N andKKrom
N . It turns out that in this case the possibility of expanding

the propositional alphabet does make the difference, as thefollowing result shows.

Theorem 8. The following relationships hold:

1. KKrom,✷
N ≡ KKrom

N ;

2. KKrom,✷
N ≺w KKrom

N .

Proof. The first result is easy to prove. Suppose that

ϕ = ∇1(λ 1
1 ∨λ 1

2)∧∇2(λ 2
1 ∨λ 2

2)∧ . . .∧∇i(λ i
1∨λ i

2)∧ . . .∧∇l(λ l
1∨λ l

2)

is a KKrom
N -formula, where, as always, we treat literals as special clauses. There are two cases. First,

suppose thatλ i
1 = ✸α λ , for some 1≤ i ≤ l , whereλ is a positive literal. We claim that theKKrom,✷

N -
formula

ϕ ′ = ∇1(λ 1
1 ∨λ 1

2 )∧∇2(λ 2
1 ∨λ 2

2)∧ . . .∧∇i(¬✷α p∨λ i
2)∧∇i✷α(p∨λ )∧ . . .∧∇l(λ l

1∨λ l
2),

wherep is a fresh propositional variable, is equi-satisfiable toϕ . To see this, letP the propositional
alphabet in whichϕ is written, and letP ′ = P ∪{p}, and consider a modelM = (F ,V) such that, for
some worldw, it is the case thatM,w ϕ ; in particular, it is the case thatM,w ∇i(λ i

1∨λ i
2); letWi ⊆W

be the set of worlds reachable fromw via the universal prefix∇i , and considerv∈Wi . If M,v λ i
2 we

can extendM to a modelMP = (F ,VP) such that it satisfiesp on every worldα-reachable fromv, if
any, and both substituting clauses are satisfied. If, on the other hand,M,v ✸αλ , for somet such that
v Rα t we have thatM, t  λ ; we can now extendM to a modelMP = (F ,VP) such that it satisfies
¬p on t, andp on every other world reachable fromv, if any, and, again, both substituting clauses are
satisfied. A reversed argument proves that ifM,w ϕ ′ it must be the case thatM,w ϕ . If, as a second
case,λ i

1 = ¬✸α λ , whereλ is a positive literal, then the translating formula is

ϕ ′ = ∇1(λ 1
1 ∨λ 1

2 )∧∇2(λ 2
1 ∨λ 2

2 )∧ . . .∧∇i(✷α p∨λ i
2)∧∇i✷α(¬p∨¬λ )∧ . . .∧∇l(λ l

1∨λ l
2),
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and the proof of equi-satisfiability is identical to the above one.

In order to prove the second result, we observe that sinceKKrom,✷
N is a syntactical fragment ofKKrom

N

we know thatKKrom,✷
N �w KKrom

N . It remains to be proved that there exists a formula that belongs to
KKrom

N and that cannot be translated toKKrom,✷
N within the same propositional alphabet. LetP = {p},

consider theKHorn
N -formula

ψ =✸α p,

and suppose by contradiction that there exists aKKrom,✷
N formula ϕ such that for every modelM over

the propositional alphabetP and every worldw we have thatM,w ψ if and only if M,w ϕ . Once
again, we can safely assume thatϕ = ϕ1∧ϕ2∧ . . .∧ϕl , and that eachϕi is a clause. Consider a model
M = 〈F ,V〉, whereF is based on the set of worldsW, and letw∈W be a world such thatM,w 6 ψ .
Such a model must exist sinceψ is not a tautology. Sinceϕ is a conjunction of Krom clauses, we have
that there must exist at least one clauseϕi = ∇(λ1∨λ2) such thatM,w 6 ϕi . Hence, there must exist a
world w′ such thatM,w′ 6 (λ1∨λ2). Now, consider the modelM∗ obtained fromM by extending the set
of worldsW to W∗ =W∪{w∗}, in such a way thatw Rα

∗ w∗ and thatp∈V∗(w∗); clearly,M∗,w ψ .
We want to prove thatM∗,w′ 6 λ1∨λ2. Let us prove the following:

M, t  λ ⇔ M∗, t  λ ,

for every t ∈ W and positive literalλ . We do so by induction onmd(λ ). If md(λ ) = 0, thenλ is a
propositional letter (the cases in whichλ = ⊤ is trivial): the valuation oft has not changed fromM to
M∗, and therefore we have the claim immediately. Ifmd(λ )> 0, then we have two cases:

• λ = ✷β λ ′, andβ 6= α . In this case the claim holds trivially, as theβ -structure has not changed
from M to M∗.

• λ =✷αλ ′, andλ ′ is a positive literal. By definition,M, t ✷αλ ′ if and only if for everyt ′ such that
t Rα t ′, if any, it is the case thatM, t ′  λ ′. Clearly, if t 6= w, the set of reachable worlds fromt has
not changed, and thanks to the inductive hypothesis,M, t ′  λ ′ if and only if M∗, t ′  λ ′; therefore,
M, t ′  λ if and only if M∗, t ′  λ as we wanted. Otherwise, suppose thatt = w. If M, t 6 ✷α λ ′,
then:(i) λ ′ 6=⊤, because✷α⊤ is always satisfied, and(ii) there exist somet ′ such thatt Rα t ′ and
M, t ′ 6 λ ′, andt ′ 6= w∗ (sincew∗ is a new world); so, by inductive hypothesis,M∗, t ′ 6 λ ′, which
means thatM∗, t 6✷αλ ′. If, on the other hand,M, t ✷α λ ′, then:(i) if λ ′ =⊤, thenM∗, t ✷α⊤
independently from the presence ofw∗; (ii) if λ ′ = ✷β λ ′′ for some relationβ , then observe that
M∗,w∗ ✷β λ ′′ becausew∗ has noβ -successors for any relationβ , and, hence,M∗, t ✷α λ ′, and
(iii) if λ ′ = p, thenM∗, t ✷αλ ′ becausew Rα

∗ w∗ andp∈V∗(w∗) by construction.

Since by hypothesisM,w′ 6 λ1∨λ2, the above argument implies thatM∗,w′ 6 λ1∨λ2, which means that
M∗,w 6 ϕi, that is,M∗,w 6 ϕ . Thereforeϕ cannot be a translation ofψ , and the claim is proved.

The following result deals with sub-Krom fragments withoutboxes; as before, the argument of The-
orem 7, based on the product of models, cannot be replicated.

Theorem 9. The following relationships hold:

1. KKrom,✸
N ≡ KKrom

N ;

2. KKrom,✸
N ≺w KKrom

N ;
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Proof. The first result is relatively easy to see. Suppose that

ϕ = ∇1(λ 1
1 ∨λ 1

2)∧∇2(λ 2
1 ∨λ 2

2)∧ . . .∧∇i(λ i
1∨λ i

2)∧ . . .∧∇l(λ l
1∨λ l

2)

is aKKrom
N -formula, where, as always, we treat literals as special clauses. There are two cases. Suppose,

first, thatλ i
1 =✷αλ , whereλ is a positive literal. We claim that theKKrom,✸

N -formula

ϕ ′ = ∇1(λ 1
1 ∨λ 1

2 )∧∇2(λ 2
1 ∨λ 2

2)∧ . . .∧∇i(¬✸α p∨λ i
2)∧∇i✷α(p∨λ )∧ . . .∧∇l(λ l

1∨λ l
2),

wherep is a fresh propositional variable, is equi-satisfiable toϕ . To see this, letP the propositional
alphabet in whichϕ is written, and letP ′ = P ∪{p}, and consider a modelM = (F ,V) such that, for
some worldw, it is the case thatM,w ϕ ; in particular, it is the case thatM,w ∇i(λ i

1∨λ i
2); letWi ⊆W

be the set of worlds reachable fromw via the universal prefix∇i , and considerv∈Wi . If M,v λ i
2 we

can extendM to a modelMP = (F ,VP) such that it satisfiesp on every worldα-reachable fromv, if
any, and both substituting clauses are satisfied. If, on the other hand,M,v✷α λ i

1, for everyt such that
v Rα t we have thatM, t  λ ; we can now extendM to a modelMP = (F ,VP) such that it satisfies¬p
on every sucht (if any), and, again, both substituting clauses are satisfied. A reversed argument proves
that if M,w ϕ ′ it must be the case thatM,wϕ . If, as a second case,λ i

1 =¬✷αλ , whereλ is a positive
literal, then the translating formula is

ϕ ′ = ∇1(λ 1
1 ∨λ 1

2 )∧∇2(λ 2
1 ∨λ 2

2 )∧ . . .∧∇i(✸α p∨λ i
2)∧∇i✷α(¬p∨¬λ )∧ . . .∧∇l(λ l

1∨λ l
2),

and the proof of equi-satisfiability is identical to the above one.

As for the second relationship, sinceKKrom,✸
N is a syntactical fragment ofKKrom

N , we know that

KKrom,✸
N � KKrom

N . It remains to show that the relationship is strict. To this end, we consider the follow-
ing KKrom

N -formula and we prove that it cannot be translated toKKrom,✸
N within the same propositional

alphabet:
ψ =✷α p→ q.

Suppose, by contradiction, that there exist a conjunctionϕ of box-free Krom clauses, such that for
every modelM over the propositional alphabetP = {p,q} and every worldw we have thatM,w ψ if
and only ifM,w ϕ . Let ϕ = ϕ1∧ . . .∧ϕn, where eachϕi is in its generic form∇(λ1∨λ2), with λ1 and
λ2 either positive or negative literals. As always, literals are treated as special clauses. Now, consider
a modelM = 〈F ,V〉, whereF is based on the set of worldsW, and letw ∈ W be a world such that
M,w 6 ψ , and that exists at least onev such thatw Rα v. SinceM,w 6 ψ , we have thatq /∈V(w) and
for eachv such thatw Rα v it is the case thatp∈V(v). Sinceϕ is a translation ofψ , it must be the case
thatM,w 6 ϕ , which implies that there must be a clauseϕi such thatM,w 6 ϕi, that is, there must be a
world w′ such thatM,w′ 6 (λ1∨λ2). Now, consider the modelM∗ obtained fromM by extending the set
of worldsW to W∗ =W∪{w∗}, in such a way thatw Rα

∗ w∗ and thatV∗(w∗) = /0; clearly,M∗,w ψ .
We want to prove thatM∗,w′ 6 ϕi . Let us prove the following:

M, t  λ ⇔ M∗, t  λ ,

for every t ∈ W and positive literalλ . We do so by induction onmd(λ ). If md(λ ) = 0, thenλ is a
propositional letter (the cases in whichλ = ⊤ are trivial): the valuation oft has not changed fromM to
M∗, and therefore we have the claim immediately. Ifmd(λ )> 0, then there are two cases:

• λ = ✸β λ ′, andβ 6= α . In this case the claim holds trivially, as theβ -structure has not changed
from M to M∗.
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• λ =✸αλ ′, andλ ′ is a positive literal. By definition,M, t ✸α λ ′ if and only if there exist somet ′

such thatt Rα t ′ andM, t ′  λ ′. Clearly, ift 6=w, the set of reachable worlds fromt has not changed,
and thanks to the inductive hypothesis,M, t ′  λ ′ if and only if M∗, t ′  λ ′; therefore,M, t ✸α λ if
and only ifM∗, t ✸αλ , as we wanted. Otherwise, suppose thatt = w. If M, t ✸αλ ′, then there
exist somet ′ such thatt Rα t ′ andM, t ′  λ ′, andt ′ 6=w∗ (sincew∗ is a new world); so, by inductive
hypothesis,M, t ′  λ ′, which means thatM∗, t ✸α λ ′. If, on the other hand,M, t 6 ✸αλ ′, then:
(i) λ ′ 6= ⊤, because we have builtM in such a way thatw has aα-successor, and(ii) for everyt ′

such thatt Rα t ′ it is the case thatM, t ′ 6 λ ′. SinceV(w∗) = /0, andλ ′ is positive, for everyt ′ such
thatt Rα

∗ t ′ it is the case thatM∗, t ′ 6 λ ′, and, therefore,M∗, t 6✸αλ ′, as we wanted.

This means thatM,w′ 6|= λ1∨ λ2 implies thatM∗,w′ 6|= λ1∨ λ2, that is,M∗,w′ 6|= ϕi. This implies that
M∗,w 6 ϕ . Therefore,ϕ cannot exist, and this means thatψ cannot be expressed inKKrom,✸

N within the
same propositional alphabet.

Corollary 10. The following results hold:

1. KHorn,✷
N andKHorn,✸

N are≺-incomparable;

2. KKrom,✷
N andKKrom,✸

N are≺w-incomparable;
3. Kcore,✷

N andKcore,✸
N are≺-incomparable.

Proof. As we have seen in Theorem 5, theKcore,✸
N -formula (which is also aKHorn,✸

N -formula) ✸α p

cannot be translated intoKHorn,✷
N (and therefore it cannot be translated toKcore,✷

N either), over any finite
extension of the propositional alphabet, and, as we have seen in Theorem 7, theKcore,✷

N -formula✷α p→q

(which is also aKHorn,✷
N -formula) cannot be translated intoKHorn,✸

N (and therefore it cannot be trans-
lated toKcore,✸

N either), over any finite extension of the propositional alphabet. These two observations,
together, show that we cannot compareKHorn,✷

N with KHorn,✸
N , norKcore,✷

N with Kcore,✸
N . Similarly, Theo-

rem 8 proves that theKKrom,✸
N -formula✸α p cannot be translated toKKrom,✷

N , and Theorem 9 proves that

the KKrom,✷
N -formula✷α p→ q cannot be translated toKKrom,✸

N , all this within the same propositional
alphabet; these two observations, together, imply that, atleast within the same propositional alphabet,
we cannot compareKKrom,✷

N andKKrom,✸
N , either.

Corollary 11. The following results hold:

1. KHorn
N

♣
,KHorn

N cannot be�w-compared withKKrom
N

♠
,KKrom

N , and viceversa, for♣,♠∈ {✷,♦};

2. Kcore,✷
N ≺w KHorn,✷

N andKcore,✸
N ≺w KHorn,✸

N ;

3. Kcore,✷
N ,Kcore,✸

N ≺ KKrom
N , KKrom,✷

N , KKrom,✸
N .

Proof. As far as the first result is concerned, as we have seen in Theorem 1, the formulap∨ q, which
belongs to all sub-Krom fragments ofKBool

N , cannot be translated toKHorn
N , and, therefore, it cannot be

translated to any sub-Horn fragment either, at least withinthe same propositional alphabet. Theorem 2,
on the other hand, proves that the formula(p∧ q) → r, which belongs to all sub-Horn fragments of
KBool

N , cannot be translated toKKrom
N , and, therefore, it cannot be translated to any sub-Krom fragment

either, at least within the same propositional alphabet. These two observations, together, imply that
the claim holds. Thanks to the above result, an taking into account thatKcore,✷

N = KHorn,✷
N ∩KKrom,✷

N

and thatKcore,✸
N = KHorn,✸

N ∩KKrom,✸
N , the second claim immediately follow. Finally, to prove thethird

result it is sufficient to recall that the proof of Theorem 5 shows that theKKrom
N -formula✸α p cannot

be translated intoKcore,✷
N (over any finite extension of the propositional alphabet), while the proof of
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Kcore
N

KBool
N

Kcore,✷
N

KKrom
N

KHorn,✷
N

KHorn
N

KKrom,✸
N KHorn,✸

NKKrom,✷
N

Kcore,✸
N

≡

“is weakly more expressive”
“is more expressive”

PSPACE-hard [12]

Figure 1: An account of the results of this paper.

Theorem 7 shows that theKKrom
N -formula✷α p → q cannot be translated intoKcore,✸

N (over any finite
extension of the propositional alphabet). Thanks to Theorem 8 and Theorem 9 we know thatKKrom

N ≡

KKrom,✷
N ≡ KKrom,✸

N and we have the claim.

5 Conclusions

In this paper we studied the relative expressive power of several sub-propositional fragments of the multi-
modal logicKN. Inspired by recent work on sub-propositional fragments oftemporal and description
logic [2, 3, 4, 10], we defined the Horn and the Krom fragments of modal logic, and their box and
diamond fragments. We compared the relative expressive power of the fragments at two different levels,
characterized by respectively allowing or not allowing newpropositional letters in the translations, and
the results are shown in Fig. 1. In most cases relative expressivity coincides with syntactical containment,
with the notable exception of the Krom fragments, that are expressively equivalent, but not weakly
expressively equivalent. Because of our very general approach for comparing the expressive power
of languages, most of our result can be transferred to other sub-propositional modal logic such as the
fragments ofLTL without Since and Until studied in [2] and the sub-propositional fragments ofHS [4,
9, 10]. To the best of our knowledge, this is the first work where sub-Krom and sub-Horn fragments of
KN have been considered.

As future work, it would be desirable to complete this picture relatively to the strong hierarchy
(although extending the current results do not seem trivial), and to study the complexity of the fragments
that are expressively weaker or incomparable toKHorn

N . Because of their lower expressive power, the
satisfiability problem for sub-Krom and sub-Horn fragmentsmay have a lower complexity than fullKN,
as our preliminary results seem to suggest, not only in the case ofKN, but, also, for some of its most
common axiomatic extensions.
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