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Modal logic is a paradigm for several useful and applicablenfal systems in computer science.
It generally retains the low complexity of classical proiosal logic, but notable exceptions exist
in the domains of description, temporal, and spatial logibere the most expressive formalisms
have a very high complexity or are even undecidable. In seafcomputationally well-behaved
fragments, clausal forms and other sub-propositionalictisins of temporal and description logics
have been recently studied. This renewed interest on spyispitional logics, which mainly focus
on the complexity of the various fragments, raise naturaistjons on their the relative expressive
power, which we try to answer here for the basic multi-modgld K. We consider the Horn and
the Krom restrictions, as well as the combined restrictkmogvn as the core fragment) of modal
logic, and, orthogonally, the fragments that emerge bylidisang boxes or diamonds from positive
literals. We study the problem in a very general setting, aseetransferring our results to other
meaningful cases.

1 Introduction

The usefulness and the applicability of modal logic is vikelbwn and accepted. Propositional modal
logic generally retains the decidability of the satisfi@piproblem of classical propositional logic, but
extends its language withxistential modalitiegdiamonds to expresossibility) and theiruniversal
versions poxes to expressiecessity, allowing one to formalize a much wider range of situatiois
simply cite a few, modal logic has been applied not only tdgsuiphical reasoning (e.g., epistemolog-
ical, or metaphysical reasoning - séé [7, Chapter 1] for atohical perspective), but also to computer
science, being paradigmatic of the whole variety of desioriplogics [6], temporal logics [15], and
spatial logics|([1].

Until very recently, clausal fragments of modal logic hasereed little or no attention, with the
exception of a few works which are limited to the Horn fragmngi®, [14,[20]. An inversion in this
tendency is mainly due to the newborn interest in sub-pritipoal fragments of temporal description
logics [3], temporal logicd 2], and interval temporal logi4,10]. Such results, which mainly concern
the complexity of various sub-propositional fragments e$ctiption and temporal logics raise natural
guestions on their the relative expressive power, whichrwiotanswer here in a very general form.
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There are two standard ways to weaken the classical prapwitanguage based on the clausal
form of formulas: theHorn fragment that only allows clauses with at most one positive litei&l][ and
the Krom fragmentthat only allows clauses with at most two (positive and tieggliterals [19]. The
core fragmentcombines both restrictions. Orthogonally, one can rds&rimodal language in clausal
form by disallowing either diamonds or boxes in positiverils, obtaining weaker fragments that we
call, respectively, thbox fragmenanddiamond fragmentBy combining these two levels of restrictions,
one may obtain several sub-propositional fragments of ilod&, and, by extensions, of description,
temporal, and spatial logics. The interest in such fragmsnriginated by the quest of computationally
well-behaved logics, and by the observation that meanirgghtements can be still expressed under
the sub-propositional restrictions. The satisfiabilitplgem for classical propositional Horn logic is
P-complete[[13], while for classical propositional Krongio (also known as the 2-SAT problem) it
is NLoGSPace-complete [[21], and the same holds for the core fragmenteréstingly enough, the
satisfiability problem for quantified propositional log@BF), which is P$ACE-complete in its general
form, becomes P when formulas are restricted to binary (Kidauses|[[5].

Sub-propositional modal logic has been studied mainly utiteeHorn restriction. The basic modal
logic K, which is P$Ace-complete, remains so under the Horn restriction, but thiefsdility prob-
lem for other cases becomes computationally easier, su€b,aghich goes from being NP-complete
to P-complete[[12, 14]. In_[2, 11], the authors study différeub-propositional fragments of Linear
Temporal Logic (TL). By excluding the Since and Until operators from the larggyaand keeping
only the Next/Previous-time operators and the Future arsll I@x modalities, it is possible to prove
that the Krom and core fragments are NP-hard, while the Hagnfient is still P8ACE-complete (the
same complexity of the full language). Moreover, the comipfeof the Horn, Krom, and core fragments
without Next/Previous-time operators range from®iSPACE (core), to P (Horn), to NP-hard (Krom).
Where only a universal (anywhere in time) modality is alldwbeir complexity is even lower (from
NLoGSPACEto P). Temporal extensions of the description logic DL-lhigee been studied under simi-
lar sub-propositional restrictions, and similar improwsts in the complexity of various problems have
been found([B]. Sub-propositional fragments of the undsdigl interval temporal logi&lS [16], have
also been studied. The Horn, Krom, and core restrictiorts®éare still undecidable [10], but weaker re-
strictions have shown positive results. In particular,Hoen fragment oH Swithout diamonds becomes
P-complete in two interesting casés|[4, 9]: when it is intetgd over dense linear orders, and when the
semantics of its modalities becomes reflexive. On the basiese results, sub-propositional interval
temporal extensions of description logics have been intted in [4]. Other clausal forms of temporal
logics, not included in the above classification, have besrldped to synthesize systems from logical
specifications, as the logical counterpart of determmiatitomata. The most relevant example is the
fragmentGR(1) of LTL [8], for which synthesis is exponentially more efficientrtfar full LTL.

The purpose of this paper is to consider sub-propositiargnients of the multi-modal logik y,
and study their relative expressive power in a systematig We consider two different notions of
relative expressive power for fragments of modal logic, aedprovide several results that give rise to
two different hierarchies among them, leaving only a fewropeblems. To the best of our knowledge,
this is the first work where sub-Krom and sub-Horn fragmeits ¢ have been considered.

2 Préiminaries

Let us fix a unary modaimilarity typeas the set of modalitiesay, a»,...,ay € T, and a denumerable
setZ of propositional letters. Theodal languag& y associated ta and & contains all and only the
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formulas generated by the following grammar:

¢=TIpl-¢[dVP[Cad|Da, (1)

wherep € &2, anda € 1 labels thediamond<¢, andboxd,. Other classical operators, such-asand
A, can be considered as abbreviationsKpke 1-frameis a relationalr-structure.# = (W, {R}qer),

where the elements &Y # 0 are callecpossible worldsand, for eaclo € 1, Ry € W x W is anacces-
sibility relation. AKripke structureover thetr-frame.Z is a pairM = (.#,V), whereV : W — 27 is an
evaluation functionand we say tha¥l models¢ at the worldw, denoted by, w I+ ¢, if and only if:

¢=T,
peV(w),if ¢ =p;
M, Wl @, if ¢ = -,

M,wiF g orMwlk &, if g =y V¢,
There existy such thatvR,v andM,vIF ¢, if ¢ = Oq .
For everyv such thatvR, v, it is the case thatl,vIF g, if ¢ = Oq 4.

In this case, we say th#d is amodelof ¢; in the following, we (improperly) use the terms models and
structures as synonyms.

In order to define sub-propositional fragmentaqf we start from theclausal formof K y-formulas,
whose building blocks are thositive literals

A=T1]p|CgA | OgA, (2

and we say thap is in clausal formif it can be generated by the following grammar:

G =] -A | DALV A2V ...V =AY Anpt VAnia VooV Anim) | 9 A 9, 3)

wherel = Oy, Og, ... ands > 0. Sometimes, we write clauses in their implicative form:
N——

S

D()\l/\.../\)\n—>An+l\/...\/)\n+m),

and we usel as a shortcut for-T. By md(A) we mean thenodal depthof A, that is, the number of
boxes and diamonds ih. Sub-propositionafragments oKy can be now defined by constraining the
cardinality and the structure of clauses: the fragmer gfin clausal form where each clause i (3)
is such thaim < 1 is calledHorn fragment, and denoted bynom, and when each clause is such that
n+m< 2 it is calledKrom fragment, and it is denoted uyﬁmm. When both restrictions apply we
denote the resulting fragment, tieere fragment, byK{'®. We useKﬁ"O' instead ofKy to highlight
that no restrictions apply. It is also interesting to stukdg fragments that can be obtained from both
the Horn and the Krom fragments by disallowing, respectivitle use ofd,or <4in positive literals.

In this way, the fragment ok obtained by eliminating the use of diamonds (resp., boxeg)iis
denoted by {o™" (resp.,K ™). By applying the same restrictions kg™ andK "¢, one obtains
the pairk "™ andK "™ from the former, and the pait5"® andK ", from the latter. All such
sub-Horn, sub-Krom, and sub-core fragments are generalliydboxanddiamondfragments.

It should be noted that in the literature there is no unifiefthiteon of the different modal or temporal
sub-propositional logics. Our definition follows the oneNiguyen [20], with a notable difference: while
the definition of clauses is the same, we choose a more tegriEfinition of what is a formula. Hence,
a formula ofKHO”‘ by our definition is also a Horn formula by [20], but not viceese& However, since
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every Horn formula by [20] can be transformed into a conjiomcbf Horn clauses, the two definitions

are equivalent. The definition cof [12,114] is equivalent tattbf Nguyen, and hence to our own. Other
approaches force clauses to be quantified usimgizersalmodality that asserts the truth of a formula in
every world of the model. The universal modality is eitheswased in the language![2] or it is definable
using the other modalities|[9, 10], but the common choicédnliterature of modal (non-temporal) logic

is simply excluding the universal modality. Our resultschiml either case: when the universal modality
is present (as part of the language or defined), and clausednaays universally quantified, they become
even easier to prove.

There are many ways to compare the expressive power ofatiffenodal languages. In our context,
two different concepts of expressive equivalence ariseraby. The first one, that we calleak expres-
sivity, compares formulas (and models) with the same set of priiqaeli letters. More formally, given
two modal logicsl andL’ interpreted in the same class of relational frardgesve say that.’ is weakly
at least as expressive asif, fixed a propositional alphabe¥, there exists an effective translatior)’
from L to L’ such that for every modéll in ¢, world win M, and formulag of L, we haveM,w - ¢ if
and only ifM,w I+ ¢’. We denote this situation with < L', and we omit¢’ if it is clear from the con-
text. The second notion, that we caltong expressivityallows the translations to use a finite number of
new propositional letters, and can be formally defined ded. For every mode¥l = (.%,V) based on
the set of propositional letters” and every?’ O 2, we say that the mod& " = (y,vg”) based on
2" is aextensiorof M if V|» =V’| ». Then, we say thdt’ is at least as expressive &sif there exists
an effective translatiof+)’ that transforms anl -formula ¢ written in the alphabet” into aL’-formula
written in a suitable alphabe®’ > 2, such that for every mod# in 4 and worldw in M, we have that
M,w I+ ¢ if and only if there exists an extensidw’ of M such thatM’, wi ¢’. We denote this situation
with L <& L. Now, we can say thdt andL’ areweakly equally expressiveL <¥ L’ andL’ < L,
and they arequally expressivié L <4 L’ andL’ < L; in the former case we write =" L’, and in the
latter case we writé. = L’. Finally, L is weakly less expressive thanif L <% L’ andL #¥ L', and
L is less expressive thdn if L <4 L" andL #¢ L’; in the former case we write < L', while in the
latter one we writd. < L. Clearly, two logics can be equally expressive and not wesd but not the
other way around.

GivenL andL’ such thall is a syntactical fragment df’, in order to prove that is (weakly) less
expressive thah’ we show a formulapy that can be written i’ but not inL. To this end we proceed
by contradiction, assuming that a translatire L does exist, and by building a model fgr that is
not (and, in the case of strong relative expressivenessiotdme extended to) a model ¢f following
three different strategies: we modify the labeling (Theoi®and Theorerhl 2), we modify the structure
(Theorem 8 and Theorel 9), or we exploit a property. bthat L does not possess (Theoréin 5 and
Theoreni¥). The two different levels that emerged from thevaldiscussion give rise to two different
hierarchies:(i) a weakhierarchy that compares fragments within the same prapoaitalphabet, and
(i) astronghierarchy that takes into account any finite extension optiopositional alphabet.

Adding new propositional letters to facilitate translasofrom a fragment to another is a common
practice, for example, to prove that evamnary clause in propositional logic can be transformed into
an equi-satisfiable set of ternary clauses. In this sensanibe argued that the weak hierarchy is less
general; nonetheless, both the weak and the strong higarcbntribute to the comprehension of the
relative expressive power of sub-propositional fragmelmigeed, both notions have been already studied
under different names$ [18]: our weak hierarchy capturesttmn of equivalently rewritability while
the strong one captures the notiomaddel-conservative rewritability
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3 Horn, Krom, and Core Fragments

In this section, we study the relative expressive power efthisic multi-modal logi& ﬁoo' and its sub-
propositional fragments with both boxes and diamonds. Fnom on, we focus on the class of all
relational frames, and we omit it from the notation. We skgricomparing the Horn fragmemﬂo”‘
with the full propositional language.

Theorem 1. KHorm <w K Bool,

Proof. SinceK o™ is a syntactical fragment a€E°, we know thatK {{o" <V KB, |t remains to be
proved that there exists a formula that belongk §8° and that cannot be translated<@® ™ within the
same propositional alphabet. Considerlﬁ%""—formula

Y=pvaq,

and suppose, by contradiction, that there exié(ﬂ%[”—formularp such that for every modéll over the
propositional alphabefp,q}, and every worldv, we have thaM,w - ¢ if and only if M,wI- ¢. We
can assume that = ¢1 A ... A @, where eaclp; is a positive literal, the negation of a positive literal, or
a Horn clause. To simplify our argument,@f = A (resp.,¢; = —A) we shall think of it as the clause
(T — A) (resp.,(A — 1)). Let us denote b¥C(¢;) the set of propositional letters that occur in the
consequent of;: clearly, C(¢;) is always a singleton, or it is the empty set. Now, consideroaeh

M = (%,V), where.Z is based on the set of worldfg, and letw € W be a world such tha¥l,w | (.
Such a model must exist singeis not a tautology. Sincg is a conjunction of Horn clauses, we have
that there must exist at least one clagise- (A1 A ... AAy — A) such thaM, wlf ¢;. Hence, there must
exist a worldw' such thatV,w' I- Ay A ... A Ay but M,w £ A. At this point, only three cases may arise
(since we are in a fixed propositional alphabet):

e C(¢i) = {p}. Inthis case, we can build a new modi#l = (.%,V’) such that:
V'(p) =V (p) andV’(q) = W.

Sinceq holds on every world of the model, we have til satisfiesys on every world, and, in
particular, onw. However, being\y,..., A, positive literals, they are true dd’ whenever they
were true orM, which means thatl’,w I A1 A ... A A,. Now, consider the positive literal, we
want to prove that, for each worlde W, M,v |~ A impliesM’,v |2 A. We reason by induction
onmd(A). If md(A) =0, thenA = p; sinceM andM’ agree on the valuation of the proposition
p, we have the claim. Suppose, now, thad(A) > 0. Clearly,A = G4zA’ or A = Oy A’; assume,
first, thatA = OgA’. If M VI Oy A/, then, for every € W such thavR,t, we have thaM,t I A/;
by inductive hypothesis, for evetye W such thatvR,t, we have thaM’,t I¥ A/, proving that, in
fact, M’',vIf OGqA’. Now, assume that = OgA’. If M,vIff OgqA’, then for somé € W such that
VR,t we have thaM,t I/ A’; by inductive hypothesidy’,t I A/, which implies that’,vIf OqA’.
SinceM,w I A, the above argument proves that w' = A, which means that!’,w' (= ¢;. This
means thaM’,w - ¢y andM’, w1y ¢, contradicting the fact thap is a translation ofp.

e C(¢i) = {g}. In this case one can apply the same argument as before, pyyssmitching the
roles ofp andq.

e C(¢i) = 0. In this case, we can build a new mot#l= (.7 ,V’) such that:

V'(p)=V'(q) =W.
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Since p and g hold on every world of the model, we have thdt satisfiespV q everywhere,
and, in particular, onw. However, since the truth of does not depend on the valuations of the
propositional letters, we have that, as beféde,w' I- A1 A ... A A, butM’, W £ A, from which we
can conclude tha¥l’,wly ¢.

Therefore,$ cannot exist, and this means thfatannot be expressed Ii(ﬂom within the same proposi-
tional alphabet. So, the claim is proved. O

Now, we turn our attention to the relationship betwéefio™ andK 8.

Theorem 2. KKrom <w K Rool,

Proof. SinceK{'™ is a syntactical fragment &€E°, we know that< Ko™ <W K B |t remains to be
proved that there exists a formula that belongk §8° and that cannot be translated<td"°™ within the
same propositional alphabet. Now, considerlﬂ%"'-formula

Y=pAgq—r,

and suppose, by contradiction, that there exis(ﬁéf’m-formulaqb, written in the propositional alphabet
{p,q,r}, such that for every mod&l and every worldv we have thaM,wI ¢ if and only if M,w - ¢.

As before, we can assume thifat= ¢ A ... A @y; as in Theorerhll, i is a literal, we treat it as a special
clause. Let us denote B(¢;) the set of propositional letters that occurdin Now, consider a model

M = (#,V), where.Z is based on the set of worlif§, and letw € W be a world such tha¥l, w Iy (.
Such a model must exist singeis not a tautology. Since is a conjunction of Krom clauses, we have
that there must exist at least one clagse= [J(A1 V A2) such thatM,w | ¢;. Hence, there must exist

a worldw such thatM,w I (A1 V A2). At this point, three cases may arise (since we are in a fixed
propositional alphabet, and we deal with clauses at mostyjin

e P(¢i) C {p,q}. Inthis case, we can build a new mod#l = (% ,V’) such that:

V/(p) =V(p), V/(G) = V(q), andV'(r) = W.

Sincer holds on every world of the model, we have thHtsatisfiesp everywhere, and in particular
onw. However, since the valuation pfandq are the same dfl, and since the relational structure
has not changed, we have that,w' = A1V A2, from which we can conclude th&t’,w iyt (A1 V
A7) and thus thatv do not satisfyp.

e P(¢i) C {p,r}. Inthis case, we can build a new mod#l = (.7,V’) such that:

V/(p) =V(p), V() = V(r), andV'(q) = 0.

Sinceq is false on every world of the model, we have thlt satisfiesy everywhere, and in
particular orw. However, since the valuation pfandr are the same d¥l, and since the relational
structure has not changed, we have Maw (= A1V A2, from which we can conclude thit', w Iy
[(A1V A2) and thus thatv do not satisfygp.

e P(¢i) C{q,r}. Inthis case, we can apply the same argument as before, ipjysémitching the
roles ofp andg.

Therefore ¢ cannot exist, and this means thatannot be expressed K{"°" within the same proposi-
tional alphabet. O



D. Bresolin, E. Mufioz-Velasco & G. Sciavicco 97

Corollary 3. The following results hold:

1. K{om andKKrom are <"-incomparable;
core _W i Krom e Horn
2. Kgore qw g Krom i Horn,

Proof. As we have seen in Theordrh 1, t§"°™-formula pV g cannot be translated intof°" within
the same propositional alphabet, and, as we have seen imérhBh theK{"-formula pAq — r
cannot be translated intg{"®™ under the same conditions. These two observations, tagetteve
that we cannot compargRo™ and KKr™, under the weak notion of expressivity. As an immediate
consequence, sinde"® = KoM NKK™, we have thak &€ <W Ko andK {re < KKrom. O

4 Box and Diamond Fragments

In this section, we study the relative expressive power fordnd diamond fragments, starting with sub-
Horn fragments without diamonds. First of all, we prove tbkofving useful property of the fragments
KRO™® andK "¢, Consider two model#;, M, such that allM; = (.#,V;) are based on the same
relational frame. We define thatersectionmodel as the unique mod®ly, v, = (%, Wy, ), Where,
for eachw € W, Wy, rv, (W) = Vi (W) NVa ().

Lemma4. K®™" is closed under intersection of models.

Proof. Let¢ = g1 A...A @ aKH"r”’D—formula such thamy, wi- ¢ andMy, wik- ¢, whereM; = (Z,Vy)
and Mz = (.#,V,); we want to prove thaMwu,m,,W |- ¢. Suppose, by way of contradiction, that
Mwm,m,,W I ¢. Then, there must be songe such thatM,~m,,W I ¢i. As in Theorenill, we can
assume thap; is a clause of the typEl(A1 A ... AA;, — A). This means thatiy,~m,, W IF A1 A ... A Ap
andMw,~m,, W I A for somew’. We want to prove that, for each<l j <n, bothM; andM, satisfyA;
atw'. To see this, we reason by inductionm(A;). If md(A;) = 0, thenA; = p for some propositional
letter p; but if My, ~m,, W IF p, thenp € Vi (W) NVo(W), which means tha¥ly, w I pandMz,w IF p. If
md(A;) > 0, thenAj = OgA’. SinceMy,wm,, W IF DgA’, for everyv such thatv' R, vit is the case that
Mwm,m,,VIE A’ Thus, for every such thaw' R, v, we know by inductive hypothesis thisty, v - A’
andM,, VI A’. But this immediately implies thdfl;,w' I OqA’ andMy, vI- OqA’, which completes the
induction. Now, we know thatly, W - A1 A...AAyandMa, W IF A A ... A Ap; therefore M1, W IF A and
Mz, W IFA. A similar inductive argument shows tHe, (w,, W |- A, implying thatMw, ~wm,, W @;; but
this contradicts our hypothesis thdfs, v, W I ¢. O

Theorem 5. The following relationships hold:

1. KU < Ko,
core,d core
2. Ky 77 < KRS

Proof. SinceK{"™ (resp.,K ") is a syntactical fragment €5 (resp.,K&"®), we know that
KRO™E < KHom andK §” < K9re |t remains to be proved that there exists a formula thatrigsio

to KHO™ (resp.,K 7€) and that cannot be translatedkd ™" (resp.,K °"*") over any finite extension
of the propositional alphabet. Here, we prove that thiséstdise for & $"e-formula (which is aK {or-
formula as well) that cannot be translated<f§®"™" (and, therefore, t& ", either). Let% = {p},
consider the&k {{o"-formula

L/J:<>apa
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and suppose by contradiction that there exists a propnalti@phabet?’ > 2 and ak;®"™" formula

¢ written over 2’ such that for every modé¥l over the propositional alphabe? and every worldv

we have thaM,w I  if and only if there existdM?” such thatM?” ,w - ¢. Let My = (.%,V;) and

Mz = (#,V,), where.# is based on the s& = {wp, w1, w»}. Letwy Ry wy andwg Ry wo, and define
the valuation function¥,V, as follows:

Vi(Wj):{ {p} ifi:j>

0 otherwise

Clearly, M1, wo I ¢ and M, w I+ @; since ¢ is aK "™ -translation ofy, it must be the case that,

for some extensionsly”” andMs”', we have thaM;”' ,wo I- ¢ andM5” wo I ¢. By Lemmal4, their
intersection moddMMi@/ Mg is such thaMMi?, Mg > Wo I-¢. Butp¢g Vvl,ﬂ vy (w) for everyw e W, so
MM?/ mM?/,wly Y. This contradicts the hypothesis tifats a translation ofp. O

To establish the expressive powertof” ™ andK £ with respect to other fragments, we now
prove a closure property similar to Lemmha 4. Consider two e®M; = (#1,V1), M2 = (%2,Vs)
based on two (possibly different) relational fram&s = (Wi, {R1}qer) and. 7, = (W, {Ro}ger). We
define theproductmodel as the unique modelv, xm, = (:-Z .7, x.7,, Wy x\, ), Where:(i) F.z « z, = (Wi
W5, {Rr, xR, }acr), that is, worlds are all and only the pairs of worlds fraénandWs; (i) for everya e T,
(W1, W2)RR, xR, a (W), W,) if and only if wi Ry o Wj andw,zR; oW, that is, worlds inZ # « #, are connected
to each other as the component worlds were connecte@;ind .%,; and (iii) Vv, xv,((W1,Wp)) =
Vl(Wl) ﬁVQ(Wz).

Lemma6. K”™ is closed under product of models.

Proof. Let ¢ = ¢1 A... A ¢y be aK{{®™ -formula such thaMy,w; I- ¢ andMy,w, I ¢. We want to
prove thatMwu, «xm,, (W1,W2) |- @; suppose by way of contradiction, thisli, «m,, (W1, W2) I ¢. Then,
there must be somé¢; such thatMwy,.m,, (W1,W2) I ¢i. As in Theoreniil, we can assume tlgat
is a clause of the typ&(A1A... AAy — A). This means thaMwy, «m,, (W, W,) IF A1 A ... A A, and
M, My, (W), W5) I A for some(wy,w;,). We want to prove that, for each< j < n, M; andMj satisfy
A;j at, respectivelyw, andw,. To see this, we reason by induction omi(A;). If md(A;) = 0, then
Aj = p for some propositional lettew: by the definition of product, we have thisly, «m,, (W;,W5) IF p
iff peVi(w))NVa(w,), which means thaMy,w) I p and Ma,w] |- p. If md(Aj) > 0, thenA; =
OgA’. SinceMy, xm,, (W), W) IF OgA’, then there existévy, vo) such thatw),w),)Rg, xr,.a (V1,V2) and
Mwm, My, (V1,V2) IF A’ We know by inductive hypothesis thMi, v IF A’ and M, v, IF A" and that,
by definition of productw)Ry qv1 and w,R, 4V2. But this immediately implies thatl;,w) IF GgA’
and My, w;, I- CqA’, which completes the induction. Now, we know thaf,wj IF A3 A ... A A, and
Mo, W, IF A1 A ... A Ap; therefore M1, wj I A andMy, W, I- A. A similar inductive argument shows that
M, My, (W), W5) |- A, implying thatMw, xm,, (W1, W2) IF @5, in contradiction with the hypothesis that
M, xMp s (W1, W2) I ¢ U

Theorem 7. The following relationships hold:

1 Ko™ < Ko
core,& core
2. K'Y < Kre,

Proof. SinceK "™ (resp.,K ) is a syntactical fragment d¢{o™ (resp.,K&"®), we know that

KRO™? < KR andK 2" < K e, It remains to be proved that there exists a formula thatrigsio
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to KHo™ (resp.,K%"€) and that cannot be translatedk§® ™ (resp.,K ") over any finite extension
of the propositional alphabet. Here, we prove that thiséstdise for & £"e-formula (which is aK {or-
formula as well) that cannot be translatekfy® ™ (and, therefore, t& ", either). Let? = {p,q},
consider the&k Hor"-formula

W =Uap—0,
and suppose by contradiction that there exists a propoaltiphabet?”’ > 2 and ak {*™ formula
¢ written over 2’ such that for every modé¥l over the propositional alphabe? and every worldv
we have that,w |- g if and only if there existd”” such thaM?”' w - ¢. Let My = (.#1,V1) and
Mz = (%2,V2), where.# is based on the s& = {wp,w; } and such thatvy Ry wi, while .%; is based
on {Vp} and such thaR,= 0. Define the valuation functiow; as always empty, and lete V> (vp).
Clearly, My, wo I+ ¢ andMy, vo IF ¢. Sinceg is aK,*™-translation ofyp, it must be the case that, for
some extensionll;” andM5”, we have thaM;”" ,wo I- ¢ andM5” ,vo I- ¢. By Lemmd®, their product
modelMMi’W <M is such thaMMi@/ <M (Wop, Vo) IF ¢. Notice tha vif”’ v (Wp, Vo) and thatwo, Vo)
has noR,-successors. Hence, we have th‘”/XMZM’(WO’VO) I- Oq p but MMf»'XMzw,(Wo,Vo) IFF g, in
contradiction with the hypothesis thatis a translation ofy. Therefore,¢ cannot exist, and this means
that ¢ cannot be expressed it{{°"™ within any finite extension of the propositional alphabet. [

The argument of Theoref 5, based on the intersection of modahnot be replicated to establish
the relationship betweeii §"®™" andK Ko™, It turns out that in this case the possibility of expanding
the propositional alphabet does make the difference, a@ollogving result shows.

Theorem 8. The following relationships hold:

Krom,O _ »Krom.
1. KQ D:KN ;
rom, w ¢ Krom
2. Ko™ <wKKrom,

Proof. The first result is easy to prove. Suppose that
¢ =O1ALVAD ADAZVAD AL ATGALVAD AL ADI(ALVAD

is aK',f,rom-formuIa, where, as always, we treat literals as specialsela. There are two cases. First,

suppose thak} = 4\, for some 1< i < |, whereA is a positive literal. We claim that thg ™" -
formula

¢ = O1(ALVAD AD2AZVAS AL AD(=gpVAN ATOg(PVA) AL ATIALVAY,

wherep is a fresh propositional variable, is equi-satisfiablgptoTo see this, let?? the propositional
alphabet in whichp is written, and let??’ = &2 U{p}, and consider a mod®&l = (.%#,V) such that, for
some worldw, it is the case tha¥l,wl- ¢; in particular, it is the case thad,wi- [ (A} V Ab); letW CW

be the set of worlds reachable fromvia the universal prefixJ;, and considew € W. If M,vI+ )\é we
can extendVl to a modeM? = (.#,V?’) such that it satisfiep on every worlda-reachable fronv, if
any, and both substituting clauses are satisfied. If, ontierdandM,v - G A, for somet such that

v R, t we have that,t IF A; we can now extendl to a modelM? = (.%,V?) such that it satisfies
—pont, andp on every other world reachable fromif any, and, again, both substituting clauses are
satisfied. A reversed argument proves tha jfv I- ¢’ it must be the case thdt,wi ¢. If, as a second
case,)\{ =-0qA, whereA is a positive literal, then the translating formula is

¢ = O1(AL VAN ATLAZVAD A AD(OgpVA) ADiTg(—=pV-A)A... AT (ALVAD),
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and the proof of equi-satisfiability is identical to the abane.

In order to prove the second result, we observe that sk(lﬁ,[@m’m is a syntactical fragment &£ o
we know thati Ko™ <w KKrom |t remains to be proved that there exists a formula thatrigsido

KKrom and that cannot be translatedk ™" within the same propositional alphabet. L&t = {p},
consider the&k Ho"-formula

L/J:<>apa

and suppose by contradiction that there exisl(s,*f,él"m’D formula ¢ such that for every modd¥l over
the propositional alphabe¥ and every worldv we have thaM,w - ¢ if and only if M,w I ¢. Once
again, we can safely assume tidat= ¢1 A P2 A ... A @, and that eaclp; is a clause. Consider a model
M = (#,V), where.Z is based on the set of worlif§, and letw € W be a world such tha¥l, w Iy (.
Such a model must exist singeis not a tautology. Since is a conjunction of Krom clauses, we have
that there must exist at least one clagse- (A1 V A2) such thatM,w I/ ¢;. Hence, there must exist a
world w' such thaM,w' If (A1 A2). Now, consider the mod@fi* obtained fromM by extending the set
of worldsW to W* =W U {w*}, in such a way thatv R,* w* and thatp € V*(w*); clearly, M*,wl (.
We want to prove thavl*,w I/ A1V A,. Let us prove the following:

M,tIFA < M5t A,

for everyt € W and positive literal. We do so by induction omd(A). If md(A) =0, thenA is a
propositional letter (the cases in whigh= T is trivial): the valuation ot has not changed froml to
M*, and therefore we have the claim immediatelynti(A ) > 0, then we have two cases:

e A =0gA’, andB # a. In this case the claim holds trivially, as tifiestructure has not changed
from M to M*.

e A =0yA’, andA’ is a positive literal. By definition,t I O, A’ if and only if for everyt’ such that
t Ry t, if any, it is the case thad¥l,t’ I- A’. Clearly, ift # w, the set of reachable worlds franfnas
not changed, and thanks to the inductive hypoth&sis, |- A’ if and only if M*,t’ I A’; therefore,
M.t I A if and only if M*,t’ IF A as we wanted. Otherwise, suppose thatw. If M,t I OgA’,
then: (i) A’ # T, becausél, T is always satisfied, an() there exist som€& such that R, t’ and
M.t I A/, andt’ # w* (sincew* is a new world); so, by inductive hypothesM;,t" I/ A’, which
means thaW*,t I OqA’. If, on the other handWl,t I O A/, then:(i) if A’ =T, thenM*,tIF O, T
independently from the presencewf; (i) if A’ = OgA” for some relatior, then observe that
M*,w*I- OgA” becausev' has noB-successors for any relatigh and, henceM*,tI- OqA’, and
(iii) if A= p, thenM* t IF O4A’ becausev R,* w* andp € V*(w*) by construction.

Since by hypothesisl, W I/ A1V A,, the above argument implies tHdt, w [ A1V A2, which means that
M*, wlf ¢;, that is,M*,wlff ¢. Thereforeg cannot be a translation @f, and the claim is proved. O

The following result deals with sub-Krom fragments withbokes; as before, the argument of The-
orem[7, based on the product of models, cannot be replicated.
Theorem 9. The following relationships hold:

<
1 Ko™ = KKrom;
2. Ko™ <wKgrom;
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Proof. The first result is relatively easy to see. Suppose that
¢ =01 AEVADADAZVAD) AL ATAL VAN AL ADIALVAD

is aK',f,“’m-formuIa, where, as always, we treat literals as specialsgla. There are two cases. Suppose,
first, thatAl = OgA, where) is a positive literal. We claim that theg"*™-formula

¢ =01AF VA ADAZVAD AL AT (=CapV AN ADDg(PVA)A ... ATHA]VAD),

wherep is a fresh propositional variable, is equi-satisfiablegptoTo see this, let” the propositional
alphabet in whichp is written, and let??’ = &2 U {p}, and consider a mod&l = (.%#,V) such that, for
some worldw, it is the case tha¥l,wl- ¢; in particular, it is the case th,wlF 0j (AL V AL); letw CW
be the set of worlds reachable fromvia the universal prefix;, and considew € W. If M,vI+ /\é we
can extendM to a modeM? = (.#,V?) such that it satisfiep on every worlda-reachable fronv, if
any, and both substituting clauses are satisfied. If, onter diandM, v I+ Og Al for everyt such that
v Ry t we have thaM, t I A; we can now extenM to a modeM” = (.#,V?) such that it satisfies p
on every such (if any), and, again, both substituting clauses are safis#ereversed argument proves
that if M, wl+ ¢’ it must be the case thist,wi- ¢. If, as a second casle{ =-0g4A, whereA is a positive
literal, then the translating formula is

¢ =01(AEVAD ADAZVAD AL AD(CapV AN ADDg(=pV—=A)A...AD(ALVAY),

and the proof of equi-satisfiability is identical to the abane.

As for the second relationship, sinéd|"®™ is a syntactical fragment df£™™, we know that

K™ < KKrom_ |t remains to show that the relationship is strict. To thigl,eve consider the follow-
ing KK"m-formula and we prove that it cannot be translatet {§°™ within the same propositional
alphabet:
Y=0gp—Q

Suppose, by contradiction, that there exist a conjunafiaf box-free Krom clauses, such that for
every modeM over the propositional alphabe? = {p,q} and every worldv we have thaM,w I-  if
and only ifM,wiF ¢. Let ¢ = @1 A ... A ¢n, where eacl®; is in its generic fornil(A; V Az), with A; and
A2 either positive or negative literals. As always, literale reated as special clauses. Now, consider
a modelM = (#,V), where.# is based on the set of world¥, and letw € W be a world such that
M,wIff @, and that exists at least onesuch thatw R, v. SinceM,w I ¢, we have that] ¢ V(w) and
for eachv such thatv R, v it is the case thap € V (v). Since¢ is a translation ofp, it must be the case
thatM,w I ¢, which implies that there must be a claugesuch thaiM,wlf ¢;, that is, there must be a
world w' such thaM,w' If (A1 A2). Now, consider the mod@fl* obtained fromM by extending the set
of worldsW to W* =W U {w*}, in such a way thatv R, w* and thatv*(w*) = 0; clearly,M*,wl- (.
We want to prove thavl*,w' Iy ¢;. Let us prove the following:

M,tIFA < Mt A,

for everyt € W and positive literal. We do so by induction omd(A). If md(A) =0, thenA is a
propositional letter (the cases in whigdh= T are trivial): the valuation of has not changed froml to
M*, and therefore we have the claim immediatelynti(A) > 0O, then there are two cases:

e A =CpA’, and # a. In this case the claim holds trivially, as tiiestructure has not changed
from M to M*.
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e A =3C4A/, andA’ is a positive literal. By definitioni,t I-F G4 A’ if and only if there exist somg
such that Ry t’ andM,t’ I- A’. Clearly, ift # w, the set of reachable worlds frarhas not changed,
and thanks to the inductive hypothedi,t’ I- A’ if and only if M*,t" IF A’; therefore M, t I O g A if
and only ifM*,t I G4 A, as we wanted. Otherwise, suppose thatw. If M,t IF C4A’, then there
exist somd’ such that R, t" andM,t’ IF A/, andt’ # w* (sincew* is a new world); so, by inductive
hypothesisM,t" I- A/, which means that1*,t I- G4 A’. If, on the other handy,t If G4A’, then:
(i) A’ # T, because we have buM in such a way thatv has aa-successor, an(ii) for everyt’
such that R, t' it is the case thatl,t’ | A’. SinceV (w*) =0, andA’ is positive, for every’ such
thatt Ry * t’ it is the case that1*,t’ I/ A/, and, thereforeM*,t I G4A’, as we wanted.

This means thaMl,w F£ A1V A, implies thatM*, W' £ A1V Ay, that is,M* W £ ¢;. This implies that
M*, wlf ¢. Thereforegp cannot exist, and this means thiatcannot be expressed Iih,'f,”’m’<> within the
same propositional alphabet. O

Corollary 10. The following results hold:

1. Ko™ andK 1°™ are <-incomparable;
2. KS™ andK K™ are <W-incomparable;

3. K& andK ' are <-incomparable.

ore, &

Proof. As we have seen in Theorem 5, th -formula (which is also & ™ -formula) ¢ p
Horn,O

cannot be translated intoy (and therefore it cannot be translated<™®" either), over any finite
extension of the propositional alphabet, and, as we haveis@deorenill7, th& "~ -formulady p— q
(which is also a ™" -formula) cannot be translated inkgi°™ (and therefore it cannot be trans-
lated toK 3" either), over any finite extension of the propositional alptt. These two observations,

together, show that we cannot compkrg® ™ with KI1%™, norK ¢ with K. Similarly, Theo-

rem[8 proves that thi ;"™ -formula<© 4 p cannot be translated tof°™", and Theorerfl9 proves that

the K™ -formula O, p — q cannot be translated t65"°™, all this within the same propositional
alphabet; these two observations, together, imply thdeaat within the same propositional alphabet,

we cannot compark (™" andK "™, either. O

Corollary 11. The following results hold:

1. K“"”‘"‘, KR cannot be<"-compared with(',f,’om‘, K™, and viceversa, folk, & € {0,0};

2. K’(ilore.lj {WKHorn.D andKﬁlore,O {WKHOH]’O;

3. K&ore.l:!’KKIore,O < Kﬁrom, Kﬁrom,t:\’ Kﬁrom,o_
Proof. As far as the first result is concerned, as we have seen in &méby the formulgp Vv g, which
belongs to all sub-Krom fragments K£%, cannot be translated £°", and, therefore, it cannot be
translated to any sub-Horn fragment either, at least witnsame propositional alphabet. Theofém 2,
on the other hand, proves that the formgfaA q) — r, which belongs to all sub-Horn fragments of
KBool ' cannot be translated &K, and, therefore, it cannot be translated to any sub-Krognient
either, at least within the same propositional alphabetes&htwo observations, together, imply that
the claim holds. Thanks to the above result, an taking intmaat thatk "~ = Ko™ NK o™
and thatk 3" = Ko™ NK ™™, the second claim immediately follow. Finally, to prove thid
result it is sufficient to recall that the proof of Theoréin Bk that thek §"°™-formula ¢4 p cannot
be translated ity " (over any finite extension of the propositional alphabetjlevthe proof of
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----- » “is weakly more expressive”
—— “is more expressive”
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Figure 1: An account of the results of this paper.

Theoren{¥ shows that thHeK ™ -formula O, p — q cannot be translated inté5" > (over any finite
extension of the propositional alphabet). Thanks to Thed@eand Theorem]9 we know thit " =

KK™ =KK™ and we have the claim. O

5 Conclusions

In this paper we studied the relative expressive power aradgub-propositional fragments of the multi-
modal logicKy. Inspired by recent work on sub-propositional fragmentseaiporal and description
logic [2,13,4,[10], we defined the Horn and the Krom fragmeritsnodal logic, and their box and
diamond fragments. We compared the relative expressiveipoiithe fragments at two different levels,
characterized by respectively allowing or not allowing nawpositional letters in the translations, and
the results are shown in F[g. 1. In most cases relative espiscoincides with syntactical containment,
with the notable exception of the Krom fragments, that aneressively equivalent, but not weakly
expressively equivalent. Because of our very general aghrdor comparing the expressive power
of languages, most of our result can be transferred to otliepsopositional modal logic such as the
fragments oL TL without Since and Until studied in[2] and the sub-propositil fragments oHS [4,
9,[10]. To the best of our knowledge, this is the first work veéheub-Krom and sub-Horn fragments of
Kn have been considered.

As future work, it would be desirable to complete this pietuelatively to the strong hierarchy
(although extending the current results do not seem tyj\aald to study the complexity of the fragments
that are expressively weaker or incomparable(ﬁf'”. Because of their lower expressive power, the
satisfiability problem for sub-Krom and sub-Horn fragmemisy have a lower complexity than fudly,
as our preliminary results seem to suggest, not only in tke cKy, but, also, for some of its most
common axiomatic extensions.
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