
D. Cantone and G. Delzanno (Eds.): Seventh Symposium on
Games, Automata, Logics and Formal Verification (GandALF’16)
EPTCS 226, 2016, pp. 105–119, doi:10.4204/EPTCS.226.8

c© F. Bruse
This work is licensed under the
Creative Commons Attribution License.

Alternation Is Strict For Higher-Order Modal Fixpoint Logi c

Florian Bruse
Universität Kassel
Kassel, Germany

florian.bruse@uni-kassel.de

We study the expressive power of Alternating Parity KrivineAutomata (APKA), which provide op-
erational semantics to Higher-Order Modal Fixpoint Logic (HFL). APKA consist of ordinary parity
automata extended by a variation of the Krivine Abstract Machine. We show that the number and par-
ity of priorities available to an APKA form a proper hierarchy of expressive power as in the modal
µ-calculus. This also induces a strict alternation hierarchy on HFL. The proof follows Arnold’s
(1999) encoding of runs into trees and subsequent use of the Banach Fixpoint Theorem.

1 Introduction

Parity automata provide popular operational semantics forthe modalµ-calculus and, hence, for all reg-
ular properties over trees. They are equivalent to most other acceptance modes with the exception of
Büchi automata [13]. However, since parity automata can only express regular properties, extending
their expressive power, or extending them to cover strongerlogics, is the subject of ongoing research.
For example, visibly pushdown automata [1] allow the addition of a limited pushdown stack but tie the
stack operations to different and disjoint parts of the alphabet.

In this paper, we revisit our previous work on extending parity automata by a variant of the Krivine
Abstract Machine [9], which incorporates a simply typed lambda calculus into the semantics of the au-
tomaton model. The resultingAlternating Parity Krivine Automata(APKA) yield operational semantics
for Higher-Order Modal Fixpoint Logic (HFL) [14]. The acceptance condition of APKA is a stair parity
condition over an acceptance game. The stair parity condition resembles that of visibly pushdown au-
tomata, but it is not tied to any alphabet symbols or tree labels, but rather emerges via the bookkeeping
done by the Krivine Machine part. This automaton model is very expressive: Properties such as uniform
inevitability or the presence of a given property in a level that is a power of two are easily expressible.
This expressive power comes at a price, since emptiness of APKA, which is equivalent to satisfiability
of HFL-formulae, is undecidable.

A key improvement over the variant of APKA presented in [5] isthat in this paper, the state space of
the automaton is not restricted to a tree-like structure inherited from HFL-formulae, but can take the form
of any graph, just like an ordinary parity automaton is less restricted in structure than a formula of the
modalµ-calculus. Since in the new variant of APKA, precedence between states representing different
fixpoints can not be inferred from their position in a syntax tree, it is given explicitly via a parity labeling
of states. This has the advantage that the alternation classof an automaton, or that of any equivalent
formula, can be defined via the number of its priorities, while for formulae, alternation can be hard to
gauge syntactically. Already for the modalµ-calculus, syntactic criteria to define alternation classes can
be quite complex [6, 12]. On the automaton side of things, however, characterization via the number
of priorities makes things much easier. Translations from APKA into HFL and vice versa are readily
available and any alternation hierarchy for APKA induces analternation hierarchy on HFL. This settles
the question posed in [5] on how to properly define alternation classes for HFL.

http://dx.doi.org/10.4204/EPTCS.226.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

106 Alternation Is Strict For HFL

We find that for APKA, adding more priorities increases expressive power. The original strictness
result for parity automata has a beautiful proof [2] involving the Banach Fixpoint Theorem, which also
has been adapted to Fixpoint Logic with Chop FLC [10]. Our strictness proof proceeds in a similar
manner: Given an infinite binary tree and an APKA of suitable vocabulary, we construct another infinite
binary tree which encodes the acceptance game of the run of the APKA. Given a vocabulary tailored to
a specific alternation class, we construct an automaton which accepts such a game tree if and only if the
original automaton accepts the original tree. This operation induces a contraction in the complete metric
space of infinite binary trees, which, by the Banach FixpointTheorem, has a fixpoint. We show that on
this fixpoint, no automaton with less priorities or with the same amount of priorities, but flipped parity,
can be equivalent to the given meta-automaton.

While strictness of the alternation hierarchy for APKA and,hence, for HFL is not unexpected, such
a result is not obvious. It is well known that adding more priorities to a parity automaton or more
Rabin pairs to a Rabin automaton increases their expressivepower, just as extra fixpoint alternation
in the modalµ-calculus does [4]. However, adding extra fixpoint nesting does not always yield more
expressive power: The Immerman-Vardi Theorem entails that, over finite ordered structures, first-order
logic with least and greatest fixpoints is as strong as first-order logic with only one least fixpoint. Also the
alternation hierarchy of the modalµ-calculus itself collapses to the alternation-free fragment over certain
classes of structures, for example the class of infinite words [8] and, more generally, classes of structures
with restricted connectivity [7]. Preliminary work also shows that alternation for HFL collapses over
finite structures. It should also be noted that, just like with Fixpoint Logic with Chop [10], formulas
that are hard for alternation classes for the modalµ-calculus are not necessary suitable candidates for
higher-order logics. This is because these formulas are notdesigned for the higher-order features of HFL.

The plan of the paper is as follows: In Section 2, we define APKAand their acceptance condition for
infinite binary trees. We have a look at their relation to HFL in Section 3. In the following section, we
define alternation classes and present a class of trees that encode runs of APKA from a given alternation
class. For each alternation class we also construct meta-automata that accept such a tree encoding a run
if and only if the run was accepting. This allows us to prove strictness of the alternation hierarchy. The
paper closes with a brief discussion of important points.

2 Alternating Parity Krivine Automata

Note that we previously defined APKA differently. This work supersedes earlier definitions in [5]. For
ease of exposition, and since the alternation hierarchy argument is developed over the class of fully
infinite binary trees, we only consider automata over labeled fully infinite binary trees. The concept of
APKA extends naturally to trees of unrestricted branching factor and, or any class of Kripke structures

Fix some setP of propositions. An infinite binary tree with labels inP (just tree orP-tree from
now on) is given by a functionT from the set{0,1}∗ of all {0,1} words into 2P . The root of the tree is
identified withε and the left and right successors oft ∈ {0,1}∗ aret0 andt1, respectively. We say that
P∈ P holds att (writtenT , t |= P) if P∈ T (t). The pairT , t refers to the subtree induced byt.

Simple types are defined inductively viaτ ::= Pr | τ → τ . We often refer to Pr asground type. The
operator→ is right-associative, so any type can be written asτ1 → ··· → τn → Pr. The order ord is
defined inductively via ord(Pr) = 0 and ord(τ1 → ··· → τn → Pr) = max(ord(τ1), . . . ,ord(τn))+1. The
set of types is partially ordered viaτ ,τ ′ < τ → τ ′. The intended semantics for the ground type over a tree
T is a set of subtrees ofT , the intended semantics for a type of the formτ1 → ··· → τn → Pr is that of
a monotone function consuming arguments of typesτ1, . . . ,τn and returning a set of subtrees ofT .

F. Bruse 107

Figure 1: Typing Rules for APKA-transition relations.

Σ ⊢ P: Pr Σ ⊢ ¬P: Pr Σ ⊢ f i
j : τ i

j Σ ⊢ Xi : τ i
1 → ··· → τ i

nXi
→ Pr

Σ ⊢ ϕ : Pr

Σ ⊢ ♦Rϕ : Pr

Σ ⊢ ϕ : Pr

Σ ⊢�Rϕ : Pr

Σ ⊢ ϕ1 : Pr Σ ⊢ ϕ2 : Pr

Σ ⊢ ϕ1∨ϕ2 : Pr

Σ ⊢ ϕ1 : Pr Σ ⊢ ϕ2 : Pr

Σ ⊢ ϕ1∧ϕ2 : Pr

Σ ⊢ ϕ : τ → τ ′ Σ ⊢ ψ : τ
Σ ⊢ (ϕ ψ) : τ ′

2.1 Definition

Fix a finite setX = {X1, . . . ,Xn} of states, or fixpoint variables, and a finite setF which is the disjoint
union

⋃

nFXn of lambda variables, whereFXi = { f Xi
1 , . . . , f Xi

ni
}.

For each 1≤ i ≤ n , let ϕi be derived from the grammar

ϕi ::= P | ¬P | ♦ϕi |�ϕi | ϕi ∨ϕi | ϕi ∧ϕi | f | X | (ϕi ϕi)

whereP∈ P, X ∈ X and f ∈ FXi .
An Alternating Parity Krivine Automaton(APKA) of index m and orderk is a five-tuple the form

(X ,Λ,Xinit ,δ ,(τX)X∈X) whereX is as above,Xinit ∈ X is the initial state,Λ : X → {1, . . . ,m} or
Λ : X → {0, . . . ,m−1} labels each fixpoint variable with a priority, theτX = τX

1 → ··· → τX
nX

→ Pr of
order at mostk specify the types of the fixpoints, the type of the initial state τXinit is Pr, andδ is the
transition relation that mapsXi to ϕi and is such that /0⊢ δ (X) : Pr for eachX ∈ X , according to the
typing rules reproduced in Figure 1. The state space of the automaton isQ = X ∪

⋃

X∈X sub(δ (X)),
where sub(ψ) is the set of subformulae ofψ .

Example 1. LetX = {I ,X,Y}, let τI = τY = Pr, τX = Pr→ Pr, let Λ(I) = Λ(X) = 1,Λ(Y) = 0. Let

δ (I) = /0 7→(X¬P)

δ (X) =x: Pr 7→(♦x)∨�Y

δ (Y) = /0 7→(X Y)

Let A = (X ,Λ, I ,δ ,(τX)X∈X). We will see a run ofA in Example 2. This automaton corresponds to
theHFL-formula (see Section 3 for a definition ofHFL)

(

µX.λx.♦x∨�νY.(X Y)
)

¬P.

2.2 Acceptance

In the context of an APKA, an environment is either the empty environmente0 or of the forme= (f X
1 7→

(ψ1,e1), . . . , f X
nX

7→ (ψnX ,enX),e
′) where theψi are inQ, i.e., subformulae ofδ (X) for someX. We call

e′ the parent environmentof e, and any environment reachable via the irreflexive, transitive closure of
this relation apredecessorof e. A pair (ψ j ,ej) is called a closure. We sete(f X

i) = (ψi ,ei). While the set
of environments never appears explicitely, we tacitly assume that at any point during a run of an APKA,

108 Alternation Is Strict For HFL

the only environments in existence aree0 and any environments the automaton has created so far. This
also means that all environments have only finitely many predecessors.

A configuration in a run of the automaton over some treeT has the form(t,(Q,e),e′,Γ,∆), wheret
is subtree ofT , Q∈ Q is a subformula ofδ (X) for someX, e ande′ are environments,Γ is a possibly
empty stack of closures, and∆ is a finite sequence of priorities. In each configuration, if the type of the
current closure isτ1 7→ · · ·τn 7→Pr then there aren elements on the stack, and their types are, from bottom
to top,τ1, . . . ,τn. The latter invariant is by induction over the definition of the transition semantics.

A run overT , t0 is a possibly infinite sequence of configurations that beginswith the initial config-
uration(t0,(Xinit ,e0),e0,ε ,ε) and is produced by a two-player game between players∃ and∀. In each
configuration, the next configuration is either produced deterministically, or one of the two players picks
a successor. A run is accepting if∃ wins the game according to a winning condition which we statelater.

The transition semantics from(t,(Q,e),e′,Γ,∆) is as follows:

• If Q is X ∈ X , the automaton transitions towardsδ (X). The closures on the stack are, from
bottom to top, the closures(ψ1,e′′1), . . . ,(ψnX ,e

′′
nX
) of typesτX

1 , . . . ,τX
nX

. The automaton creates a
new environmente′′ = (f X

1 7→ (ψ1,e′′1), . . . , f X
nX

7→ (ψnX ,e
′′
nX
),e′), removes all these closures from

the stack (which is now empty) and transitions to(t,(δ (X),e′′),e′′,ε ,∆′), where∆′ is ∆ with the
priority of Q appended.

• If Q is of the form(ψ1 ψ2), then the automaton pushes(ψ2,e) on the stack and transitions to the
configuration(t,(ψ1,e),e′,Γ · (ψ2,e),e′,∆).

• If Q is of the form f X
j and not of type Pr, then the automaton transitions to(t,e(f X

j),e
′,Γ,∆).

• If Q is of the form f X
j and of type Pr, and ife(f X

j) = (Q′,e′′) with e′ 6= e′′, then the automaton
transitions to(t,(Q,e),e′′,Γ,∆′) wheree′′ is the parent ofe′ and∆′ is ∆ without the top element.

• If Q is of the form f X
j , of type Pr, and ife(f X

j) = (Q′,e′′) with e′ = e′′, then the automaton transi-
tions to(t,e(f X

j),e
′,Γ,∆).

• If Q is of the formψ1∨ψ2 or ψ1∧ψ2 then the automaton transitions to(t,(ψ1,e),e′,Γ,∆), respec-
tively (t,(ψ2,e),e′,Γ,∆), depending on∃’s, respectively∀’s choice.

• If Q is of the form♦ϕ or �ϕ then∃, respectively∀, chooses a successort ′ ∈ {t0, t1} and the
automaton transitions towards(t ′,(ϕ ,e),e′,Γ,∆).1

• If Q is of the formP or¬P then∃ wins if T , t |= Q and∀ wins if T , t 6|= Q.

By induction, the transition relation alone determines thewinner of all finite plays of the game. The win-
ner of an infinite play is determined by the behavior of the priority stack (see the end of this subsection).

Note that, in a departure from the usual way the Krivine Abstract Machine works, we insist that the
equivalent of lambda abstraction pop the entire stack via a string of lambda abstractions implicit in each
δ (X). While this is no proper restriction in expressive power, itmakes bookkeeping which fixpoint is
currently being computed much easier (see Definition 4).

Before we formalize the winner of an infinite play of the acceptance game, we illustrate the transition
semantics via an example.

Example 2. Consider the infinite binary tree where only the first two levels are labeled by P. Since all
subtrees on a level are isomorphic, we refer to the root as r and all subtrees of level i as ti. An example
run of the automatonA from Example 1 over this tree is depicted in Figure 2. This example is adapted
from [10]. The highest priority that occurs infinitely oftenduring the run is1 and, hence, odd. However,

1Over possibly finite trees, a player who is stuck loses the game.

F. Bruse 109

Figure 2: Part of an example run of the APKA from Example 2.

C0 =(r,(I ,e0),e0,ε,ε) C10 =(t2,(x,e3),e3,ε,1101)

C1 =(r,((X¬P),e0),e0,ε,1) C11 =(t2,(x,e3),e2,ε,110)

C2 =(r,(X,e0),e0,¬P,1) C12 =(t2,(Y,e2),e2,ε,1101)

C3 =(r,(((♦x)∨�Y),e1),e1,ε,11) C13 =(t2,((X Y),e4),e4,ε,1100)

C4 =(r,((�Y),e1),e1,ε,11) C14 =(t2,(X,e4),e4,(Y,e4),1100)

C5 =(t1,(Y,e1),e1,ε,11) C15 =(t2,(((♦x)∨�Y),e5),e5,ε,11001)

C6 =(t1,((X Y),e2),e2,ε,110) C16 =(t2,((♦x),e5),e5,ε,11001)

C7 =(t1,(X,e2),e2,(Y,e2),110) C17 =(t3,(x,e5),e5,ε,1101)

C8 =(t1,(((♦x)∨�Y),e3),e3,ε,1101) C18 =(t3,(x,e5),e4,ε,1100)

C9 =(t1,((♦x),e3),e3,ε,1101) C19 =(t3,(Y,e4),e4,ε,1100)

e1 = (x 7→ (¬P,e0),e0) e2 = (ε,e1) e3 = (x 7→ (Y,e2),e2)

e4 = (ε,e2) e5 = (x 7→ (Y,e4),e4)

all these occurrences of1 except the first two are eventually removed from the prioritystack and the
remaining priorities are all0. We will see later that this means that the automaton accepts.

Definition 3. Let Ci = (ti ,(ψi ,ei),e′i ,Γi ,∆i) be a configuration. Ifψi = X then we say that Xoccursin Ci.
Anoccurrenceof a fixpoint variable is a configuration such that the variable occurs in that configuration.
Moreover, Ci+1 = (ti ,(δ (X),ei+1),ei+1,ε ,∆i ·Λ(X)) is such that ei+1 is new and there is a new priority
on top of the priority stack. We say that ei+1 and this stack element aretied tothis occurrence of X.

The above means that there is a one-to-one correspondence between environments and occurrences
of fixpoint variables: Reading a fixpoint variableX in a configuration entails creation of a new envi-
ronment, sometimes denoted byeX , and every environmente is created by an occurrence of a fixpoint
variableXe. Moreover, each priority on the priority stack is tied to a unique occurrence of a fixpoint and,
hence, environment. The converse does not hold, since priorities can be removed from the priority stack.
However, we will see below that environments that correspond to deleted priorities are not relevant to
the remainder of a run.

Definition 4. Let Ci = (ti ,(ψi ,ei),e′i ,Γi,∆i) be a configuration. The automaton is said to be currently
computing the fixpointX if e′i was created by an occurrence of X. It is currently computing the environ-
ment e′i , which is tied to an occurrence of X.

Lemma 5. Let (Ci)i∈N = ((ti ,(ψi ,ei),e′i ,Γi,∆i)i∈N be a run. For some i, let Ci = (ti ,(ψi ,ei),e′i ,Γi ,∆i) be
a configuration in that run.

1. ei is either e′i or a predecessor of e′i ,

2. For e′i , all variable bindings point to closures(ψ ,e′) where e′ is a predecessor of e′i and the anal-
ogous property holds for all of e′is predecessors,

3. all closures(ψ ,e′) on the stack are such that e′ is either ei or a predecessor of ei ,

110 Alternation Is Strict For HFL

4. The sequence of priorities on the priority stack is exactly the sequence of priorities tied to e′
i and

the sequence of its predecessors.

Proof. The proof is by induction over the sequence of configurations. After the initial state is expanded
to its transition relation, the lemma holds. Item 2 needs to be verified only on environment creation,
Item 1 only when the fixpoint currently being computed changes.

Now consider the form of the current closure(ψi ,ei) and assume that the lemma holds so far. Clearly,
for modal and boolean operators there is nothing to prove.

If ψi is of the form(ψ ′ ψ ′′), thenψ ′′ is put on the stack and, by assumption, is either fromei or a
predecessor environment, so again the new element conformsto Item 3.

If ψi is of the formX, then a new environmentei+1 is created and will be the new environment
currently being computed. Moreover, the parent environment of ei+1 is ei . This satisfies Item 1. Since all
closures on the stack are fromei or from predecessors ofei , the new environment satisfies Item 2. Since
the stack is empty, it fulfills the stack requirements. Moreover, a new priority is added to the priority
stack. Since it is tied to the new environment, Item 4 continues to hold.

If ψi is a variable not of ground type,ei switches to a predecessor and all items continue to hold. If
ψi is a variable of ground type, the stack is empty and, hence, Item 3 is satisfied. There are two cases:
Eitherei(x) = (Q′,e′) with e′ = e′i , or, by Item 2,e′ is a predecessor ofei and, by Item 1, ofe′i . In the first
case, the next closure will be(Q′,e′) computed ine′, and there is nothing left to prove. In the second
case, the automaton transitions towards(ti ,(ψi ,ei),e′′i ,Γi ,∆′

i), wheree′′i is the parent ofe′i and∆′
i is ∆i

with the top priority removed. Hence, Item 4 is satisfied. Sincee′ is a predecessor ofe′i , it is either equal
to e′′i or a predecessor ofe′′i , so Item 1 is also satisfied.

From the definition of the transition relation, we can deducethat the environment which is currently
being computed changes in two ways: By entering a new environment from its parent, which corre-
sponds to environment creation, or by returning to the parent environment from an immediate successor
environment. This means that, once an environment is left infavor of the parent environment, it will neve
be returned to and the computation of its fixpoint is finished.Moreover, closures with this environment
also never appear again. Hence, if such an environment is permanently left, we say that it isbeing closed.
Formally, a closed environment is one such that a variable ofground type from this environment has been
read or, equivalently, the automaton has reached a configuration (t,(Q,e),e′,Γ,∆) such thate′ is the par-
ent of the environment in question. Note that an environmentis closed if and only if the corresponding
priority has been removed from the priority stack.

Lemma 6. Let e be an environment, let(ψ ,e) be a closure of ground type for some configuration and
let e be the environment currently being computed. As long ase stays the environment currently being
computed, the type order of the current closure never properly decreases. If the computation changes
from e to a proper successor and later returns to e for the nexttime, this happens in a ground-type proper
subexpression ofψ .

Proof. By the definition of the transition relation. The only transition that decreases the type order of
the current closure is reading a fixpoint variable, which will change the environment currently being
computed. Since(ψ ,e) is of ground type, the stack must be empty. If the computationleavese for
a proper successor, this is through creation of a new environment or, equivalently, through reading a
fixpoint variable. If the new environment binds a variable ofground type, the closure this variable points
to must have been put on the stack between reading(ψ ,e) and the environment’s creation. Hence, it
must be a proper subexpression ofψ . If the new environment does not bind a variable of ground type,
the computation can not return toe.

F. Bruse 111

Sinceδ (X) for eachX has a finite syntax tree, repeated application of the previous lemma yields that
the computation changes to any environment only a finite number of times. Otherwise we would obtain
an infinitely descending sequence of subformulae ofδ (X) where each subformula is an operand-type
strict subformula of the previous.

It follows that each environment is either eventually closed, or eventually left permanently. Each
environment appears as the environment currently being computed only finitely often. Moreover, each
environment can only have finitely many direct successors because creation of a succesor ofe during
a configuration requires the previous configuration to be ine. This means that, during an infinite run,
infinitely many environments will not be closed and the corresponding priorities will never be popped
from the priority stack. We define that∃ wins the acceptance game if the highest priority occurs infinitely
often but is never popped from the stack is even.

More formally, consider a run(Ci)i∈N. Consider the subsequence of configurations(C′
j) j∈J such that

C′
j = (t j ,(δ (X),ej),ej ,ε ,∆ j), i.e., a configuration such thatej was created in this configuration, but such

that there is noi > j with a configurationCi = (ti,(x,ej),ej ,Γi,∆i) with x of ground type, i.e.,ej is never
closed. By the above considerations,J must be infinite. Then for alln≥ j, the priority stack∆ j will be
an initial segment of∆n. In particular, this holds for alln∈ J. Hence, the set(∆ j) j∈J is is such that∆ j is
a prefix of∆ j ′ if j ≤ j ′. We define that a play is accepting if the highest priority that occurs in the limit
of this prefix-ordered chain is even. We say that an automatonA accepts a treeT , and writeT |= A ,
if and only if ∃ has a strategy such that the acceptance game generates an accepting run. Note that the
above constitutes astair parity conditionin the sense that only those priorities contribute to the winning
condition that are never removed from the priority stack.

Note that this is not the same as just taking the sequence of priorities occurring during the run: It
is possible that a high priority occurs infinitely often during the run, but each occurrence is eventually
removed from the priority stack. This occurs in Example 2 where priority 1 occurs infinitely often, but
is always removed again from the priority stack a few configurations later.

Definition 7. TwoAPKA are equivalentif and only if they accept the same trees.

Observation 8. For eachAPKA A there is anAPKA A over the same set of propositions such that for
all trees, we haveT |= A if and only ifT 6|= A .

The desired automaton is obtained by increasing the priorities of each state by one and replacing
modal and boolean operators by their duals. A proof by induction over the structure of the acceptance
game shows that a winning strategy for∃ in the game for one automaton yields a winning strategy for∀
in the other, and vice versa.

3 APKA and HFL

3.1 Syntax ofHFL

In addition to the setP of atomic propositions, fix infinite sets of variablesV disjoint from F and
Y disjoint from X that denote variables bound by aλ -expression, respectively a fixpoint quantifier.
SeparatingV andY is usually not done for HFL, but facilitates technical exposition. Lower case letters
x,y, . . . denote variables inV , upper case lettersX,Y, . . . those inY .

HFL-formulaeϕ are defined by the grammar

ϕ ::= P | ¬P | ♦ϕ |�ϕ | ϕ ∨ϕ | ϕ ∧ϕ | x | X | λ (x: τ).ϕ | (ϕ ϕ) | µ(X : τ).ϕ | ν(X : τ).ϕ

112 Alternation Is Strict For HFL

Figure 3: Additional Typing Rules for HFL.

Σ,x: τ ⊢ x: τ Σ,X : τ ⊢ X : τ
Σ,x: τ ⊢ ϕ : τ ′

Σ ⊢ λ (x: τ).ϕ : τ → τ ′

Σ,X : τ ⊢ ϕ : τ
Σ ⊢ σ(X : τ).ϕ : τ

whereP∈ P, x∈ V andX ∈ Y andτ is a simple type. Note that negation is not present explicitly in
the logic since it can be eliminated [11].

The binderλ (xv : τ).ϕ bindsx in ϕ , the binderσ(X : τ).ϕ with σ ∈ {µ ,ν} bindsX in ϕ . Let sub(ϕ)
be the set of subformulae ofϕ . An HFL-formula iswell-namedif there is, for eachX ∈ Y , at most one
subformula of the formσ(X : τ).ψ and, for eachx∈ V , at most one subformula of the formλ (x: τ).ψ .

A variable fromV or Y in a formulaϕ is bound if it is bound by a binder of the respective type,
and free otherwise. A formula is calledclosedif it has no free variables andopenotherwise. For a
well-named formulaϕ andX ∈ Y ∩ sub(ϕ), define fpϕ(X) as the unique subformulaψ of ϕ such that
ψ = σX.ψ ′ for σ ∈ {µ ,ν}. We have a partial order<fpϕ on the fixpoint variables ofϕ via X <fpϕ Y if
Y appears freely in fpϕ (X). We say thatY is outermorethanX. A variable is outermost among a set of
variables if it is maximal in this set with respect to<fpϕ .

We say thatϕ has typeτ in acontextΣ if Σ ⊢ ϕ : τ can be derived via the typing rules in in Figures 1
and 3. Note that the rules concerning variables fromX andF are not used. IfΣ ⊢ ϕ : τ for someΣ
andτ thenϕ is well-typed. A closed formula is well typed if /0⊢ ϕ : τ . Typing judgments are unique
if formulae are annotated with the correct types [14]. We usually omit the type annotations and tacitly
assume that all formulae are well-typed and that the type of aformula can be derived from context.

3.2 Semantics ofHFL

Fix a treeT . The semantics of types are partially ordered sets defined inductively viaJPrK = (2T ,⊆)
andJτ → τ ′K = (Jτ ′K(JτK),⊑τ→τ ′), whereT = {0,1}∗ andJτ ′K(JτK) is the set of monotone functions from
JτK to Jτ ′K. Define the partial order⊑τ→τ ′ via pointwise comparison: Forf ,g∈ Jτ ′K(JτK) let f ⊑τ→τ ′ g if
and only if f (x)⊑τ ′ g(x) for all x∈ JτK.

Note thatJPrK is a boolean algebra and, hence, also a complete lattice. This makesJτ → τ ′K also
a complete lattice for allτ ,τ ′. Let

⊔

τ M and
d

τ M denote the join and meet, respectively, of the set
M ⊆ JτK, and let⊤τ and⊥τ denote the maximal and minimal elements ofJτK.

Let Σ = X1 : τ1, . . . ,Xn : τn,x1 : τ ′
1, . . . ,xm : τ ′

m be a context. An interpretationη is a partial map from
the sets of variablesV andY such thatη(Xi) ∈ JτiK for all i ≤ n andη(x j) ∈ Jτ ′

jK for all j ≤ m. Then
η [X 7→ f] is the interpretation that mapsX to f and agrees withη otherwise, similar forη [x→ f].

We define the semantics of HFL overT inductively as in Figure 4 (with dual cases left out for space
considerations). For well-typed, well-namedϕ , we writeT , t |=η ϕ if s∈ J /0 ⊢ ϕ : PrKη . We write
T , t |= ϕ if ϕ is closed andη is the empty interpretation. Two formulae areequivalent, writtenϕ ≡ ϕ ′,
if JΣ ⊢ ϕKη = JΣ ⊢ ϕ ′Kη for all η , Σ.

3.3 Translations betweenHFL and APKA

Lemma 9. Let ϕ be anHFL-formula of order at most k. Then there is anAPKA Aϕ of order at most k
such that, for all treesT , t, we haveT , t |= ϕ if and only ifAϕ acceptsT , t.

F. Bruse 113

Figure 4: Semantics of HFL.

JΣ ⊢ P: PrKη = PT

JΣ ⊢ ϕ ∨ψ : PrKη = JΣ ⊢ ϕ : PrKη ∪ JΣ ⊢ ψ : PrKη

JΣ ⊢ ♦ϕ : PrKη =
{

t ∈ T : t0∈ JΣ ⊢ ϕ : PrKη or t1∈ JΣ ⊢ ϕ : PrKη
}

JΣ ⊢ λ (x: τ).ϕ : τ → τ ′Kη = { f ∈ Jτ → τ ′K : ∀y∈ JτK.
f (y) = JΣ,x: τ ⊢ ϕ : τ ′Kη [x7→y]}

JΣ ⊢ X : τKη = η(X)

JΣ ⊢ x: τKη = η(x)

JΣ ⊢ µ(X : τ).ϕ : τKη =
l

{

d ∈ JτK : JΣ,(X : τ) ⊢ ϕ : τKη [X 7→d] ⊑τ d
}

JΣ ⊢ (ϕ ψ) : τ ′Kη = JΣ ⊢ ϕ : τ → τ ′Kη(JΣ ⊢ ψ : τKη)

Proof. (Sketch) For space considerations, we only give a sketch of the proof. Letϕ be a HFL-formula.
Since lambda abstraction is implicit for APKA and can only occur directly after a fixpoint, occur-

rences of lambda abstractionλ f .ψ in ϕ that are not of the formσX.λ f1. . . .λ fn.ψ need to be padded by
vacuous fixpoints. Iff is of typeτ1 andψ is of typeτ2, replaceλ f .ψ by σX.λ f .ψ , whereX is of type
τ1 → τ2 andσ is chosen as convenient.

Next, free lambda variables are removed. For a subformulaσX.ψ that contains a free variablef
that is not a fixpoint, replaceσX.ψ by ((σX.λ f ′.ψ [f ′/ f]) f) where f ′ is of the same type asf . This is
organized such that fixpoints are translated before fixpoints in their subformulae, i.e., from top to bottom.

In a third step, any fixpoint of the formσX.λ f1. . . .λ fn.ψ with ψ of type τ1 → ··· → τm → Pr is
changed to itsη-long form, i.e., toσX.λ f1. . . .λ fn.λg1. . . .λgm.ψ ′ with ψ ′ = ((ψ τm) · · ·)τ1).

It is not hard to verify that neither of these steps changes semantics of the formula in question. Let
ϕ ′ be the resulting HFL-formula and letX be the collection of fixpoint variables inϕ ′. Without loss of
generality,ϕ ′ has the formσXinit .ϕ ′′ for someσ .

For each fixpointX with defining formulaσX.λ f1. . . .λ fn.ψ setδ (X) to ψ where all occurrences
of formula of the formσ ′X′.ψ ′ are replaced byX′ and setτX as the type ofX. Then the automaton
A = (X ,Λ,Xinit ,δ ,(τX)X∈X) with Λ chosen such that each fixpoint is labeled odd or even depending
on parity, but not lower than any fixpoint in a subformula, is an APKA accepting the same trees asϕ .

Lemma 10. LetA be anAPKA of order at most k. Then there is anHFL-formulaϕA of order at most
k such that, for all treesT , t, we haveT , t |= ϕA if and only ifA acceptsT , t.

We skip the proof for space considerations. It rests on the idea that a fixpoint stateX computes the
formulaσX.λ f X

1λ f X
nX
.δ (X) whereσ is µ if Λ(X) is odd andν otherwise. However, the translation

is subject to the same exponential blowup in size (but not in order) that occurs when translating ordi-
nary parity automata into the modalµ-calculus. Moreover, further preprocessing is necessary because
fixpoints can occur as operator-operand pair where the operator has a higher priority. In this case, a
duplication of arguments is necessary to ensure proper precedence of fixpoints in the syntax tree.2

Corollary 11. Emptiness ofAPKA is undecidable.

2This idea is due to Naoki Kobayashi andÉtienne Lozes.

114 Alternation Is Strict For HFL

Corollary 12. For anyfinite treeT (or any finite Kripke structure), and anyAPKA A of order k, it is
decidable in time k-fold exponential in the size ofT whetherT |= A .

4 The Alternation Hierarchy for Alternating Parity Krivine Automata

4.1 Alternation Classes

We define the semantic alternation class via the least numberof priorities of any equivalent automaton.

Definition 13. We define the classes

• Σsem
n as the set of allAPKA equivalent to one with at most n priorities such that the highest is even

• Πsem
n as the set of allAPKA equivalent to one with at most n priorities such that the highest is odd

• ∆sem
n = Σsem

n ∩Πsem
n .

Remark 14. The following inclusions hold:

Σsem
n ⊆ Σsem

n+1 Πsem
n ⊆ Πsem

n+1

Σsem
n ⊆ Πsem

n+1 Πsem
n ⊆ Σsem

n+1

Σsem
n ⊆ ∆sem

n+1 Πsem
n ⊆ ∆sem

n+1

∆sem
n ⊆ ∆sem

n+1

Note that the alternation classes are independent of the order of an automaton. For a HFL-formula
ϕ , we say thatϕ is in some alternation class if there is an equivalent APKA inthat class.

Observation 15. If A ∈ Σsem
n thenA ∈ Πsem

n , if A ′ ∈ Πsem
n thenA ′ ∈ Πsem

n .

4.2 Trees Encoding Acceptance Games

For eachn ≥ 1, define a set of propositionsPn as{D,C,V,T,F,F0, . . . ,Fn−1} as well as a setP ′
n as

{D,C,V,T,F,F1, . . . ,Fn}.
Let n ≥ 1. Consider a treeT and some APKAA with at mostn priorities, overPn or P ′

n (de-
pending on whether the highest priority is odd or even). We construct a treeT(T ,A) over the same set
of propositions which encodes the game tree of the acceptance gameG(T ,A) of A overT . A state
labeled byC signals that∀ picks a successor configuration, a state labeled byD signals that∃ picks a
successor configuration, a state labeled byFi signals that priorityi is added to the priority stack in this
configuration and a state labeled byV signals that the top priority is being removed. Configurations
where the priority stack is not being manipulated and neither player picks a successor configuration are
treated as if∃ picks a successor, but both subtrees ofT(T ,A) are isomorphic.

The tree is generated inductively. Each position(t,(Q,e),e′,Γ,∆) in the acceptance game induces
a subtree, with the root of the tree being generated by the initial position. At each vertex, exactly one
propositionP from Pn, respectivelyP ′

n is true. We say that this vertex is labeled byP.

• The subtree induced by a position withQ of the formX is labeledFΛ(X). Both children are the
subtree induced by(t,(δ (X),e′′),e′′,Γ′,∆′) wheree′′,Γ′ and∆′ are as per the transition relation.

• The subtree induced by a position withQ of the form f X
j is labeledV if both f X

j is of type Pr and
e(f X

j) = (Q′,e′′) with e′ 6= e′′. Otherwise, it is labeledD. Both children are the subtree induced by
the successor configuration as per the transition relation.

F. Bruse 115

Figure 5: Part of aT(A ,T) for A andT from Example 2. Omitted subtrees are isomorphic to their
sibling if present or not shown for space considerations.Ci refers to the configuration from Figure 2 that
induces the subtree and is not part of the label.

C0,F1

. . . C1,D

. . . C2,F1

. . . C3,D

D

. . . V

. . . D

. . . F

F

. . .

. . .

C4,C

. . . C5,F0

. . . C6,D

. . . C7,F1

. . . C8,D

C

. . .

C9,D

. . . C10,V

. . . C11,D

• The subtree induced by a position withQ of the form(ψ1ψ2) is labeledD. Both children are the
subtree induced by(t,(ψ1,e),e′,Γ(ψ2,e),∆).

• The subtree induced by a position withQ of the formψ1∨ψ2 is labeledD. The left subtree is the
subtree induced by(t,(ψ1,e),e′,Γ,∆), the right subtree is that induced by(t,(ψ2,e),e′,Γ,∆).

• The subtree induced by a position withQ of the formψ1∧ψ2 is labeledC. The left subtree is the
subtree induced by(t,(ψ1,e),e′,Γ,∆), the right subtree is that induced by(t,(ψ2,e),e′,Γ,∆).

• The subtree induced by a position withQ of the form♦ϕ is labeledD. The left subtree is the
subtree induced by(t0,(ϕ ,e),e′,Γ,∆), the right subtree is that induced by(t1,(ϕ ,e),e′,Γ,∆).

• The subtree induced by a position withQ of the form�ϕ is labeledC. The left subtree is the
subtree induced by(t0,(ϕ ,e),e′,Γ,∆), the right subtree is that induced by(t1,(ϕ ,e),e′,Γ,∆).

• The subtree induced by a position withQ of the formP or¬P is labeledT if T ,s |= Q andF else.
Both children are the subtree induced by(t,(Q,e),e′,Γ,∆) again.

It is easy to verify that this defines an infinite, fully binarytree. Figure 5 shows an example.

4.3 Hard Automata

We now construct APKA that are hard for their alternation classes. Following Arnold’s [2] and Lange’s
[10] proofs, these automata accept trees enconding an acceptance game that is won by∃, respectively∀.

Consider thePn-, respectivelyP ′
n-APKA A Σ

n andA Π
n defined for eachn≥ 1 as follows:

• The fixpoint states are{I ,O,Xn−1, . . . ,X0},

• the type ofI is Pr, the type of the other states is Pr→ Pr,

116 Alternation Is Strict For HFL

• the initial state isI ,

• Λ(I) = Λ(O) = 0,Λ(Xi) = i for A Σ
n andΛ(I) = Λ(O) = 1 andΛ(Xi) = i +1 for A Π

n ,

• δ (I) = O⊤, δ (Xi) = x0 : Pr 7→ (Xi−1x0) for i > 0,δ (X0) = x0 7→ (Ox0),

• δ (O) = x0 7→ ¬F ∧ (T ∨
∧

(D)→ ♦(Ox0)

(C)→�(Ox0)

(V)→ ♦(x0)

(Fn−1)→ ♦
(

Xn−1(Ox0)
)

. . .

(F0)→ ♦
(

X0(Ox0)
)

).

Again, it is easy to verify thatA Σ
n ∈ Σsem

n and thatA Π
n ∈ Πsem

n .
These automata are equivalent to the HFL-formulae(σn−1Xn−1.λx0(

(

· · ·σX0.λx0.ψ
)

· · ·)x0⊤ where
theσi areµ , respectivelyν depending on the alternation class, andψ = δ (O).

Definition 16. Consider a play ofA Σ
n over aPn-tree, respectively ofA Π

n over aP ′
n-tree generated

from an acceptance game. Around in this play consists of a configuration where the current closure is
O and all subsequent configurations until it is O again. An environment istied to a roundif it is created
during that round.

A round begins with the automaton inO. Unless the current tree node is labeled byF, ∀ chooses
the right conjunct inδ (O), and∃, unless the current state is labeled byT, chooses the right disjunct.∀
then picks the conjunct indicated by the label of the currentsubtree in the big conjunction and∃ picks
the right part of the implication. Any different choice results in the player making that choice instantly
loosing the game. One of the players is then in charge of picking a successor subtree. Depending on the
conjunct picked by∀, the game continues in a new instance ofO, goes throughXi, . . . ,X0,O for somei
or continues with the content ofx0. The latter will always lead to another instance ofO, as we will see
below. In either case, the game continues in the next round.

Observation 17. Each round corresponds to exactly one configuration in the acceptance game ofA ,
namely that which induces the subtree in T(T ,A) during the first configuration of the round. Further-
more, the current subtree in the game forA Σ

n is labeled by C if and only if the configuration that induces
it has a conjunction or a box as the top operator in the formulapart of the current closure.

Note that each configuration in a play forA Σ
n , respectivelyA Π

n over suitable trees is part of exactly
one round, with the exception of the first two configurations which have current closures(I) and(O⊤).

We call a round aV-round if ∀ picks the conjunct withV on the left of the implication, we call it an
Fk-round if he picks the conjunct withFk on the left of the implication and we call a round aplain round
if he picks the conjuncts withC or D on the left of the implication. A round isclosedif the environment
tied to the single occurrence ofO during that round is closed. AV-round is always closed immediately.

Lemma 18. Consider a play ofA Σ
n , respectivelyA Π

n over aPn-tree, respectivelyP ′
n-tree generated

from an acceptance game and let the automaton be at the start of some round, i.e., just before reading
another occurrence of O. Let(Ri)i∈I be the sequence of unclosed rounds played so far, in order. Set
pΣ(R) = 0 if R is a plain round, set pΠ(R) = 1 if R is a plain round, set pΣ(R) = 0,k, . . . ,1,0 if R is an Fk-
round and set pΠ(R) = 1,k+1, . . . ,2,1 if R is a plain round. Then the priority stack ofA Σ

n from bottom
to top is the concatenation of the pΣ(Ri) from first to last and the priority stack ofA Π

n from bottom to
top is the concatenation of the pΠ(Ri) from first to last.

F. Bruse 117

Moreover, all unclosed environments are tied to unclosed rounds. Tied to any plain round is a single
environment for its ocurrence of O and it binds x0 the last environment of the first unclosed round before.
Tied to an Fk-round is a sequence of environments for the occurrences of O,Xk, . . . ,X0. The environment
for X0 is the last environment, they all bind x0 to x0 of the previous environment except the environment
for Xk which binds x0 to (Ox0) in the environment for O of its own round. Here, the initial unfolding for
I is considered a dummy round.

Proof. The proof is by induction over the play. At the beginning of the very first round, the priority stack
contains only the priority forI and(⊤,e0) is on the stack. A plain round will consume the content from
the stack, which is(x0,e) of the previous round, or(⊤,e0) for the very first round, and tiex0 of its single
ocurrence ofO to it. Moreover, it will add 0 to the priority stack. AnFk-roundR will also consume
(x0,e), respectively(⊤,e0) from the stack and tiex0 of the single ocurrence ofO to it. During the round,
the automaton will unfoldXk and tie(Ox0) of that environment toXk’s x0, then unfoldXk−1, . . . ,X0 and
create a chain ofx0 pointing tox0 of the environment before. Moreover, it will put the sequence pΣ(R),
respectivelypΠ(R) on the priority stack.

A V-round will put priority 0 on the stack, tie thex0 of its single occurrence ofO to x0 of the
previous unclosed round and then immediately read it. Consequently, all the environments of the previous
unclosed round will be closed, including the ocurrrence of 0, and all the priorites tied to it will be popped.
Notably, this will close all unclosed previous plain roundsuntil the nextFi-round, but nothing more.

Lemma 19. For all Pn, respectivelyP ′
n-automataA ∈ Σsem

n and all infinite, fully binaryPn -trees
T , we have thatT |= A if and only if T(T ,A) |= A Σ

n and for all Pn, respectivelyP ′
n-automata

A ′ ∈ Πsem
n , we have thatT |= A ′ if and only if T(T ,A ′) |= A Π

n .

Proof. We only show the case forPn and we only show that∃ has a winning strategy in the acceptance
game forA Σ

n over T(T ,A) if she has one forA over T , for a Pn-automatonA in Σsem
n andT a

Pn-tree. The other cases are similar. Assume that∃ has a winning strategy in the latter game.
The correspondence between rounds in the game forT(T ,A) and configurations in the game forA

suggests the following strategy for∃ in the former game: Stay within subtrees that represent configura-
tions that follow her winning strategy. Since the underlying game is assumed to be winning for∃ and the
root of T(T ,A) represents such a configuration by assumption, she can maintain this invariant in any
round where she picks the successor configuration. In roundswhere∀ picks the successor configuration,
both of his choices must be winning for∃ in the underlying game forA overT for otherwise the current
configuration would not be winning for∃. Clearly, following this strategy will guarantee that∃ wins any
finite play of the game forA Σ

n by avoiding a node labeledF.
It remains to show that∃ wins any infinite play when following the strategy above. This is because

the sequence of unclosed nonplain rounds in the game forA Σ
n , and priority stack in the game forA

correspond like this: If(Fki)i∈I is the sequence of unclosed nonplain rounds, the(ki)i∈I is the priority
stack ofA . This follows from an induction over the two plays: Before the first round of the game for
T(T ,A), the sequence of unclosed rounds is empty, and so is the priority stack of the correspondig
configuration ofA . Any plain round will add a 0, the least priority, to the priority stack ofA Σ

n and will
not change the priority stack ofA . An Fk-round will addk to the priority stack ofA and will add an
unclosedFk-round to the play ofA Σ

n . A V-round will remove one priorityk from the priority stack for
A and will close a number of plain rounds and exactly one nonplain round in the game forA Σ

n . By the
induction hypothesis, this is anFk-round.

Hence, after both plays are finished, the highest priority tooccur infinitely often on the stack forA is
k if and only if there are infinitely many unclosedFk-rounds, but only finitely many unclosedFk′ rounds

118 Alternation Is Strict For HFL

for k′ > k. It follows from Lemma 18 that the highest priority to occur infinitely often on the stack for
A Σ

n is k as well. Since∃ wins the first game by assumption, that number must be even.

Lemma 20. For each n≥ 1 and everyPn-APKA A ∈Σsem
n , there is a uniqueT ∗ such that T(T ∗,A)=

T ∗. For each n≥ 1 and everyPn APKA A ∈ Πsem
n , there is a uniqueT ∗ such that T(T ∗,A) = T ∗.

Proof. The sets of allPn-trees, respectively the sets of allP ′
n-trees, form metric spaces via the metric

d(t, t ′) = 2−i , wherei is the first level on whicht and t ′ differ. It is well known that these spaces are
complete [3]. Moreover, on all of these spaces, the mappingf : T 7→ T(T ,A sem

n) is a contraction in the
sense of the Banach Fixpoint Theorem since the game trees of two trees that differ at leveli will coincide
at least up to leveli+1. This is because the game withA sem

n transitions throughI first and a full rotation
throughδ (O) for each level. Hence, by the Banach Fixpoint Theorem,f has a fixpointT ∗.

Theorem 21. A Σ
n ∈ Σsem

n \Πsem
n andA Π

n ∈ Πsem
n \Σsem

n .

Proof. For the sake of contradiction, assume thatA Σ
n ∈ Πsem

n . ThenA ′ = A Σ
n ∈ Σsem

n . By Lemma 20,
there isT ∗ such thatT(T ∗,A ′) = T ∗. So by construction ofT(T ∗,A ′), we haveT ∗ |= A Σ

n iff
T ∗ |= A ′. But A ′ = A Σ

n , which is a contradiction. hence,A Σ
n /∈ Πsem

n .
A similar proof works for the dual case.

Corollary 22. For each n,Σsem
n (Σsem

n+1 andΠsem
n (Πsem

n+1.

Proof. SinceΠsem
n ⊆ Σsem

n+1, non-strictness ofΣsem
n ⊆ Σsem

n+1 would contradict the previous theorem. The
same argument works for the dual case.

5 Discussion

It is a priori quite surprising that the order of an APKA or a HFL-formula is not of relevance when it
comes to its alternation class. In particular, the automataA Σ

n andA Π
n that serve as example of automata

that are hard for their respective classes are of order 1. This is surprising, since for the HFL-model-
checking problem, which corresponds to acceptance for APKA, complexity is almost exclusively dictated
by the order of a formula. We believe that this dichotomy stems from the way the transition relation for
APKA is restricted to formulae of ground type. A state that would compute a higher-order function, say
of type(Pr→Pr)→ (Pr→Pr) actually does not compute the full higher-order function, but its equivalent
of type (Pr→ Pr)→ Pr→ Pr at a fixed argument of type Pr. The first case requires computations over
the full extent of a higher-order lattice, while in the second case it is sufficient to find an approximation
that is good enough for the arguments in question.

Acknowledgements

I thank Martin Lange and́Etienne Lozes for discussing the matter with me at length.

References

[1] Rajeev Alur & P. Madhusudan (2004):Visibly pushdown languages. In László Babai, editor:Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, ACM,
pp. 202–211, doi:10.1145/1007352.1007390.

http://dx.doi.org/10.1145/1007352.1007390

F. Bruse 119

[2] André Arnold (1999):Theµ-calculus alternation-depth hierarchy is strict on binarytrees. ITA 33(4/5), pp.
329–340, doi:10.1051/ita:1999121.

[3] André Arnold & Maurice Nivat (1980):The metric space of infinite trees. Algebraic and topological proper-
ties. Fundam. Inform.3(4), pp. 445–476.

[4] Julian C. Bradfield (1996):The Modal mu-calculus Alternation Hierarchy is Strict. In Ugo Montanari
& Vladimiro Sassone, editors:CONCUR ’96, Concurrency Theory, 7th International Conference, Pisa,
Italy, August 26-29, 1996, Proceedings, Lecture Notes in Computer Science1119, Springer, pp. 233–246,
doi:10.1007/3-540-61604-758.

[5] Florian Bruse (2014):Alternating Parity Krivine Automata. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger
& Zoltán Ésik, editors:Mathematical Foundations of Computer Science 2014 - 39th International Sympo-
sium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, Lecture Notes in Computer
Science8634, Springer, pp. 111–122, doi:10.1007/978-3-662-44522-8 10.

[6] E. Allen Emerson & Chin-Laung Lei (1986):Efficient Model Checking in Fragments of the Propositional
Mu-Calculus (Extended Abstract). In: Proceedings of the Symposium on Logic in Computer Science (LICS
’86), Cambridge, Massachusetts, USA, June 16-18, 1986, IEEE Computer Society, pp. 267–278.

[7] Julian Gutierrez, Felix Klaedtke & Martin Lange (2014):Theµ-calculus alternation hierarchy collapses over
structures with restricted connectivity. Theor. Comput. Sci.560, pp. 292–306, doi:10.1016/j.tcs.2014.03.027.

[8] Roope Kaivola (1995): Axiomatising Linear Time Mu-calculus. In Insup Lee & Scott A. Smolka,
editors: CONCUR ’95: Concurrency Theory, 6th International Conference, Philadelphia, PA, USA,
August 21-24, 1995, Proceedings, Lecture Notes in Computer Science962, Springer, pp. 423–437,
doi:10.1007/3-540-60218-632.

[9] Jean-Louis Krivine (2007):A call-by-name lambda-calculus machine. Higher-Order and Symbolic Compu-
tation20(3), pp. 199–207, doi:10.1007/s10990-007-9018-9.

[10] Martin Lange (2006):The alternation hierarchy in fixpoint logic with chop is strict too. Inf. Comput.204(9),
pp. 1346–1367, doi:10.1016/j.ic.2006.05.001.

[11] Étienne Lozes (2015):A Type-Directed Negation Elimination. In Ralph Matthes & Matteo Mio, editors:Pro-
ceedings Tenth International Workshop on Fixed Points in Computer Science, FICS 2015, Berlin, Germany,
September 11-12, 2015., EPTCS191, pp. 132–142, doi:10.4204/EPTCS.191.12.

[12] Damian Niwinski (1997):Fixed Point Characterization of Infinite Behavior of Finite-State Systems. Theor.
Comput. Sci.189(1-2), pp. 1–69, doi:10.1016/S0304-3975(97)00039-X.

[13] Michael O. Rabin (1970):Weakly Definable Relations and Special Automata. In Yehoshua Bar-Hillel, editor:
Mathematical Logic and Foundations of Set Theory - Proceedings of an International Colloquium Held Under
the Auspices of The Israel Academy of Sciences and Humanities, Studies in Logic and the Foundations of
Mathematics59, Elsevier, pp. 1 – 23, doi:10.1016/S0049-237X(08)71929-3.

[14] Mahesh Viswanathan & Ramesh Viswanathan (2004):A Higher Order Modal Fixed Point Logic. In Philippa
Gardner & Nobuko Yoshida, editors:CONCUR 2004 - Concurrency Theory, 15th International Confer-
ence, London, UK, August 31 - September 3, 2004, Proceedings, Lecture Notes in Computer Science3170,
Springer, pp. 512–528, doi:10.1007/978-3-540-28644-833.

http://dx.doi.org/10.1051/ita:1999121
http://dx.doi.org/10.1007/3-540-61604-7_58
http://dx.doi.org/10.1007/978-3-662-44522-8_10
http://dx.doi.org/10.1016/j.tcs.2014.03.027
http://dx.doi.org/10.1007/3-540-60218-6_32
http://dx.doi.org/10.1007/s10990-007-9018-9
http://dx.doi.org/10.1016/j.ic.2006.05.001
http://dx.doi.org/10.4204/EPTCS.191.12
http://dx.doi.org/10.1016/S0304-3975(97)00039-X
http://dx.doi.org/10.1016/S0049-237X(08)71929-3
http://dx.doi.org/10.1007/978-3-540-28644-8_33

	1 Introduction
	2 Alternating Parity Krivine Automata
	2.1 Definition
	2.2 Acceptance

	3 APKAand HFL
	3.1 Syntax of HFL
	3.2 Semantics of HFL
	3.3 Translations between HFLand APKA

	4 The Alternation Hierarchy for Alternating Parity Krivine Automata
	4.1 Alternation Classes
	4.2 Trees Encoding Acceptance Games
	4.3 Hard Automata

	5 Discussion

