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Team Semantics generalizes Tarski’s Semantics for First Order Logic by allowing formulas to be

satisfied or not satisfied by sets of assignments rather than by single assignments. Because of this, in

Team Semantics it is possible to extend the language of First Order Logic via new types of atomic

formulas that express dependencies between different assignments.

Some of these extensions are much more expressive than First Order Logic proper; but the prob-

lem of which atoms can instead be added to First Order Logic without increasing its expressive power

is still unsolved.

In this work, I provide an answer to this question under the additional assumptions (true of most

atoms studied so far) that the dependency atoms are relativizable and non-jumping. Furthermore,

I show that the global (or Boolean) disjunction connective can be added to any strongly first order

family of dependencies without increasing the expressive power, but that the same is not true in

general for non strongly first order dependencies.

1 Introduction

Team Semantics [19, 29] generalizes Tarski’s Semantics for First Order Logic by letting formulas be

satisfied or not satisfied by sets of assignments (called teams) rather than just by single assignments.

This semantics was originally developed by Hodges in [19] in order to provide a compositional seman-

tics for Independence-Friendly Logic [17, 27], an extension of First Order Logic that generalizes its

game-theoretic semantics by allowing agents to have imperfect information regarding the current game

position;1 but, as observed by Väänänen [29], as a logical framework it deserves study in its own right.

In the case of First Order Logic itself, this semantics is equivalent and reducible to the usual Tarskian

semantics, but the higher order nature of its satisfaction relation makes it possible to extend it in new

ways. This is of considerable theoretical interest: indeed, Team Semantics may be seen as a tool to

describe and classify novel fragments of Second Order Logic, an issue of great importance — and of deep

connections, via Descriptive Complexity Theory, to the theory of computation — regarding which much

is still not known. It is also of more direct practical interest, because of the connections between Team

Semantics and Database Theory (see for instance [16, 24]). Probabilistic variants of Team Semantics

have recently gathered attention (see for instance [3, 4, 15]).

Much of the initial wave of research in this area focused on specific Team Semantics-based exten-

sions of First Order Logic, in particular Dependence Logic [29] and later Independence Logic [14] and

Inclusion Logic [8, 13]; but there are still relatively few general results regarding the effects of extending

1In [2], a combinatorial argument was used to show that a compositional semantics cannot exist for Independence Friendly

Logic if we require satisfaction (with respect to a model M) to be a relation between single assignments and formulas. In [7],

this result was extended to the case of infinite models.
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First Order Logic via Team Semantics.2 The simplest way of doing so, for example, is by introducing

generalized dependency atoms D that express dependencies between different assignments; and it is a

consequence of the higher order nature of Team Semantics that, even if D itself is first order definable (as

a property of relations), the logic FO(D) obtained by adding it to First Order Logic with Team Semantics

may well be much more expressive than First Order Logic.

A natural question would then be: can we find necessary and sufficient conditions for that not to

happen? In other words, for which dependency atoms D or families of dependency atoms D is it true

that every sentence of FO(D) (resp. FO(D), that is, the logic obtained by adding all atoms D ∈D to First

Order Logic) is equivalent to some first order sentence? An answer to this would be of clear theoretical

interest, as part of the before-mentioned programme of using Team Semantics to describe and classify

fragments of Second Order Logic, since it would give us necessary and sufficient conditions for such

fragments to be more expressive than First Order Logic; and it would also be of more practical interest,

as it would allow us to find out which families of dependencies can be added to the language of First

Order Logic while guaranteeing that all the convenient meta-logical properties of First Order Logic still

hold.

This, however, has not been answered yet. In [9], a very general family of dependencies was found

that does not increase the expressive power of First Order Logic if added to it; but it is an open question

whether any dependency that has this property is definable in terms of dependencies in that family (and,

in fact, in this work we will show that this is false).

Building on recent work in [12] on the classification of downwards closed dependencies, this work

provides a partial answer to this under two additional assumptions, namely that such a dependency is

relativizable (Definition 16) and non-jumping (Definition 18). These are natural properties that are true

of essentially all the strongly first order dependency atoms studied so far, and of most types of depen-

dencies that are of interest; and thus, for those dependencies, the results of this work completely answer

the above question. Additionally, a simple result concerning global (or Boolean) disjunctions in Team

Semantics will be proved along the way — as a necessary tool for the main result — that may be seen as

a preliminary step towards the study of such questions in the more general case of operators (rather than

mere atoms) in Team Semantics.

2 Preliminaries

In Team Semantics, formulas are satisfied or not satisfied by sets of assignments (called teams) rather

than by single assignments as in Tarskian semantics:

Definition 1 (Teams — [29]) Let M be a first order model with domain M and let V be a set of variable

symbols. Then a team X with domain Dom(X) =V is a set of assignments s : V → M.

Definition 2 (Relation Corresponding to a Team — [29]) Given a team X and a tuple v = v1 . . .vk of

variables occurring in its domain, we write X(v) for the k-ary relation {(s(v1) . . . s(vk)) : s ∈ X}.

Definition 3 (Team Duplication — [29]) Given a team X over M and a tuple of pairwise distinct vari-

ables y = y1 . . .yk (which may or may not occur already in the domain of X), we write X [M/y] for the

team with domain Dom(X)∪{y1 . . .yk} defined as

X [M/y] = {s[m1 . . .mk/y1 . . .yk] : s ∈ X ,(m1 . . .mk) ∈ Mk}

2Examples of results of this type can be found for instance in [22, 23], which studies the complexity of the finite decidability

problem in First Order Logic plus generalized dependency atoms.



68 Non-Jumping Strongly First Order Dependencies

where, as usual, s[m1 . . .mk/y1 . . .yk] is the result of extending/modifying s by assigning m1 . . .mk to

y1 . . .yk.

Definition 4 (Team Supplementation — [29]) Given a team X over M, a tuple of distinct variables y=
y1 . . .yk (which may or may not occur already in the domain of X) and a function H : X → P(Mk)\{ /0}
assigning to each s ∈ X a nonempty set of tuples of elements of M, we write X [H/y] for the team with

domain Dom(X)∪{y1 . . .yk} defined as

X [H/y] = {s[m1 . . .mk/y1 . . .yk] : s ∈ X ,(m1 . . .mk) ∈ H(s)}.

As a special case of supplementation, if a = a1 . . .ak is a tuple of elements of the model we write

X [a/y] for {s[a1 . . .ak/y1 . . .yk] : s ∈ X}.

Definition 5 (Team Semantics for First Order Logic — [29]) Let M be a first order model with at

least two elements3, let φ be a First Order formula over its signature in Negation Normal Form4, and let

X be a team over M with domain containing the free variables of φ . Then we say that φ is satisfied by X

in M, and we write M |=X φ , if this is a consequence of the following rules:

TS-lit: For all first order literals α , M |=X α if and only if, for all s ∈ X, M |=s α in the usual sense of

Tarskian Semantics;

TS-∨: For all ψ1 and ψ2, M |=X ψ1∨ψ2 iff there exist teams Y1,Y2 ⊆X such that X =Y1∪Y2,5 M |=Y1
ψ1

and M |=Y2
ψ2;

TS-∧: For all ψ1 and ψ2, M |=X ψ1 ∧ψ2 iff M |=X ψ1 and M |=X ψ2;

TS-∃: For all ψ and all variables v, M |=X ∃vψ iff there exists some function H : X →P(M)\{ /0} such

that M |=X [H/v] ψ;

TS-∀: For all ψ and all variables v, M |=X ∀vψ iff M |=X [M/v] ψ .

Given a sentence φ and a model M whose signature contains that of φ , we say that φ is true in Team

Semantics if and only if M |={ε} φ , where {ε} is the team containing the only assignment ε over the

empty set of variables.

As mentioned in the Introduction, with respect to First Order Logic proper Team Semantics is equiv-

alent and reducible to Tarskian Semantics. More precisely, it can be shown by structural induction that

Proposition 6 ([29]) For all first order formulas φ , models M and teams X, M |=X φ if and only if, for

all assignments s ∈ X, M |=s φ according to Tarskian Semantics.

In particular, if φ is a first order sentence then φ is true in M in the sense of Team Semantics if and

only if it is true in M in the sense of Tarskian Semantics.

What is then the point of Team Semantics? In brief, Team Semantics allows us to extend First Order

Logic in new ways, like for instance by adding new types of atoms describing dependencies between

different assignments:

3We need at least two elements in our model in order to encode disjunctions in terms of existential quantifications in

Proposition 21 and Theorem 30. The case in which only one element exists is in any case trivial, and may be dealt with

separately if required.
4As is common in the study of Team Semantics, we will generally assume that all expressions are in Negation Normal Form.
5We do not require Y1 and Y2 to be disjoint.
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Definition 7 (Generalized Dependency — [25]) Let k ∈ N. A k-ary generalized dependency D is a

class of models6 over the signature {R}, where R is a k-ary relation symbol, that is closed under isomor-

phisms (that is, if M1 and M2 are isomorphic and M1 ∈ D then M2 ∈ D as well). Given a family of such

dependencies D = {D1,D2, . . .}, we write FO(D) for the language obtained by adding atoms of the form

Diyi to First Order Logic, where the yi range over all tuples of variables of the same arity as Di, with the

satisfaction rules

TS-Di: M |=X Diyi if and only if (M,X(yi)) ∈ Di.

A case of particular interest is the one in which the class of models describing the semantics of a gener-

alized dependency is itself first order definable:

Definition 8 (First Order Generalized Dependency — [10]) A generalized dependency D is first or-

der if and only if there exists a first order sentence D(R), where R is a relation symbol of the same arity

as D, such that (M,R) ∈ D ⇔ (M,R) |= D(R) for all models (M,R).

A peculiar aspect of Team Semantics is that, due to the second order existential quantification implicit

in its rules for disjunction and existential quantification, first order generalized dependencies can still

increase considerably the expressive power of First Order Logic when added to it. For example, the Team

Semantics-based logics that have been most studied so far are Dependence Logic [29], Independence

Logic [14] and Inclusion Logic [8], that add to First Order Logic respectively

Functional Dependence Atoms: For all tuples of variables x and y, M |=X=(x;y) iff any two s,s′ ∈ X

that agree on the value of x also agree on the value of y;

Independence Atoms: For all tuples of variables x, y and z, M |=X x⊥yz iff for any two s,s′ ∈ X that

agree on y there is some s′′ ∈ X that agrees with s on x and y and with s′ on y and z;7

Inclusion Atoms: For all tuples of variables x and y of the same length, M |=X x ⊆ y iff for all s ∈ X

there exists some s′ ∈ X with s(x) = s′(y).

It is easy to see that these three types of dependency atoms are all first order in the sense of Definition

8. However, (Functional) Dependence Logic FO(=(. . . ; ·)) is as expressive as full Existential Second

Order Logic, and so is Independence Logic FO(⊥), whereas Inclusion Logic is equivalent to the positive

fragment of Greatest Fixed Point Logic [13] (and hence, by [20, 30], it captures PTIME over finite

ordered models).

Does this imply that (Functional) Dependence Logic and Independence Logic are equivalent to each

other and strictly contain Inclusion Logic? This is not as unambiguous a question as it may appear. It

certainly is true that every Inclusion Logic sentence is equivalent to some Independence Logic sentence,

that every Dependence Logic sentence is equivalent to some Independence Logic sentence, and that every

Independence Logic sentence is equivalent to some Dependence Logic sentence; but on the other hand,

it is not true that every Inclusion Logic formula, or every Independence Logic one, is equivalent to some

Dependence Logic formula. This follows at once from the following classification:

Definition 9 (Empty Team Property, Closure Properties — [29, 8, 9]) Let D be a generalized depen-

dency. Then

6Here and in the rest of the work, whenever the signature of a model is understood from the context to be of the form {R}
for some k-ary relation symbol R, we will write (M,S) – where M is a set of elements and S ⊆ Mk – for the model M over this

signature that has domain M and whose interpretation RM of the symbol R is exactly S. When no ambiguity is possible we will

also use the same letter for the relation and the relation symbol, writing e.g. (M,R).
7As discussed in [5], this atom is closely related to database-theoretic multivalued dependencies.
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• D has the Empty Team Property iff (M, /0) ∈ D for all M;

• D is Downwards Closed iff whenever (M,R) ∈ D and R′ ⊆ R then (M,R′) ∈ D;

• D is Union Closed iff whenever {Ri : i∈ I} is a family of relations over some M such that (M,Ri)∈
D for all i ∈ I then (M,

⋃

i Ri) ∈ D;

• D is Upwards Closed iff whenever (M,R) ∈ D and R ⊆ R′ then (M,R′) ∈ D.

The first three of the above properties are preserved by Team Semantics:

Proposition 10 (Properties preserved by Team Semantics — [29, 8]) Let D be a family of dependen-

cies, let φ(v) ∈ FO(D) be a formula with free variables in v and let M be a first order model. Then

• If all D ∈ D have the Empty Team Property then M |= /0 φ ;

• If all D ∈ D are downwards closed and M |=X φ then M |=X ′ φ for all X ′ ⊆ X;

• If all D ∈ D are union closed and M |=Xi
φ for all i ∈ I then M |=⋃

i Xi
φ .

From these facts — that are proven easily by structural induction — it follows at once that functional

dependence atoms (which are downwards closed, but not union closed) cannot be used to define inclusion

atoms (which are union closed, but not downwards closed) or independence atoms (which are neither

downwards closed nor union closed). Additionally, since all these three types of dependencies have the

Empty Team Property we have at once that, even together, they cannot be used to define for instance the

nonemptiness atom NE= {(M,P) : P 6= /0}, such that M |=X NE(v) iff X(v) 6= /0.8

Differently from functional dependence atoms, inclusion atoms and independence atoms, some types

of generalized dependencies do not increase the expressive power of First Order Logic when added to

it: this is the case, for example, of the NE dependency just introduced. More generally, it was shown in

[9] that if D↑ is the set of all upwards closed first order dependencies and =(·) is the constancy atom

such that M |=X=(v) iff |X(v)| ≤ 1,9 every sentence of FO(D↑,=(·)) is equivalent to some first order

sentence. In other words, we have that D↑ ∪{=(·)} is strongly first order according to the following

definition:

Definition 11 (Strongly First Order Dependencies — [10]) A dependency D, or a family of dependen-

cies D , is said to be strongly first order iff every sentence of FO(D) (resp. FO(D)) is equivalent to some

first order sentence.10

Additionally, it is clear that any dependency E that is definable in FO(D↑,=(·)), in the sense that there

exists some formula φ(v) ∈ FO(D↑,=(·)) over the empty signature such that M |=X Ev ⇔M |=X φ(v),
is itself strongly first order. This can be used, as discussed in [9], to show that for instance the negated

inclusion atoms

M |=X x 6⊆ y iff X(x) 6⊆ X(y)

are strongly first order, as they can be defined in terms of upwards closed first order dependencies and

constancy atoms; and as mentioned in [10], the same type of argument can be used to show that all first

order dependencies D(R) where R has arity one are also strongly first order.

This led to the following

8The choice of the variable v is of course irrelevant here, and we could have defined NE as a 0-ary dependency instead; but

treating it as a 1-ary dependency is formally simpler.
9That is, M |=X=(v) iff for all s,s′ ∈ X , s(v) = s′(v).

10It is worth pointing out here that if D is strongly first order then it is first order in the sense of Definition 8, because

(M,R) ∈ D ⇔ (M,R) |= ∀x(¬Rx∨ (Rx∧Dx)). The converse is however not true in general.
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Conjecture 1 ([11]) Every strongly first order dependency D(R) is definable in terms of upwards closed

dependencies and constancy atoms.

In the next section we will show, by a simple argument, that this conjecture is not true as stated; but that

it can be recovered (albeit not yet proved) by adding an additional and commonly used connective to the

language of Team Semantics.

We also recall here the following generalization of the notion of strongly first order dependency:

Definition 12 (Safe Dependencies [11]) Let D and E be two families of dependencies. Then we say

that D is safe for E iff any sentence of FO(D ,E ) is equivalent to some sentence of FO(E ).

Clearly, a dependency is strongly first order if and only if it is safe for the empty set of dependencies.

However, as shown in [11], a strongly first order dependency is not necessarily safe for all families

of dependencies: in particular, the constancy atom is not safe for the unary11 inclusion atom v1 ⊆ v2,

in which v1 and v2 must be single variables (rather than tuples of variables).12 On the other hand, in

[12] it was shown that strongly first order dependencies are safe for any family of downwards closed

dependencies:

Theorem 13 ([12], Theorem 3.8) Let D be a family of strongly first order dependencies and let E be

a family of downwards closed dependencies. Then every sentence of FO(D ,E ) is equivalent to some

sentence of FO(E ).

It is also worth mentioning here that the same notions of safety and strong first orderness can be

easily generalized to operators. For example, in [11] it was shown that the possibility operator

M |=X ⋄φ iff ∃Y ⊆ X ,Y 6= /0, s.t. M |=Y φ

is safe for any collection of dependencies D , in the sense that every sentence of FO(D ,⋄) is equivalent to

some sentence of FO(D). In the next section, we will instead see an example of an operator that is safe

for any strongly first order collection of dependencies, but that is not safe for some other (non strongly

first order, albeit still first order) dependency families.

3 The Unsafety and Necessity of Global Disjunction

A connective often added to the language of Team Semantics is the global (or Boolean)13 disjunction

TS-⊔: M |=X φ ⊔ψ if and only if M |=X φ or M |=X ψ .

11This is a binary first order dependency, defined by the sentence D(R) = ∀xy(Rxy →∃zRzx). The term “unary” is used here

because each “side” of the dependency may have only one variable.
12As a quick aside, similar phenomena occur in the study of the theory of second-order generalized quantifiers [21]. This

suggests the existence of interesting — and, so far, largely unexplored — connections between the theory of second order

generalized quantifiers and that of generalized dependency atoms.
13The term “Boolean disjunction” is most common in the literature, but it may give the wrong impression: as far as the

author knows, there is no particular relation between this connective and Boolean algebras. “Classical Disjunction” is also a

term sometimes used, because of the analogy between this semantics and the usual rule for disjunction; but this may also be

misleading, because if we replace ∨ with ⊔ in Team Semantics the truth conditions of First Order sentences become different

from the usual ones (for instance, ∀x∀y(x = y∨ x 6= y) is always true, but ∀x∀y(x = y⊔ x 6= y) is false in any model with at least

two elements). In this work the term “Global Disjunction” will be used instead, to emphasize that when evaluating ⊔ the whole

current team must satisfy one of the disjuncts.
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This is different from the disjunction ∨ of Definition 5: for example, a team X of the form {(v : 0,w :

0),(v : 0,w : 1)} does not satisfy v = w⊔ v 6= w, although it satisfies v = w∨ v 6= w.

It is well known in the literature that, as long as the Empty Team Property holds in our language and

the model contains at least two elements, this connective can be expressed in terms of constancy atoms

as

φ ⊔ψ ≡ ∃pq(=(p)∧ =(q)∧ ((p = q∧φ)∨ (p 6= q∧ψ))),

where p and q are two new variables not occurring in φ or ψ . However, this is not enough to guarantee

that this connective will not affect the expressive power of a language based on Team Semantics if added

to it, because of two reasons:

1. The empty team property does not necessarily apply to all logics FO(D), and when it does not then

the above definition is not necessarily correct;

2. As shown in [11] and recalled above, the constancy atom itself is not safe for all families of

dependencies.

As we will now see, the following result nonetheless holds:

Proposition 14 (Global Disjunction is Safe for Strongly First Order dependencies) Let D be any

strongly first order family of dependencies, and let FO(D ,⊔) be the logic obtained by adding to FO(D)
the ⊔ connective with the semantics given above. Then every sentence of FO(D ,⊔) is equivalent to some

first order sentence.

Proof:

Let φ be any sentence of FO(D ,⊔). Then apply iteratively the following, easily verified transformations

• (φ ⊔ψ)∨θ ≡ θ ∨ (φ ⊔ψ)≡ (φ ∨θ)⊔ (ψ ∨θ);

• (φ ⊔ψ)∧θ ≡ θ ∧ (φ ⊔ψ)≡ (φ ∧θ)⊔ (ψ ∧θ);

• ∃v(φ ⊔ψ)≡ (∃vφ)⊔ (∃vψ);

• ∀v(φ ⊔ψ)≡ (∀vφ)⊔ (∀vψ)

until we obtain an expression φ ′, equivalent to φ , of the form ⊔iψi, where each ψi is a sentence of

FO(D). But since D is strongly first order, every such ψi is equivalent to some first order sentence θi;

and, therefore, φ itself is equivalent to the first order sentence
∨

i θi.

�

Thus, whenever we have a family of strongly first order dependencies D we can freely add the global

disjunction connective ⊔ to our language without increasing its expressive power. This is a deceptively

simple result: in particular, it is not immediately obvious whether ⊔ is similarly “safe” for families of

dependencies D that are not strongly first order. In fact, this is not the case! To see why, let us first prove

the following easy lemma:

Lemma 15 Let φ ∈ FO(D) be a formula in which the dependency atom D ∈ D occurs at least once,

and suppose that M |=X φ . Then there exists some R such that (M,R) ∈ D. Moreover, if M |= /0 φ then

(M, /0) ∈ D for all dependencies D appearing in φ .

Proof:

The proof is a straightforward structural induction, but we report it in full for clarity’s sake (note, as an

aside, that if we added the global disjunction ⊔ to our language the induction would not carry through).

• If φ is a literal, by assumption it must be of the form Dv for some v. Then if M |=X φ then

(M,X(v)) ∈ D, as required; and moreover if M |=X φ for X = /0 then X(v) = /0 and hence (M, /0) ∈
D.
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• If φ is of the form ψ1 ∨ψ2, some atom of the form Dv must appear in ψ1 or in ψ2. Without loss of

generality, let us suppose that it appears in ψ1. Then, if M |=X φ , we have that X = Y ∪Z for two

Y , Z such that M |=Y ψ1 and M |=Z ψ2. But then, by induction hypothesis, there exists some R

such that (M,R)∈ D. Moreover, if M |= /0 φ and D is a dependency appearing in φ then necessarily

M |= /0 ψ1 and M |= /0 ψ2, from which by induction hypothesis (since D appears in ψ1 or in ψ2) we

have that (M, /0) ∈ D.

• If φ is of the form ψ1 ∧ψ2 — again, assuming without loss of generality that D appears in ψ1

– and M |=X φ then M |=X ψ1 and M |=X ψ2, and hence by induction hypothesis (M,R) ∈ D.

Moreover, if M |= /0 φ then M |= /0 ψ1 and M |= /0 ψ2, and so by induction hypothesis (M, /0) ∈ D for

all dependencies D appearing in φ .

• If φ is of the form ∃vψ and M |=X φ then for some Y = X [H/v] it is true that M |=Y ψ . Hence, by

induction hypothesis, (M,R)∈ D for some R. Moreover, if M |= /0 φ then M |= /0 ψ (since /0[H/v] =
/0 for all H) and hence by induction hypothesis (M, /0) ∈ D for all dependencies D appearing in φ .

• If φ is of the form ∀vψ and M |=X φ then for Y = X [M/v] it is true that M |=Y ψ . Again, by

induction hypothesis, this implies that (M,R) ∈ D for some R. Moreover, /0[M/v] = /0, and hence

if M |= /0 φ and D appears in φ then M |= /0 ψ and (M, /0) ∈ D by induction hypothesis.

�

Now consider the two (first order, but not strongly first order) dependencies

TS-LO2: M |=X LO2(x,y,z) if and only if X(xy) describes a total linear order with endpoints over all

elements of M and X(z) does not contain the first element of this order, contains the second and

the last, and whenever it contains an element it does not contain its successor (in the linear order)

but it contains its successor’s successor.

TS-LO3: M |=X LO3(x,y,z) if and only if X(xy) describes a total linear order with endpoints over all

elements of M and X(z) does not contain the first or the second elements of this order, contains

the third and the last, and whenever it contains an element it does not contain its successor (in the

linear order) nor its successor’s successor but it contains its successor’s successor’s successor.

Then the FO(LO2,LO3,⊔) sentence (∃xyzLO2(x,y,z))⊔ (∃xyzLO3(x,y,z)) is easily seen to hold in a

model M if and only if the size |M| of its domain is a multiple of two or of three (or it is infinite).

However, there is no sentence φ of FO(LO2,LO3) that is true if and only if this property holds. Indeed,

suppose that such a φ existed. Then the LO2 dependency cannot appear in it: indeed, for a model M3

with precisely three elements it must hold that M3 |={ε} φ , and if LO2 appeared in it then by Lemma 15

there should be some R such that (M3,R) ∈ LO2. But by definition, (M3,R) 6∈ LO2 for any R (not even

for R = /0!), and so this cannot be the case. Similarly, LO3 cannot occur in φ , because φ must be true in

a model M2 with exactly two elements.

Therefore φ must be first order; and a standard back-and-forth argument shows that there is no first

order sentence over the empty signature that is true in a model if and only if its size is divisible by two

or by three (or it is infinite).

Another consequence of Lemma 15 is that Conjecture 1 is false. Indeed, consider the dependency U

such that M |=X Uv if and only if X(v) = /0 or X(v) = M. Then Uv is satisfied by a team X in a model

M if and only if the variable v takes no values at all (that is, X itself is empty) or all possible values.
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This dependency is strongly first order by Proposition 14: indeed, it is easy to see that Uv ≡⊥⊔All(v),
where All(v) is the first order and upwards closed (and, therefore, strongly first order) dependency

such that M |=X All(v) iff X(v) = M. However, U is not definable in Team Semantics (without global

disjunction) in terms of constancy atoms and upwards closed first order dependencies. Indeed, suppose

that Uv is equivalent to φ(v) for some φ ∈ FO(D↑,= (·)), where D↑ describes the family of all upwards

closed first order dependencies. Then since for all M we have that M |= /0 Uv, by Lemma 15 M |= /0 Dt

for every occurrence Dt of a dependence atom D in φ . But if D is upwards closed and M |= /0 Dt then

M |=Y Dt for all Y , and this is the case for all models M. So, for any D ∈ D↑, we can replace every

occurrence Dt of D in φ with ⊤ without affecting its satisfaction conditions. Therefore there is some

ψ(v) ∈ FO(=(·)) which defines Uv, which is impossible since by Proposition 10 all formulas in FO(=(·))
are downwards closed but Uv is not. However, we can recover our conjecture by modifying it as follows:

Conjecture 2 Every strongly first order dependency D(R) is definable in terms of upwards closed de-

pendencies, constancy atoms and global disjunctions.

In conclusion, even though we may add the ⊔ operator “for free” as long as we are only working with

strongly first order dependencies, this is not necessarily the case if we are working with more expressive

types of dependencies; and even though Conjecture 1 is false, it may still be true if this operator is added

to the basic language of Team Semantics. This suggests that the global (or Boolean) disjunction may

have a more central role in the study of Team Semantics than the one it had so far. In the next section,

we will see a proof of a special case of Conjecture 2.

4 Non-Jumping, Relativizable Dependencies

In this section we will prove a restricted version of Conjecture 2 under two additional (and commonly

true) conditions. The first condition that we will assume will be that the dependencies we are discussing

are relativizable in the sense of the following definition:14

Definition 16 (Relativized Dependencies, Relativizable dependencies — [12], Definition 2.31) Let D

be a family of dependencies and let P be a unary predicate. Then the language FO(D(P)) adds to First

Order Logic the relativized dependence atoms D(P)y for all D ∈ D , and the corresponding semantics

(for models whose signature contains P) is given by

M |=X D(P)y iff (PM,X(y)) ∈ D

where PM is the interpretation of P in M.15

A dependency D, or a family of dependencies D , is said to be relativizable if any sentence of FO(D(P))
(resp. FO(D(P))) is equivalent to some sentence of FO(D) (resp. FO(D)).

It follows easily from the above definition that if M |=X D(P)y then X(yi)⊆ PM for all yi ∈ y: other-

wise, it will always be the case that (PM,X(y)) 6∈ D.

Essentially all the dependencies studied in the context of Team Semantics thus far are relativizable.

Most of them have even the stronger property of being universe independent in the sense of [22]: in

brief, whether M |=X Dy or not depends only on the value of X(y) (and not on the domain M of M),

from which relativizability follows trivially.

14This definition is related, but not identical, to the notion of relativization of formulas in Team Semantics discussed by

Rönnholm in §3.3.1 of [28].
15In this work, when no ambiguity is possible we will generally write the relation symbols P, R, S instead of the corresponding

interpretations PM, RM, SM.
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As was pointed out to the author by Fausto Barbero in a personal communication, a counting argu-

ment shows that there exist generalized dependencies that are not relativizable. A concrete example is

the unary dependency I∞ = {(M,P) : M is infinite }. Of course this is not a first order dependency, and it

is a unusual dependency in that whether M |=X I∞v or not does not depend on X(v) but only on M; but it

is nonetheless a perfectly legitimate generalized dependency, and it is not relativizable. Indeed, the class

of models C = {(M,P) : P is infinite} is defined by the FO(I
(P)
∞ ) sentence ∃vI

(P)
∞ v; however, the same

class of models is not defined by any FO(I∞) sentence, because in any infinite model any occurrence of

I∞ can be replaced by the trivially true literal ⊤ and the class C is not first order definable. The author

does not however know of any strongly first order generalized dependency that is not relativizable. The

following conjecture is, therefore, open and — if true — would allow us to remove the relativizability

requirement:

Conjecture 3 Every strongly first order generalized dependency is relativizable.

In order to describe the second condition we need the following definition:

Definition 17 ([12], Proposition 4.2) Let D be any generalized dependency. Then Dmax is the depen-

dency {(M,R) : (M,R) ∈ D and ∀S ) R,(M,S) 6∈ D}.

In general, for D first order there is no guarantee that whenever (M,R) ∈ D there is some S ⊇ R at all

such that (M,S) ∈ Dmax; but, as we will see soon, if D is strongly first order this is indeed the case, and

moreover Dmax itself is also strongly first order.

Definition 18 A dependency D is non-jumping if, for all sets of elements M and all relations R over M

of the same arity as D, if (M,R) ∈ D then there exists some R′ ⊇ R such that

1. (M,R′) ∈ Dmax;

2. For all relations S, if R ⊆ S ⊆ R′ then (M,S) ∈ D.

In other words, a dependency D is non-jumping if whenever it holds of some R we can “enlarge” R to

some R′ that is maximal among those that satisfy D and such that, furthermore, any relation S between

R and R′ satisfies also D. It is possible to find examples of jumping dependencies, like for instance

D = {(M,P) : |P| 6= 1};16 but non-jumping dependencies nonetheless constitute a natural and general

category of dependencies.

We now need to generalize the two following results from [12] to the case of dependencies that are

not necessarily downwards closed:

Proposition 19 ([12], Proposition 4.2 and Corollary 4.3) Let D be a downwards closed strongly first

order dependency. Then Dmax is also strongly first order, and whenever (M,R) ∈ D there is some R′ ⊇ R

such that (M,R′) ∈ Dmax.

Theorem 20 ([12], Theorem 4.5) Let D be a downwards closed, strongly first order, relativizable de-

pendency.17 Then there are first order formulas θ1(x,z) . . . θn(x,z) over the empty signature such that,

for all models M= (M,R),

M |= Dmax(R)⇒M |=
n
∨

i=1

(∃z∀x(Rx ↔ θi(x,z))).

16For this dependency, we have that M |=X Dv if and only if X = /0 or |X(v)| ≥ 2. In other words, Dv is equivalent to

⊥ ⊔ 6= (v), where 6= (v) is the (upwards closed) non-constancy atom which is true in a team iff |X(v)| ≥ 2.
17The empty team property is not required, because in the proof of Theorem 4.5 of [12] this property was necessary only to

translate a global disjunction into FO(=(·)) and not to find the θi via the Chang-Makkai Theorem.
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To do so, it suffices to observe the following:

Proposition 21 Let D be a strongly first order dependency. Then there exists a downwards closed

strongly first order dependency F such that D ⊆ F and Fmax = Dmax. Moreover, if D is relativizable

then so is F.

Proof:

The dependency Ex :=⊥⊔ (∀pq∃y((p 6= q∨y = x)∧Dy)) is strongly first order, because it is definable

in terms of D and ⊔ and because of Proposition 14, and (M,R) ∈ E iff R = /0 or there is some S ⊇ R such

that (M,S) ∈ D.18 Thus E is also downwards closed.

Now since D is strongly first order ∃vDv is equivalent to some first order sentence χ over the empty

signature, and M |= χ iff there is some R such that (M,R) ∈ D. Then consider F = {(M,R) : M |=
χ and (M,R) ∈ E}. F is strongly first order, as any sentence φ ∈ FO(F) in which F occurs is equivalent

to χ∧φ [E/F], where φ [E/F] is the result of replacing every instance Ft of F with Et; F is still downwards

closed; and (M,R)∈F iff there is some S ⊇ R such that (M,S)∈D. Therefore Dmax = Fmax, as required..

Note furthermore that if D is relativizable then so is E, because E(P)x is equivalent to

⊥⊔ (∀pq∃y((p 6= q∨y = x)∧D(P)y)), and so is F as well, because any sentence φ ∈ FO(F(P)) in which

F(P) occurs is equivalent to19 χ (P)∧φ [E(P)/F(P)] and E is relativizable and strongly first order.

�

The generalizations of the previous results then follow at once:

Proposition 22 Let D be a strongly first order dependency. Then Dmax is also strongly first order, and

whenever (M,R) ∈ D there is some R′ ⊇ R such that (M,R′) ∈ Dmax.

Theorem 23 Let D be a strongly first order, relativizable dependency. Then there are first order formulas

θ1(x,z) . . . θn(x,z) over the empty signature such that, for all models M= (M,R),

M |= Dmax(R)⇒M |=
n
∨

i=1

(∃z∀x(Rx ↔ θi(x,z)))

For our next lemma, we need some model-theoretic machinery:

Definition 24 (ω-big models — [18], §8.1) A model A is ω-big if for all finite tuples a of elements in A

and for all models B with the same signature as A, if b is such that20 (A,a)≡ (B,b) and S is a relation

over B then we can find a relation R over A such that (A,R,a) ≡ (B,S,b).

Definition 25 (ω-saturated models — [18], §8.1) A model M is ω-saturated if it realizes all complete

1-types with respect to M over any finite parameter set.21

18Note that the right disjunct alone would not describe this property or be necessarily downwards closed. The problem is

that, if we start from the empty team, we cannot “enlarge” it by choosing new values for y for the assignments in which p 6= q

because no such assignments exist: so, if M 6|= /0 Dx, M 6|= /0 (∀pq∃y((p 6= q∨y = x)∧Dy) even though it may be the case that

M |=X Dy for some X 6= /0. This is in essence the reason why we have to “enforce” the empty team property at this stage of the

proof.
19Here χ(P) is the usual relativization of the first order sentence χ with respect to P.
20Here we write (A,a) for the model obtained by adding to the signature of A a tuple of new constant symbols c = c1 . . .cn,

interpreting them as a = a1 . . .an. The expression (B,b) is to be interpreted similarly, for the same choice of new constant

symbols. Similarly, an expression of the form (A,R,a) adds also a new relation symbol to the signature, interpreted as the

relation R, and so forth.
21All the details can be found in [18], or in other model theory textbooks. Very briefly, a complete 1-type with respect to M

over some finite parameter set {m1 . . .mn} ⊆ M is a set of formulas Φ of the form {φ(m′,m1 . . .mn) : N |= φ(m′,m1 . . .mn)}



P. Galliani 77

M

R R
′′

R
′

B

S

A

Q Q
′′

C

K
h
−1

(M,R, a⃗) big (B,S, b⃗) ⪰ (C,K, b⃗)

Figure 1: The key steps of the proof of Lemma 29. Every relation in M between R and R′ must satisfy

D; but (B,S) 6∈ D, so (C,K) 6∈ D, so (A,Q′′) 6∈ D. But (A,Q,a) ≡ (M,R,a), Q ⊆ Q′′, all tuples m ∈ Q′′

satisfy θ(m,a) and (M,R,a) is ω-big, so there is some R′′ between R and R′ such that (M,R′′) 6∈ D.

The three following results can be found in [18]:22

Theorem 26 ([18], Theorem 8.1.2) If a model M is ω-big then it is ω-saturated.

Theorem 27 ([18], Theorem 8.2.1) Every model has a ω-big elementary extension.

Theorem 28 ([18], Lemma 8.3.4) Let A and B be ω-saturated structures over a finite signature (con-

taining some relation symbol R) such that, for all first order sentences ψ+ in which R occurs only posi-

tively, A |= ψ+ ⇒B |= ψ+. Then there are elementary substructures C and D of A and B respectively

and a bijective homomorphism h : C→D that fixes all symbols except R.

The following lemma shows that, in the case of ω-big models, any relation R that satisfies a strongly

first order, relativizable, non-jumping dependency D must satisfy some sentence η(R), having a certain

specific form, that entails D(R) over all models:

Lemma 29 Let D be a strongly first order, relativizable, non-jumping dependency, and suppose that

(M,R) is a ω-big model such that (M,R) ∈ D. Then there exist a formula ψ+(R,z) over the signature

{R}, positive in R, and a formula θ(x,z) over the empty signature such that

1. (M,R) |= ∃z(ψ+(R,z)∧∀x(Rx → θ(x,z)));

2. ∃z(ψ+(R,z)∧∀x(Rx → θ(x,z))) |= D(R).

Proof:

Since D is non-jumping, we can find a R′ such that R ⊆ R′, (M,R′) ∈ Dmax, and (M,R′′) ∈ D for all R′′

for some elementary extension N�M and some element m′ of N, where φ ranges over all first order formulas with n+1 free

variables; and M realizes such a type if there is some element m0 ∈ M such that M |= φ(m0,m1 . . .mn) for all φ ∈ Φ. In other

words, a complete 1-type with respect to M over m1 . . .mn is a description (in terms of first order formulas with parameters in

m1 . . .mn) of some element that exists in some elementary extension of M; and if M is ω-saturated, any such description also

describes some element that exists in M itself.
22We report here only the parts of the results that are relevant for this work.
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such that R ⊆ R′′ ⊆ R′. But then by Theorem 23 there exist a first order formula θ(x,z) over the empty

signature and a tuple of elements a such that R′ = {m ∈ Mk : (M,R) |= θ(m,a)}.

Now consider Ψ = {η+(R,a) : R occurs only positively in η+ and (M,R) |= η+(R,a)}.

I state that Ψ∪{∀x(Rx → θ(x,a)),¬D(R)} is unsatisfiable. Indeed, suppose that it is satisfiable,

and let B = (B,S,b) be a model that satisfies it. By Theorems 26 and 27, we can assume that B is

ω-saturated.

Now, since every formula positive in R that is true of (M,R,a) is also true of (B,S,b) and both are

ω-saturated23 , by Theorem 28 we have that there exist elementary substructures (A,Q,a) and (C,K,b) of

(M,R,a) and (B,S,b) respectively such that C is the image of a bijective homomorphism h : (A,Q,a)→
(C,K,b) that sends a into b. Now let Q′′ = h−1(K) be the inverse image of K under this bijective

homomorphism: then (A,Q′′,a) is isomorphic to (C,K,b), and thus (A,Q′′,a) |= ∀x(Q′′x → θ(x,a))∧
¬D(Q′′); and furthermore, since h is a homomorphism, we have at once that Q ⊆ Q′′.

Therefore, the model (A,Q,a) can be expanded to a model (A,Q,Q′′,a) such that Q⊆ Q′′, ∀x(Q′′x →
θ(x,a)) and ¬D(Q′′). But (A,Q,a) is elementarily equivalent to (M,R,a), which is ω-big. Therefore

(M,R,a) can also be expanded to some (M,R,R′′,a) which is elementarily equivalent to (A,Q,Q′′,a)
and in which thus R′′ likewise contains R, contains only tuples m such that θ(m,a) (and, therefore, is

contained in R′), and does not satisfy D(R′′). This is however impossible, because we said that no such

R′′ exists; and therefore Ψ∪{∀x(Rx → θ(x,a)),¬D(R)} is indeed unsatisfiable. Figure 1 illustrates the

key steps of this argument.

By compactness, this implies that there exists a finite Ψ0 ⊆ Ψ such that, for ψ+ =
∧

Ψ0,

1. M,R,a |= ψ+(R,a)∧∀x(Rx → θ(x,a));

2. ∃z(ψ+(R,z)∧∀x(Rx → θ(x,z))) |= D(R).

�

Then, exploiting the fact that by Theorem 27 any model is elementarily equivalent to some ω-big model,

we can show that D itself is equivalent (over all models) to some first order sentence of a particular form:

Theorem 30 Let D be a strongly first order, relativizable, non-jumping dependency. Then there exists a

formula ψ+(R,z) over the signature {R}, positive in R, and a formula θ(x,z) over the empty signature

such that, for all M and R,

(M,R) ∈ D ⇔ (M,R) |= ∃z(ψ+(R,z)∧∀x(Rx → θ(x,z)).

Proof:

For all countable M and all R ⊆ Mk such that (M,R) ∈ D, let (M1,R1) be a ω-big elementary extension

of it. Then (M1,R1) ∈ D as well, since D is first order definable, and therefore by Lemma 29 there exist

some formulas ψ+
M,R and θM,R (R positive in ψ+, not appearing in θ ) such that

1. (M1,R1) (and therefore (M,R) as well, since it is elementarily equivalent to it) satisfies

∃z(ψ+
M,R(R,z)∧∀x(Rx → θM,R(x,z)));

2. ∃z(ψ+
M,R(R,z)∧∀x(Rx → θM,R(x,z))) |= D(R).

23It is trivial to see that if A is ω-big or ω-saturated and a is a finite tuple of constants then so is (A,a).
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Now let

T = {D(R)}∪{¬∃z(ψ+
M,R(R,z)∧∀x(Rx → θM,R(x,z))) : (M,R) ∈ D,M countable}.

This theory is unsatisfiable: indeed, otherwise by Löwenheim-Skolem it would have a countable model

(M,R), and since (M,R) ∈ D we would have that (M,R) |= ∃z(ψ+
M,R(R,z)∧∀x(Rx → θM,R(x,z)). Thus

(M,R) would not be a model of T , contradicting our hypothesis.

So by compactness there exist formulas ψ+
i (R,zi),θi(x,zi), i = 1 . . .n such that

D(R)≡
n
∨

i=1

∃zi(ψ
+
i (R,zi)∧∀x(Rx → θi(x,zi))).

But then D(R) is also equivalent to

∃q1 . . .qnpz1 . . .zn

(

ψ+
0 (R,q,p,z1 . . .zn)∧∀x((Rx → θ0(x,q,p,z1 . . .zn))

)

for ψ+
0 =

(

∧

i6= j qi 6= q j ∧
∨

i p = qi ∧
∧

i(p = qi → ψ+
i (R,zi))

)

and θ0 =
∧

i(p = qi → θi(x,zi)), where

p and all qi are tuples of distinct, new variables of length ⌈log2(n)⌉.

�

We are now almost done. All that’s left to do is to show that any first order dependence that is equivalent

to some sentence of the above form is definable in terms of global disjunctions, constancy atoms, and

first order upwards closed dependencies:

Corollary 31 Every strongly first order, relativizable, non-jumping dependency is definable in terms of

first order upwards closed dependencies, constancy atoms and global disjunctions.

Proof:

Let D be such a dependency of arity k. By the previous theorem, D(Q) is equivalent to some expression

of the form ∃z(ψ+(Q,z)∧∀x(Qx → θ(x,z))), where the k-ary variable Q occurs only positively in ψ+

and not at all in θ . Now, if l is the length of z, consider the (k + l)-ary first order upwards closed

dependency E such that, for any model M and any team X , M |=X Exz if and only if X 6= /0 and there is

some tuple a ∈ X(z) such that ψ+(X(x),a). This E is upwards closed (since the relation symbol appears

only positively in ψ+), and it is first order, because

(M,R) ∈ E ⇔ (M,R) |= ∃uv(Ruv∧ψ+[∃wRtw/Qt](v))

where |u| = k, |v| = |w| = l and ψ+[∃wRtw/Qt](v) is obtained from ψ+(Q,v) by replacing every oc-

currence Qt of Q in it (for every t) with ∃wRtw. Therefore E is strongly first order.

Moreover, let F be another dependency, of the same arity of D, defined as

(M,R) ∈ F ⇔ M |= ∃vψ+( /0,v).

Then F is trivially upwards closed (in fact, the relation R does not affect membership or non-membership

of (M,R) in F) and first order, and hence it is also strongly first order.

Now, Dx is definable in FO(E,F,=(·),⊔) as

(Fx∧⊥)⊔ (∃z(=(z)∧Exz∧θ(x,z))). (1)

Indeed, suppose that some team X satisfies (1) in some model M. Then either M |=X Fx∧⊥ or

M |=X ∃z(=(z)∧Exz∧θ(x,z)). In the first case, X = /0, because M |=X ⊥, and M |= ψ+( /0,a) for some
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a, because (M, /0) ∈ F. Furthermore, for Q = X(x) = /0 we have trivially that M |= ∀x(Qx → θ(x,a)),
and hence (M,X(x)) = (M, /0) ∈ D as required.

In the second case, instead, there exists some tuple a such that M |=X [a/z] Exz ∧ θ(x,z). Since

M |=X [a/z] Exz, X 6= /0 and there is some possible value a′ ∈ X [a/z](z) such that, for Q = X(x), (M,Q) |=
ψ+(Q,a′). But z takes only the value a in X [a/z], and hence a′ = a. Furthermore, since M |=X [a/z]

θ(x,z), by Proposition 6 we have that for every s ∈ X [a/z] M |=s θ(x,z). But for every b ∈ Q there

is some s ∈ X [a/z] with s(x) = b and s(z) = a, and so (M,Q) |= ∀x(Qx → θ(x,a)); and therefore,

(M,Q) ∈ D and M |=X Dx as required.

Conversely, suppose that (M,Q) ∈ D for Q = X(x). This implies that there exists some a such

that ψ+(Q,a)∧∀x(Qx → θ(x,a)). If Q = /0 then X = /0 as well and (M, /0) ∈ F, which implies that

M |= /0 Fx∧⊥ and that (1) holds. If instead X and Q are nonempty, let Y = X [a/z]. Then M |=Y=(z), be-

cause z is constant in Y ; M |=Y Exz, because for Q=X(x)=Y (x) we have that ψ+(Q,a) and Y (z)= {a};

and, for all b ∈ Q, we have that θ(b,a) and hence M |=Y θ(x,z). Hence again (1) holds, and this con-

cludes the proof.

�

The above result provides a full characterization of strongly first order dependencies that are rela-

tivizable and non-jumping. I suspect that this result may be further generalized to jumping dependencies

as a consequence of the following

Conjecture 4 Every strongly first order dependency D(R) can be expressed as a disjunction
∨

i Di(R) of

dependencies Di that are strongly first order and non-jumping.

Furthermore, if Conjecture 3 holds, the requirement of relativizability may be also disposed of.

5 Conclusions and Further Work

In this work I provided a full characterization of strongly first order dependencies in Team Semantics

under the two (commonly true) additional assumptions that these dependencies are relativizable and

non-jumping; and, in doing so, I disproved an earlier conjecture regarding a general characterization of

strongly first order dependencies and highlighted the importance of the global disjunction connective

in the study of Team Semantics. The obvious next step consists in trying to find ways to remove or

weaken these assumptions, for instance by proving Conjectures 3 and/or 4. Another research direction

worth investigating at this point is to generalize this approach to the study of operators (rather than just

dependencies) in Team Semantics, building on the work on generalized quantifiers in Team Semantics

of [1, 5, 25].

It would also be interesting to study axiomatizations for First Order Logic plus strongly first order

dependencies. The procedure to translate from FO(D↑,=(·)) to FO described in [9] is deterministic and

ends in finitely many steps for all formulas, and therefore if Conjecture 2 holds then it should be possible

to extend the proof system for logics based on Team Semantics of [26] or of [6] to deal with all such

dependencies.

Finally, the question of whether and to which degree these result generalize to probabilistic variants

of Team Semantics is almost entirely open. Such variants allow an even larger variety of possible choices

of connectives and atoms than non-probabilistic Team Semantics does; and, therefore, the classification

of logics based on Probabilistic Team Semantics promises to be an intriguing and highly nontrivial area

of research.
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