Reconfigurable Broadcast Networks and Asynchronous Shared-Memory Systems are Equivalent

A. R. Balasubramanian
(Technical University of Munich)
Chana Weil-Kennedy
(Technical University of Munich)

We show the equivalence of two distributed computing models, namely reconfigurable broadcast networks (RBN) and asynchronous shared-memory systems (ASMS), that were introduced independently. Both RBN and ASMS are systems in which a collection of anonymous, finite-state processes run the same protocol. In RBN, the processes communicate by selective broadcast: a process can broadcast a message which is received by all of its neighbors, and the set of neighbors of a process can change arbitrarily over time. In ASMS, the processes communicate by shared memory: a process can either write to or read from a shared register. Our main result is that RBN and ASMS can simulate each other, i.e. they are equivalent with respect to parameterized reachability, where we are given two (possibly infinite) sets of configurations C and C' defined by upper and lower bounds on the number of processes in each state and we would like to decide if some configuration in C can reach some configuration in C'. Using this simulation equivalence, we transfer results of RBN to ASMS and vice versa. Finally, we show that RBN and ASMS can simulate a third distributed model called immediate observation (IO) nets. Moreover, for a slightly stronger notion of simulation (which is satisfied by all the simulations given in this paper), we show that IO nets cannot simulate RBN.

In Pierre Ganty and Davide Bresolin: Proceedings 12th International Symposium on Games, Automata, Logics, and Formal Verification (GandALF 2021), Padua, Italy, 20-22 September 2021, Electronic Proceedings in Theoretical Computer Science 346, pp. 18–34.
A long version of this paper, containing all proofs, appears at https://arxiv.org/abs/2108.07510
Published: 17th September 2021.

ArXived at: https://dx.doi.org/10.4204/EPTCS.346.2 bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to: eptcs@eptcs.org
For website issues: webmaster@eptcs.org