
Bortolussi, Bujorianu, Pola (Eds.): HAS 2013
EPTCS 124, 2013, pp. 1–4, doi:10.4204/EPTCS.124.1

c© Ezio Bartocci, Radu Grosu
This work is licensed under the
Creative Commons Attribution License.

Monitoring with uncertainty

Ezio Bartocci
Faculty of Informatics

Vienna University of Technology
Vienna, Austria

ezio.bartocci@tuwien.ac.at

Radu Grosu
Faculty of Informatics

Vienna University of Technology
Vienna, Austria

radu.grosu@tuwien.ac.at

We discuss the problem of runtime verification of an instrumented program that misses to emit and
to monitor some events. These gaps can occur when a monitoring overhead control mechanism is
introduced to disable the monitor of an application with real-time constraints. We show how to use
statistical models to learn the application behavior and to“fill in” the introduced gaps. Finally, we
present and discuss some techniques developed in the last three years to estimate the probability that
a property of interest is violated in the presence of an incomplete trace.

1 Problem description

Runtime verification (RV) (ormonitoring) [9, 2] is a well-established technique to check whether the
current execution of a program satisfies a property of interest. In the last years, RV has increasingly
gained popularity in both the formal verification and software engineering communities, because in most
of the cases it reveals to be more practical than exhaustive verification techniques such as model check-
ing [5, 12] and more versatile than classical software testing. Formally, the RV problem is to decide
whether an execution traceτ of a programP satisfies a temporal logic specificationϕ . RV is then usu-
ally performed by translating the formulaϕ into a deterministic finite state machine (DFSM)Mϕ and by
instrumenting the programP so that it emits the events triggering the input-enabled transitions inMϕ .

However, RV does not come for free. It introduces runtime overhead, thereby changing the timing-
related behavior of the program under scrutiny. While this is acceptable in many applications, it may
be unacceptable in applications with real-time constraints. In such cases, overhead control is necessary.
Recently, a number of techniques have been developed to mitigate the overhead due to RV [4, 6, 8, 1, 10].
Common to these approaches is the use of event sampling to reduce overhead. Sampling means that
some events are not processed at all, or are processed in a limited (and thus less expensive) manner than
other events. In a previous work [10], we introduced Software Monitoring with Controllable Overhead
(SMCO), an overhead-control technique that selectively turns monitoring on and off, such that the use of
a short- or long-term overhead budget is maximized and neverexceeded. Gaps in monitoring, however,
introduce uncertainty in the monitoring results.

For example, letϕ be the formula�(a⇒⋄c), that means always an eventa is finally followed by an
eventc and letτ be the tracea b b c a d b c. In this example the formulaϕ clearly holds. Suppose now
that the trace isincomplete, due to disabled monitoring:τ = a b b c− b c, with − indicating a set of
events that could not be observed (or gap). Although it is notpossible to be really sure that the property
is satisfied, the problem we are interested to solve is to quantify the uncertainty with which the traceτ
satisfiesϕ .

http://dx.doi.org/10.4204/EPTCS.124.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Monitoring with Uncertainty

2 “Filling in” the gaps

In order to quantify the uncertainty in monitoring, our approach is to use a statistical model of the mon-
itored system to “fill in” sampling-induced gaps in event sequences, and then calculate the probability
that the property of interest is satisfied or violated. In ourprevious works [15, 3, 11], we have chosen the
Dynamic Bayesian Networks (DBNs) [14], a suitable formalism to characterize the temporal probability
model of the instrumented program emitting events. DBNs canhave multiple state variables (modeling
the states of a program that are usually hidden) and multipleobservation variables (representing the out-
put events). A DBN is essentially a first-order Markov Process where each variable at timet can depend
only by other variables at the same timet or at timet −1.

In [15, 3] we used Hidden Markov Models (HMM), that are essentially DBNs with only one state
variable and one observation variable. A HMM is a Markov model in which the system being modeled
is assumed to be a Markov process with unobserved (hidden) states. In a regular Markov model, states
are directly visible to the observer, and therefore state transition probabilities are the only required pa-
rameters. In a HMM, states cannot be observed; rather, each state has a probability distribution for the
possible observations (formally called observation symbols). The classic state estimation problem for
HMMs is to compute the most likely sequence of states that generates a given observation sequence.

One can obtain a HMM for a system automatically, by learning it from complete traces using standard
HMM learning algorithms(i.e. Baum–Welch) [13]. These algorithms require the user to specify the
desired number of states in the HMM and they allow (but do not require) the user to provide information
about the structure of the HMM, specifically, that certain entries in the transition probability matrix and
the observation probability matrix are close to zero. This information can help the learning algorithm
converge more quickly and find globally (instead of locally)optimal solutions.

In contrast to our previous work [15, 3], in [11] we succinctly represent the program model, the
program monitor, their interaction, and their observations as a generic DBN. This allowed us to properly
formalize a new kind of event, calledpeek events, which are inexpensive observations of part of the
program state. In many applications, program states and monitor states are correlated, and hence peek
events can be used to narrow down the possible states of the monitor DFSM. We use peek events at the
end of monitoring gaps to refocus the DBN and DFSM states. Ourcombination of these two kind of
observations, program events and peek events, is akin tosensor fusionin robotics.

3 Monitoring with uncertainty

Runtime Verification with State Estimation (RVSE)

To quantify the uncertainty, one can estimate the current state of the program. We developed a framework
for this, called Runtime Verification with State Estimation(RVSE) [15], in which a HMM is used to
succinctly model the program and the uncertainty in predictions due to incomplete information.

While monitoring is on, the observed program events drive the transitions of the property checker,
modeled as a deterministic finite state machine (DFSM). Theyalso provide information used to help
correct the state estimates (specifically, state probability distributions) computed from the HMM transi-
tion probabilities, by comparing the output probabilitiesin each state with the observed outputs. When
monitoring is off, the transition probabilities in the HMM alone determine the updated state estimate
after the gap, and the output probabilities in the HMM drive the transitions of the DFSM. Each gap is
characterized by a gap length distribution, which is a probability distribution for the number of missed
observations during that gap. Our algorithm was based on an optimal state estimation algorithm, known



Ezio Bartocci, Radu Grosu 3

as the forward algorithm, extended to handle gaps. Unfortunately, this algorithm incurs high overhead,
especially for longer sequences of gaps, because it involves repeated matrix multiplications using the
observation-probability and transition-probability matrices. In our measurements, this was often more
than a factor of 10 larger than the overhead of monitoring theevents themselves.

Approximate Precomputed Runtime Verification with State Estimation (AP-RVSE)

To reduce the runtime overhead, we developed a version of thealgorithm, which we call the approximate
precomputed RVSE (AP-RVSE), which pre-computes the matrixcalculations and stores the results in a
table [3]. Essentially, AP-RVSE pre-computes a potentially infinite graph unfolding, where nodes are
labeled with state probability distributions, and edges are labeled with transitions. To ensure the table is
finite, we introduced an approximation in the calculations,controlled by an accuracyε parameter: if a
newly computed matrix differs from the matrix on an existingnode by at mostε according to the 1-norm,
then we re-use the existing node instead of creating a new one. With this algorithm, the runtime overhead
is low, independent of the desired accuracy, but higher accuracy requires larger tables, and the memory
requirements could become problematic. Also, if the set of gap length distributions that may appear in
an execution is not known in advance, precomputation is infeasible.

Runtime Verification with Particle Filtering (RVPF)

In a recent paper [11] we have introduced an alternative approach, called Runtime Verification with
Particle Filtering (RVPF), to control the balance between runtime overhead, memory consumption, and
prediction accuracy. In one of the most common forms of particle filtering (PF) [7], the probability distri-
bution of states is approximated by the proportion of particles in each state. The particle filtering process
works in three recurring steps. First, the particles are advanced to their successor states by sampling from
the HMM’s transition probability distribution. Second, each particle is assigned a weight corresponding
to the output probability of the observed program event. Third, the particles are resampled according to
the normalized weights from the second step; this has the effect of redistributing the particles to the states
to provide a better prediction of the program events. We exploit the knowledge of the current program
event and the particular structure of the DBN to improve the variance of the PF, by using sequential im-
portance resampling (SIR). In this PF variation, resampling (which is a major performance bottleneck)
does not have to be performed in each round, and the particlesare advanced to their successor states by
sampling from the HMM’s transition probability distribution conditioned by the current observation.

Adjusting the number of particles used by RVPF provides a versatile way to tune the memory re-
quirements, runtime overhead, and prediction accuracy.With larger numbers of gaps, the particles get
more widely dispersed in the state space, and more particlesare needed to cover all of the interesting
states. To evaluate the performance and accuracy of RVPF, weimplemented it in [11] along with our
previous two algorithms in C and compared them through experiments based on the benchmarks used
in [3]. Our results confirm RVPF’s versatility.

Acknowledgements. The main concepts and ideas presented in this invited talk were developed (and
presented in several papers) in collaboration with Scott A.Smolka, Scott D. Stoller, Erez Zadok, Justin
Seyster and Klaus Havelund that we would like here to acknowledge.



4 Monitoring with Uncertainty

References

[1] Matthew Arnold, Martin Vechev & Eran Yahav (2008):QVM: An Efficient Runtime for Detecting Defects in
Deployed Systems. In: Proc. 23rd ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA 2008), ACM, pp. 143–162, doi:10.1145/1449955.
1449776.

[2] H. Barringer, Y. Falcone, B. Finkbeiner, K. Havelund, I.Lee, G.J. Pace, G. Rosu, O. Sokolsky & N. Tillmann
(2010): Preface. In: Proc. of RV 2010, the First International Conference on Runtime Verification, St.
Julians, Malta, November 1-4, 2010, Lecture Notes in Computer Science6418, Springer, doi:10.1007/
978-3-642-16612-9.

[3] E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller, E. Zadok & J. Seyster (2012):Adaptive
Runtime Verification. In: Proc. of RV 2012, the third International Conference on Runtime Verification,
September, 2012 Istanbul, Turkey, Lecture Notes in Computer Science7687, Springer, pp. 168–182, doi:10.

1007/978-3-642-35632-2_18.

[4] B. Bonakdarpour, S. Navabpour & S. Fischmeister (2011):Sampling-Based Runtime Verification. In:
Proc. FM 2011: Formal Methods, the 17th International Symposium on Formal Methods, Limerick, Ire-
land, June 20-24, 2011, Lecture Notes in Computer Science6664, Springer, pp. 88–102, doi:10.1007/

978-3-642-21437-0_9.

[5] E. M. Clarke & E. Emerson (1982):Design and Synthesis of Synchronization Skeletons Using Branching
Time Temporal Logic. In Dexter Kozen, editor:Logics of Programs, Lecture Notes in Computer Science
131, Springer Berlin / Heidelberg, pp. 52–71, doi:10.1007/BFb0025774.

[6] L. Fei & S.P. Midkiff (2006):Artemis: Practical Runtime Monitoring of Applications forExecution Anoma-
lies. In: Proc. 2006 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2006), ACM, Ottawa, Canada, pp. 84–95, doi:10.1145/1133981.1133992.

[7] N.J. Gordon, D.J. Salmond & A.F.M. Smith (1993):Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. In: IEEE Proceedings on Radar and Signal Processing, 140, IEEE, pp. 107–127.

[8] M. Hauswirth & T. M. Chilimbi (2004):Low-Overhead Memory Leak Detection using Adaptive Statistical
Profiling. In: Proc. 11th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2004), pp. 156–164, doi:10.1145/1024393.1024412.

[9] K. Havelund & G. Rosu (2002):Runtime Verification, RV 2002: Preface. Electr. Notes Theor. Comput. Sci.
70(4), pp. 201–202, doi:10.1016/S1571-0661(05)80585-7.

[10] X. Huang, J. Seyster, S. Callanan, K. Dixit, R. Grosu, S.A. Smolka, S. D. Stoller & E. Zadok
(2012): Software Monitoring with Controllable Overhead. STTT 14(3), pp. 327–347, doi:10.1007/
s10009-010-0184-4.

[11] K. Kalajdzic, E. Bartocci, S. A. Smolka, Scott Stoller &G. Grosu (2013):Runtime Verification with Particle
Filtering. In: Proc. of RV 2013, the fourth International Conference on Runtime Verification, INRIA Rennes,
France, 24-27 September, 2013, Lecture Notes in Computer Science, Springer, p. To Appear.

[12] J.P. Queille & J. Sifakis (1982):Specification and verification of concurrent systems in CESAR. In: Proc.
of the 5th Colloquium on International Symposium on Programming, Springer-Verlag, pp. 337–351, doi:10.

1007/3-540-11494-7_22.

[13] Lawrence R. Rabiner (1989):A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE77(2), pp. 257–286, doi:10.1109/5.18626.

[14] Stuart Russell & Peter Norvig (2010):Artificial Intelligence: A Modern Approach, 3rd edition. Prentice-Hall.

[15] S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka & E. Zadok (2011):Runtime
Verification with State Estimation. In: Proc. of RV 2011, the Second international conference on Runtime
verification, San Francisco, CA, USA, Lecture Notes in Computer Science7186, Springer-Verlag, pp. 193–
207, doi:10.1007/978-3-642-29860-8_15.

http://dx.doi.org/10.1145/1449955.1449776
http://dx.doi.org/10.1145/1449955.1449776
http://dx.doi.org/10.1007/978-3-642-16612-9
http://dx.doi.org/10.1007/978-3-642-16612-9
http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/978-3-642-21437-0_9
http://dx.doi.org/10.1007/978-3-642-21437-0_9
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1145/1133981.1133992
http://dx.doi.org/10.1145/1024393.1024412
http://dx.doi.org/10.1016/S1571-0661(05)80585-7
http://dx.doi.org/10.1007/s10009-010-0184-4
http://dx.doi.org/10.1007/s10009-010-0184-4
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1007/978-3-642-29860-8_15

	1 Problem description
	2 ``Filling in" the gaps
	3 Monitoring with uncertainty

