A stochastic hybrid model of a biological filter
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We present a hybrid model of a biological filter, a geneticuir which removes fast fluctuations

in the cell's internal representation of the extra cellildavironment. The model takes the classic
feed-forward loop (FFL) motif and represents it as a netwafrkontinuous protein concentrations
and binary, unobserved gene promoter states. We addrepsailem of statistical inference and

parameter learning for this class of models from partia¢cidite time observations. We show that
the hybrid representation leads to an efficient algorithmefigproximate statistical inference in this

circuit, and show its effectiveness on a simulated data set.

1 Introduction

Organisms exist in a constantly changing and noisy envieinin order to carry out many fundamental
functions, cells need to represent internally changesvit@mental conditions, and to process what are
effectively highly noisy signals. In many simple organisrtigs internal representation is achieved via
the chemical modification of a specific class of proteinsngcaiption factors (TFs), which are able
to bind DNA and to modulate the expression of downstream g¢tfe]. In many cases, the proteins
which are the products of these downstream genes will thert exchemical feedback on the initial
stimulus (e.g. by breaking down a nutrient). While this israpge and effective approach to respond to
environmental stimuli, the energetic costs of protein pain are high, and it would be in many cases
undesirable to respond to signals which are not present saffeciently long time. As a consequence,
cells have evolved regulatory structures which are abléter fiut rapid fluctuations [1]. A prototypical,
and very common, example is the feed-forward loop (FFL)wshim Figure[1: here the final protein
product is activated by two TFsaasterTF and aslaveTF, which is regulated by the master. Therefore,
in order for the final protein to be produced, the input sigmaist be present for a sufficient time to
enable the production of the slave TF in sufficient quartitieranscription (and translation) in a single
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Figure 1. Feed-forward loop structure.

cell is essentially a stochastic process/[5, 19], with mRgA=luced in individual units as a result of
the change in occupancy of the promoter. Nevertheless,ceetisstate description of the system may
be problematic from a computational point of view (when thenber of molecular species is large),
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so that it is often convenient to approximate the discretabver of mMRNAs with a continuous random
variable (its concentration). This mesoscopic approxonatan be shown to be asymptotically correct
in the large number limit [6], and has been recently used ioran&l modelling contex{ [4]. Here, we
couple such a mesoscopic approximation with the binarg stihe gene promoters, naturally obtaining
a description of the system as a hybrid system. This hybstegy is essentially a stochastic version of
the well known ON/ OFF model of gene expression [15].

Assessing how well a model represents a real biologicaésys a non-trivial challenge. In general,
model parameters (transcription/ decay rates, bindingitdf, etc...) are only approximately known.
Furthermore, a model such as the hybrid model we proposeafusdription contains unobserved species
(in this case, the promoter’s state), whose dynamics datestn important part of the model. Bayesian
statistics offers a principled solution to both of theseytems: uncertainty over parameters can be incor-
porated through prior distributions, and the dynamics efuhobserved species can be reconstruated
posteriori providing important detail on how external signals aredtaa by the circuit in specific cases.
Statistical inference in the ON/ OFF and related models okegexpression has been addressed very
recently both for deterministi¢ [17, 12,110] and stochastistems[[13]. Here we present an extension
and application of the stochastic framework[inl[13] to thedidorward loop architecture. The primary
novelty lies in the handling of the slave TF, in particulamhits promoter state depends on the master
TF protein concentration. As discussed later, this is inkeducontrast to the approach taken[in![10] for
deterministic systems, and leads to substantial gainsdootiputationally and in terms of identifiability.

The rest of the paper is organised as follows. We start offriegenting the general framework we
adopt, and by reviewing the related works made over the ¢agstykars. We then describe the specific
model we consider in this contribution, and the associapguiaximate inference algorithm. This algo-
rithm is implemented and tested on a simulated data set. Wehate by discussing the merits and limits
of our work in the broader context of dynamic modelling, aigtdssing future work.

2 Stochastic ON/OFF models of gene expression

Our hybrid models describe fundamental gene regulatiorhar@sms such as transcriptional activation
and translation with a system of differential equations. réf@esent two main physical entities: discrete
binary promoter states, which can be occupiegi(= 1) or not (u = 0), and continuous protein states
Figure[2 shows a graphical representation of these entdissrete variables are represented as squares
and continuous variables as circles. Promoter and pratsiessare linked together through the following
transcription-translation stochastic differential efiua (SDE) moddl:

dx(t) = (b— )\X+Au(t))dt + odw(t). 1)

Hereb, A andA are kinetics parameterd is a basal transcriptional-translational rakejs the pro-
tein decay constant (proportional to the inverse of thegimabalf life); A represents an increment (or
decrement) of the transcriptional-translational rateuodag when the promoter is occupied. If the pro-
moter is occupied({ = 1), the transcription-translation rate is then givenAwy b; otherwise, when
u = 0, the transcription-translation rate is simply givenkoyTherefore there are two distinct levels of
transcription-translation rate, corresponding to therdite ON/OFF state of the promoter [15]. While
andA are constrained to be positive, the param@étean be positive or negative to model activation or

1in Equation[(1) we are considering transcription and tratitsh mechanisms combined in a single reaction, by assuming
that the protein states are proportional to correspondiRiNAlevels.
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repression, respectively. The final term in Equatidn @dw(t), takes into account of the stochasticity
of the transcription-translation mechanism(t) is a Wiener process ara represents the system noise
variance. Note that whep = 0, Equation[(lL) reduces to a simple Ornstein-Uhlenbeckga®cIn this
case the protein state is described by a Gaussian distribwith mean

E(0)|u(t) =0 = x(0)e ™ + 1 (1-e ™). @)

wherex(0) is the protein state at tinte= 0.

To model the discrete promoter stafgsve use a two-state Markov jump process, also known as
telegraph processThis represents a stochastic process that switches betwedaliscrete states (in our
caseu = 0 andu = 1) and whose single time marginal probability is describgdhe chemical master
equation

d
apu(Lt) = f+pu(0>t)_ f*pu(lvt%

. 3)
apu(oﬂ) = f,pu(l,t)—erpu(O,t).

which, using the fact that probabilities sum tog, (1,t) + p,(0,t) = 1), can be reduced to

%pu(lﬂ): fr— (4 + o) pu(L1). (4)
The quantityp, (1,t) (or p,(0,t)) represents the probability of the promoter sjat®e be 1 at time (or O
at timet). The parameter§, andf_, known as switching rates, are probabilities per unit timswitch
from state O to state 1 and vice versa, respectively.

By using a telegraph process, the behaviour of the promtattrssis described by discrete jumps that
are much faster compared to the continuous evolution ofrihiein states. This assumption is reasonably
motivated by the fact that the promoter binding reaction imfaster compared to the time needed for
the transcription-translation process.

The combination of a proteixand its correspondent promoterepresents the fundamental unit of
our hybrid models. In order to build a network motif such asfeéed-forward loop, we need to combine
together a number of these units. Therefore, we also modetiéipendence gfi on the state of an
upstream protei’ (which is a TF for the promoteu).

To link together promoter statgs and upstream continuous protein states/e use the following
relations for the switching rates of the promoter

f, = kpexp(keX), (5)
fo = Kn, (6)

whereky, ke andky, are additional parameters. By writing the switching rateas a function ok’ (and
consequently of time), we obtain that the probability of the promoter to switcbnir state O to state 1
depends on thg concentration. On the other haifd is kept constant to the parameter vakge

Note that modelling the promoter states with the master &mu43) and the switching rates as in
Equation [[(b) and{6), we are assuming a saturation effedteoptomotent by the transcription factor
concentrationk. From the master equation, we obtain that the steady stabalpitity of the promoter
being ONpsq 1 = 1|X) corresponds to a Hill type dependence upon the (exponeittak) upstream
protein concentratiow’:

f. expke)

ot o rexpkex)

psdu = 1|X) = (7)
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3 Related work

The idea of using models with latent variables for trandgmial regulation has a long history in com-
putational biology: the first attempts to integrate micragrdata with the architecture of the regulatory
network in order to infer unobserved transcription facteh&viours date to the early days of ChlP-on-
chip technology([8, 16]. The idea to use a differential emuatnodel for transcription within a statistical
context is more recent. In early modeéls[[2, 7], the prior egsions on TF profiles (piecewise constant or
Gaussian) were relatively weak and not particularly linteeeccepted biological models of transcription
factor behaviour. Sanguinetti et al[17] recasted the detestic ON/OFF model of gene expression|[15]
in statistical terms, deriving algorithms for both exactl asariational inference. This approach proved
fruitful and enabled generalisations to more complex n@délegulation, including stochastic models
[13], combinatorial regulatiori [12], hierarchical netisr{10] and networks of arbitrary topology! [9].
Stochastic hybrid systems of this kind have been studiet intiensely in earlier works$ [14].

While the FFL network has already been studied i [10], thadys only considered deterministic
systems, and modelled the saturating effects of regulatjche slave TF through the use of a Heaviside
step function. This non-differentiability introduced ses computational problems: in particular, identi-
fiability of the saturation threshold was weak and could drdydone by direct search, with considerable
computational overheads. By contrast, here we adapt tbhagtic approach of[9] to the FFL topology,
which avoids these computational issues by modelling thirétwe impact of the slave transcription factor
on the switching rates of the target’'s promoter.

4 The hybrid feed-forward loop model

FFLs consist of three components: a master TF which reguthte transcriptional activity of both a
slave gene and a target gene. In turn, the slave TF also tegtlee target gene. The presence of three
regulatory connections with two possible signs (activatio repression) gives rise td &/pes of FFLs.

Among the 2 types, the most recurrent is the one with all positive cotioes, with frequency of
about 50% and 40% in yeast and E.coli, respectivély [1]. Bason is that this particular FFL can work
as a filter against spurious fluctuations of biological sigh@he mechanism is the following. The target
protein is produced only if both master and slave TF are pte$iea noisy high frequency signal causes
the undesired production of master TF, then, before atiyatiso the target gene, this signal is delayed
by the production of slave TF. Therefore, at the level of Hrget gene, it is filtered out.

As showed in Figur&l2, our hybrid FFL model is composed ofehuaits promoter-protein. If

we assume that initially the promoter statig is 0, then in presence of an external stimulus, the master
promoteruy changes its activity from 0 to 1, and starts the transcniptranslation of master protekxy,.
The master protein affects the switching rate of the slasenpter fs, . Then the probability of the slave
promoter to switch from state O to state 1 increases anddriatisn-activation of slave protein occurs.
Together with the master protein, the slave protein chatigeswitching rate of the target promoter
fro, which finally brings to transcription-translation of therdet protein. If the external stimulus is
too short (e.g. noisy fluctuations) then the transcripti@mslation of the target protein will not occur.
Mathematically this is described by the following systendiffierential equations:

DL = s — (s + fu) P (LD ®)

t
du(t) = (bM—)\MxM +AMuM(t))dt+adW(t) 9)
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Figure 2: Hybrid FFL model. Squares represent promoteest&mpty circles represent protein states
and grey circles represent observations.

SPet) = s~ (fs +fs )pu(L) (10
dxs(t) = (bs— Asxs+Astis(t) )t + adw(t) (11)
Sl (L) = fro—(frat D (L) (12)
dxr(t) = (br —Avxr +Arpr(t) ) ot + odw(t), (13)

where the switching rates of the slave and target genes are

fsi = kpexp(kexm)

fs = km

1
fro = kpeXp<ke§(XM+XS)>
o = Ky

The switching rateft is a function of the average of the protein statgsandxs. This means that the
probability to switch the target promoter state from 0 toduiees the presence of both master and slave
proteins. If the signal on the master gene is too short, tHeenwg starts to be produced, the protein

is already decaying. Therefore the probabilify. will not increase.

The number of parameters to estimate in our hybrid FFL mad&ki3: the three kinetics parameters
for each of the three gene. Instead, we do not estimate tlzenedersk,, ke andky, that are fixed to
arbitrarily chosen values.

The parameters are estimated from measurements of preteiis | which are usually available in the
form of noisy time-series. Therefore we consider the proteeasurements as discrete-time observations



A. Ocone & G. Sanguinetti 105

of the true continuous-time protein levels. By assumingol@ervationgigene to be i.i.d. (the indexjene
refers toM, SandT), we have the following Gaussian likelihood noise model:

N N
2 =[] Pigeneigendt)) = [ Ohgendgend ). e (14)

whereN is the total number of observations agg. is the observation variance. Using corrupted data
Dgene= {Y1gene Y2gene - - -, YN gend, We are then interested in reconstructing the true proteiesXgene
In Figurel2, observations are represented as shaded nodes.

On the other hand, observations of promoter states arelysudlavailable, so we modelgene as
unobserved (or latent) variables which have to be infereediell from the datdgene An advantage of
using a latent variable representation, is that the mod®rnes very flexible and so capable to capture
highly nonlinear network dynamics.

5 Approximate inference

The process is not Markovian (Eq[]1), since it depends also on the statth@ftelegraph process.
But if we consider the joint proceds, u], then this is Markovian. Given the Markovian nature of the
joint process, we can use the forward-backward algorithisotee exactly the inference problem. This
exact inference solution is expensive from a computatipeespective, because it involves the numerical
solution of coupled partial differential equations to firek tposterior distributions. Then we adopt a
tractable solution to the inference problem, using an apprate inference framework.

The posterior distributions of the joint procepsu| given the noise observatior3 is given by
Bayes' rule

P(X.ID) = 2p(4 1) (15)

where p(x, i) is the prior distribution,# is the Gaussian likelihood (E@.J14) a@drepresents the
marginal likelihood. To solve the inference problem (i.emputep(x, u|D)) we adopt a variational
method. Variational methods are a family of determinisgipraximations which are based on bounding
properties of the marginal likelihood![3]. They essenfiabnsist of two steps: the first is to transform
the inference problem into an optimisation problem; theosdds to look for approximate solutions to
the optimisation problem.

The optimisation problem is defined by choosing a so calledtianal distributionq(x, i), which
can approximate our target distributiqeix, 4|D), and an objective functio®(q, p) to minimise. In
order to obtain tractable computations we choose the velatitropy, also known as Kullback-Leibler
(KL) divergence:

D(q,p) =KL(ql|p) = /qlog%dq- (16)

The KL divergenceKL(q||p) satisfies the property that it is always positive and becomaisif and
only if = p. The variational densityg(x, i) is chosen within a family of tractable distributions and
is function of some variational parameters; therefore thi@rasation problem reduces to find a set of
values of the variational parameters for which the KL diegricg is minimal.

To allow for tractable computations, we relax the optim@aproblem by making some approxima-
tions. First, we use a mean-field approximation for the vanmal distribution [11] which is essentially
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Figure 3. Left: posterior promoter activity (dashed gregnpared to true simulated activity (solid
black). Right: posterior protein states (solid grey) corepao noisy observations (black crosses). We
also report simulated sample paths (solid black).

obtained by making assumptions about the structure of thatiemal distributiong(x, ). In particu-
lar, we assume that the variational distribution factoii#e the product of pure (Gaussian) diffusions
Ox(Xo:T) and pure telegraph processgs o1 ). For the hybrid FFL model this means that

A(XMo:T, Xs0T, XT 0T Mot Msom, Mrom) = [ O (Xiom )G (HioT) (17)
i=[M,ST]

wherex;o1 andugr represent continuous-time sample paths for the processesl i, respectively, in
the interval[0, T]. In addition, we assume that the switching rates of the posteelegraph processes
0 (Mio:T ) do not dependent on the state of the correspondent upstrereins. By means of these as-
sumptions, we can rewrite the KL divergence in a sum of termmisfvcan be minimised with an iterative
procedure[[13, 10]. Parameter estimation is performedearstime algorithm, through minimisation of
the KL divergence with respect to the kinetics parameterte khat to avoid the protein concentrations
Xi to become negative, we can set a constraints on the paravadtes (e.g.b > 0 for activation and
A+ b > 0 for repression).

6 Results on a simulated data set

We report a study of our hybrid FFL model on a simulated data Bata are simulated using Equa-
tions [9)-{13) using the input function for the master proenas showed in Figuifd 3 (top left corner,
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solid line). The master promoter has two main transitiongansits from state 1 to state 0 around time
t = 3 and then back to state 1 around time 8. But more interestingly, we simulate a perturbation that
switch its activity from 0 to 1 for a short time (at tinte= 5).

Protein noisy observation®f;, Ds, D7) are obtained by adding a zero mean Gaussian noise with
standard deviation.01 to the simulated true time courseg ( Xs, X7).

Figure[3 shows results of our hybrid FFL model. The flexipitiiven by the latent promoter values
provides posterior reconstructions of the protein stdtasfit well the noisy observations (F[g. 3, right).
More importantly, the model provides a qualitatively goedanstruction of the promoter states (fig. 3,
left), especially during the transition times from one &ttt the other. In particular, it can capture the
presence of the perturbation in the master promoter ac{iFig.[3, top left corner) and its propagation
to the slave promoter activity (Figl 3, center left). Thetpdration is finally filtered out in the target
promoter activity, which is correctly inferred from the nedés well (Fig[B, bottom left).

7 Discussion and conclusion

Feedforward loop structures are ubiquitous regulatoryifsot biology due to their important signal
processing functions. They are highly over-representdconly in microbial regulatory network, but
in a variety of other contexts: for example, feed forwardpl®@re an important structure in neuronal
networks in the brairl [18]. In this paper, we present a siegismodel of transcriptional FFLs based on
the general framework for statistical modelling of regafgtnetworks of[[9]. We showed that the model
has good identifiability, and indeed performs the filterififast transient information which is associated
with real FFL networks. Compared to earlier attempts to rhstdistically FFLs[[10], this paper uses a
stochastic model of the system, and elegantly bypassesa&dimemost serious computational problems
introduced by the saturating behaviour of the slave TF.

An important aspect which we have not touched upon in theeptesork is how the master and
slave TF interact at the target promoter. Indeed, it is assitimat the contributions of the two TFs to the
switching rates of the target promoters combine additiveRploring different logics (e.g. OR, AND or
XOR gates) remains an interesting development for futun&kwo
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