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1 Extended Abstract

Formal verification has been successfully developed in coenpscience for verifying combinatorial
classes of models and specifications [2]. In like mannemébwverification methods have been devel-
oped for dynamical systemis|[6]. However, the verificatiosystem properties, such as safety, is based
on reachability calculations, which are the sources ofrimswntable complexity. This talk addresses in-
direct verification methods, which are based on abstrathieglynamical systems by models of reduced
complexity and preserving central properties of the oebsystems.

Specifically, in this talk, | consider a dynamical systém= (M, &), whereM is the state space - a
closed manifold, and is a smooth vector field okl.

We denote a flow line of by ¢(t) = qf(t), that is

S0 = £ (@) with ,(0) =x

The manifoldM is compact; thus, the vector fiefdgenerates a 1-parameter grogp M — M, t € R,
of diffeomorphisms. The smooth flow map. R x M — M is related tog in the following way

P(t,%) = @) = @(b).

We will examine examples of candidates for the combinatsgiatem% that mirrors the behaviour
of C. For now, the combinatorial system is a pair(Z,®) consisting of a finite seZ, and a function
®: R x Z — 24, where Z denotes the power set @ We think aboutZ as a discrete state space and
about® as a discrete flow map. Subsequently, we will discuss methbdsnverting the dynamical
system#’ to a combinatorial objec®.

Forze Z, the cell[Z = &7 ~1(z) C M. If the cells are disjoint, the collectidd = {[Z| z€ Z} is called
a partition of the state spadé; whereas, if a paifz] N [Z] # 0, the collection is called a cover.

An abstraction is an over-approximation if for aftyx) € R>o x M

o @(t,x) C D(t, 7 (X));
&7 is an under-approximation if
D(t, 7 (X)) C o7 o @(t,X).

If o7 is a both under- and an over-approximation, then it is calledmplete abstraction. For the ques-
tions related to safety, one might choose an over-apprdiomavhereas, for the questions correspond-
ing to reachability, one might work with an under-approxiima. Conservativeness of the abstraction,
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6 Completeness of Lyapunov Abstraction

say over-approximation, is measured by the volume,

sup maxvol(®d(t,z) \ <7 o ¢(t,[2])).

teR>o ze”Z

Below, we sketch a number of examples discussed during lthe ta

Example 1. Suppose{U,|z € Z} is a finite family of subsets covering M. L&t be given by Z and
d(t,z) = o/ o @(t,[Z]). Pick an order on Z. We define the abstractighby

o X min{ze Z| x e Uz} 1)

As a consequence of the definitiondafthe abstractione is an over-approximation. In this example,
the computation o might be tedious if not impossible. Therefore, an approkionas in place.
To this end, we define

pol{vi,..vj} = {Zlaivi (X)

|
ai>0and S a?=1}.
(=0and 3 }

LetL={Lj|i=1,...,1} be a family of linear vector fields, and define multivalued &g = polL(x).
Suppose thaf € F(x), and define

®(t,2) = o opol{@":(t,[2),..., 0" (t.[2)}-

The over-approximation might be relatively conservatiwat, the computation is simplified as the flow
maps are linear in the second argument. The algorithm candaitianally simplified if the setsUare
polyhedral (in local patches).

Example 2. Suppose that there exists a Finsler-Lyapunov (smoothYiam3] V : TM — R (where
m: TM — M is the tangent bundle) such that

1. V(v) > Oforallve TM\Oy.

2. There is pe N such that (Av) = APV (v) for allv e TM andA > 0.

3. There is p= N such that (v+ W)Tl) < V(V)Tll —i—V(W)Tl) for all v,w € TM with ri(v) = ri(w).
The function V defines metricon M [7]

. !
plaxe) = int  [V(y)ids
yEr(X]_.Xz) |

where |=[0,1], y = y.(d/dt), [ (x1,%2) is the set of curves+ M with y(0) = x; andy(1) = xz. Follow-
ing Theorem 1 in [Forni and Sepulchre], if dvT M — T*(T M) satisfies the following inequality written
in local coordinates

DV (x,w) (& (x),D&(x)w) < —a(V(x,w)), forall (x,v) € TM.

wherea is a non-decreasing continuous function. ThE®(t,x1), @(t,x2)) < a(p(x1,%2)). Hence, the
system incrementally stable [1].

Since the state space M is compact, it is possible to cover Mebfinite family{D(x,,r,)| z€ Z} of
disks Ox,r) = {y € M| p(x,y) < r} [4]. We define the abstraction/ as in (), and the combinatorial
systemZ by Z and®(t,z) = 7 @(t,x;). The abstractione is an over-approximation. We note that
computation ofp amounts to simulating the dynamical systéifor a finite number of initial conditions
Xz.
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Example 3. Let & be a Morse-Smale vector field on M [Palis and de Melo]. Reaalector field
& € X" (M) will be called Morse-Smale provided it satisfies the follugviive conditions:

. ¢ has a finite number of singular points, sgy ..., Bk, each hyperbolic,

. & has a finite number of closed orbits (periodic solutionsy, Ba 1, ..., Bn, €ach hyperbolic;

- Q&) ={B1,--,Bn};

1

2

3. Forany xe M, a(x) = B andw(x) = B; for some i and j;

4

5. The stable and unstable manifolds associated wittBttave transversal intersection.

The set$By, ..., By will be called the singular elements of the vector fiéldThe set of the singular
elements of will be denoted by’r(&). The stable (unstable) manifold &éfat a singular elemeng is

denoted by VB(B) WY(B))).

We define a partial order relation on the singular elementa dlorse-Smale vector field3; >~ f;
will mean that W3, B;) = WY(B) "\W3(B;) # 0.

Consequently, each {8, B;) is a cell, with the property that if c W(S;, Bj) theng(t,x) e W(f3;, B;)
for all t € R. Since the number of singular elements is finite, we can défibg

Z={W(B,B;j)| B > Bj} andd(t,z) =z

Example 4. On the state space M, we define a family of functipis M — R|i =1,...,1} that satisfy

1. dV(£)(x) <0,
2. LetRegV;) be the set of regular values of. \For any singular elemerf of &,
o if Vi {(RegVi)) N\W3(B) # O then W(B) < Vi *((B));
o ifV;"}(RegVi)) "WH(B) # @ then WA(B) C Vi L(Vi(B)).
For each function \ we associate a family of regular value$A{ay,...,a| & _, < a} C RU
{0, +}. For & € A', we define a shift operatar = ¢' : a; — a'j_1 We use the notationz (z,...,7)
and define a cell§g] with z € A' by

2=V oz,2])

LetRe, = RU{—c0,+o0}. For each ze Z= Al x ... x Al, we define a cub&l, = [b, b, ] x ... x
[t_)aﬁa] c R!, with b, (b;) being the minimal (maximal) time over the trajectoriesrisig at Vfl(oz)
and leaving Y1(z) (If V,"*([0z,z]) is a positive invariant set, this time is set ta). We denote
the set of cubes ift' by Box. As a consequence, the combinatorial system is charaeteby a map
J:Z — Box defined by 2 [1,.

The following operator L will be instrumental: £ (Ly,...,L;) — R, where L= d o, 7 is the
projection on the ith component, aadb, b] = b— b.

We define, a combinatorial systernby Z and® as

Pt,z2) = maq{Z eAlx ... xA|,=00 <0u... < Op =y,
L(Op+...40m <(t,...,t),and 2t =0gZ fori =1,...,m}.

By [5], this abstraction is complete.
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