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1 Extended Abstract

Formal verification has been successfully developed in computer science for verifying combinatorial
classes of models and specifications [2]. In like manner, formal verification methods have been devel-
oped for dynamical systems [6]. However, the verification ofsystem properties, such as safety, is based
on reachability calculations, which are the sources of insurmountable complexity. This talk addresses in-
direct verification methods, which are based on abstractingthe dynamical systems by models of reduced
complexity and preserving central properties of the original systems.

Specifically, in this talk, I consider a dynamical systemC = (M,ξ ), whereM is the state space - a
closed manifold, andξ is a smooth vector field onM.

We denote a flow line ofξ by φx(t)≡ φξ
x (t), that is

d
dt

φx(t) = ξ (φx(t)) with φx(0) = x.

The manifoldM is compact; thus, the vector fieldξ generates a 1-parameter groupφt : M → M, t ∈ R,
of diffeomorphisms. The smooth flow mapφ : R×M → M is related toφt in the following way

φ(t,x) ≡ φt(x) ≡ φx(t).

We will examine examples of candidates for the combinatorial systemD that mirrors the behaviour
of C. For now, the combinatorial systemD is a pair(Z,Φ) consisting of a finite setZ, and a function
Φ : R×Z → 2Z, where 2Z denotes the power set ofZ. We think aboutZ as a discrete state space and
aboutΦ as a discrete flow map. Subsequently, we will discuss methodsof converting the dynamical
systemC to a combinatorial objectD .

Forz∈ Z, the cell[z] =A −1(z)⊂ M. If the cells are disjoint, the collectionK = {[z]| z∈ Z} is called
a partition of the state spaceM; whereas, if a pair[z]∩ [z′] 6= /0, the collection is called a cover.

An abstraction is an over-approximation if for any(t,x) ∈ R≥0×M

A ◦φ(t,x) ⊆ Φ(t,A (x));

A is an under-approximation if
Φ(t,A (x)) ⊆ A ◦φ(t,x).

If A is a both under- and an over-approximation, then it is calleda complete abstraction. For the ques-
tions related to safety, one might choose an over-approximation; whereas, for the questions correspond-
ing to reachability, one might work with an under-approximation. Conservativeness of the abstraction,
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6 Completeness of Lyapunov Abstraction

say over-approximation, is measured by the volume,

sup
t∈R≥0

max
z∈Z

vol(Φ(t,z)\A ◦φ(t, [z])).

Below, we sketch a number of examples discussed during the talk.

Example 1. Suppose{Uz|z∈ Z} is a finite family of subsets covering M. LetD be given by Z and
Φ(t,z) = A ◦φ(t, [z]). Pick an order on Z. We define the abstractionA by

A : x 7→ min{z∈ Z| x∈Uz}. (1)

As a consequence of the definition ofΦ, the abstractionA is an over-approximation. In this example,
the computation ofΦ might be tedious if not impossible. Therefore, an approximation is in place.

To this end, we define

pol{v1, ...vl}=

{

l

∑
i=1

αivi(x)

∣

∣

∣

∣

∣

αi ≥ 0 and
l

∑
i=1

α2
i = 1

}

.

Let L= {Li| i = 1, . . . , l} be a family of linear vector fields, and define multivalued mapF(x) = polL(x).
Suppose thatξ ∈ F(x), and define

Φ(t,z) = A ◦pol{φL1(t, [z]), . . . ,φLl (t, [z])}.

The over-approximation might be relatively conservative,but the computation is simplified as the flow
maps are linear in the second argument. The algorithm can be additionally simplified if the sets Uk are
polyhedral (in local patches).

Example 2. Suppose that there exists a Finsler-Lyapunov (smooth) function [3] V : TM → R (where
π : TM → M is the tangent bundle) such that

1. V(v)> 0 for all v ∈ TM\0M .

2. There is p∈ N such that V(λv) = λ pV(v) for all v ∈ TM andλ > 0.

3. There is p∈ N such that V(v+w)
1
p <V(v)

1
p +V(w)

1
p for all v,w∈ TM with π(v) = π(w).

The function V defines metricρ on M [7]

ρ(x1,x2) = inf
γ∈Γ(x1,x2)

∫

I
V(γ̇)

1
p ds,

where I= [0,1], γ̇ = γ∗(d/dt), Γ(x1,x2) is the set of curves I→ M with γ(0) = x1 andγ(1) = x2. Follow-
ing Theorem 1 in [Forni and Sepulchre], if dV: TM→ T∗(TM) satisfies the following inequality written
in local coordinates

DV(x,w)(ξ (x),Dξ (x)w) ≤−α(V(x,w)), for all (x,v) ∈ TM.

whereα is a non-decreasing continuous function. Thenρ(φ(t,x1),φ(t,x2)) ≤ α(ρ(x1,x2)). Hence, the
system incrementally stable [1].

Since the state space M is compact, it is possible to cover M bythe finite family{D(xz, rz)| z∈ Z} of
disks D(x, r) = {y∈ M| ρ(x,y) < r} [4]. We define the abstractionA as in (1), and the combinatorial
systemD by Z andΦ(t,z) = A φ(t,xz). The abstractionA is an over-approximation. We note that
computation ofΦ amounts to simulating the dynamical systemC for a finite number of initial conditions
xz.
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Example 3. Let ξ be a Morse-Smale vector field on M [Palis and de Melo]. Recall,a vector field
ξ ∈ X

r(M) will be called Morse-Smale provided it satisfies the following five conditions:

1. ξ has a finite number of singular points, sayβ1, ...,βk, each hyperbolic,

2. ξ has a finite number of closed orbits (periodic solutions), say βk+1, ...,βN, each hyperbolic;

3. For any x∈ M, α(x) = βi andω(x) = β j for some i and j;

4. Ω(ξ ) = {β1, ...,βN};

5. The stable and unstable manifolds associated with theβi have transversal intersection.

The setsβ1, ...,βN will be called the singular elements of the vector fieldξ . The set of the singular
elements ofξ will be denoted byC r(ξ ). The stable (unstable) manifold ofξ at a singular elementβ is
denoted by Ws(βi) (Wu(βi)).

We define a partial order relation on the singular elements ofa Morse-Smale vector field:βi ≻ β j

will mean that W(βi,β j)≡Wu(βi)∩Ws(β j) 6= /0.
Consequently, each W(βi ,β j) is a cell, with the property that if x∈W(βi,β j) thenφ(t,x) ∈W(βi ,β j)

for all t ∈ R. Since the number of singular elements is finite, we can defineD by

Z = {W(βi,β j)| βi ≻ β j} andΦ(t,z) = z.

Example 4. On the state space M, we define a family of functions{Vi : M → R| i = 1, . . . , l} that satisfy

1. dVi(ξ )(x)≤ 0.

2. LetReg(Vi) be the set of regular values of Vi . For any singular elementβ of ξ ,

• if V−1
i (Reg(Vi))∩Ws(β ) 6= /0 then Wu(β )⊂V−1

i (Vi(β ));
• if V−1

i (Reg(Vi))∩Wu(β ) 6= /0 then Ws(β )⊂V−1
i (Vi(β )).

For each function Vi , we associate a family of regular values Ai ≡ {ai
0, . . . ,a

i
k| ai

k−1 < ai
k} ⊂ R∪

{−∞,+∞}. For ai
j ∈Ai, we define a shift operatorσ ≡ σ i : ai

j 7→ ai
j−1 We use the notation z= (z1, . . . ,zl )

and define a cells[z] with zi ∈ Ai by

[z] =
⋂

V−1
i ([σzi ,zi ])

Let R∞ ≡ R∪{−∞,+∞}. For each z∈ Z ≡ A1× . . .×Al , we define a cube�z ≡ [bz1
bz1]× . . .×

[bzl
bzl ] ⊂ R

l
∞ with bzi

(bzi ) being the minimal (maximal) time over the trajectories staring at V−1
i (σzi)

and leaving V−1
i (zi) (If V−1

i ([σzi ,zi ]) is a positive invariant set, this time is set to+∞). We denote
the set of cubes inRl by Box. As a consequence, the combinatorial system is characterised by a map
� : Z → Box defined by z7→�z.

The following operator L will be instrumental: L= (L1, . . . ,Ll ) → R
l
∞, where Li = ∂ ◦πi , πi is the

projection on the ith component, and∂ [b,b] = b−b.
We define, a combinatorial systemD by Z andΦ as

Φ(t,z) = max{z′ ∈ A1× . . .×Al | �z ≡�z0 <�z1 . . . <�zm ≡�z′ ,

L(�z0 + . . .+�zm)≤ (t, . . . , t), and zi−1 = σzi for i = 1, . . . ,m}.

By [5], this abstraction is complete.
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