
Nikolaj Bjørner, Fabio Fioravanti, Andrey Rybalchenko,
Valerio Senni (Eds.): First Workshop on
Horn Clauses for Verification and Synthesis (HCVS 2014)
EPTCS 169, 2014, pp. 53–67, doi:10.4204/EPTCS.169.7

Convex polyhedral abstractions, specialisation and
property-based predicate splitting in Horn clause verification∗

Bishoksan Kafle
Roskilde University

Denmark

kafle@ruc.dk

John P. Gallagher
Roskilde University

Denmark

IMDEA Software Institute
Madrid, Spain

jpg@ruc.dk

We present an approach to constrained Horn clause (CHC) verification combining three techniques:
abstract interpretation over a domain of convex polyhedra,specialisation of the constraints in CHCs
using abstract interpretation of query-answer transformed clauses, and refinement by splitting pred-
icates. The purpose of the work is to investigate how analysis and transformation tools developed
for constraint logic programs (CLP) can be applied to the Horn clause verification problem. Ab-
stract interpretation over convex polyhedra is capable of deriving sophisticated invariants and when
used in conjunction with specialisation for propagating constraints it can frequently solve challeng-
ing verification problems. This is a contribution in itself,but refinement is needed when it fails, and
the question of how to refine convex polyhedral analyses has not been studied much. We present
a refinement technique based on interpolants derived from a counterexample trace; these are used
to drive a property-based specialisation that splits predicates, leading in turn to more precise con-
vex polyhedral analyses. The process of specialisation, analysis and splitting can be repeated, in a
manner similar to the CEGAR and iterative specialisation approaches.

1 Introduction

In this paper we explore the use of techniques used in constraint logic program (CLP) analysis and
specialisation, for the purpose of CHC verification. Pure CLP is syntactically and semantically the same
as CHC. Unlike CLP, CHCs are not always regarded as executable programs, but rather as specifications
or semantic representations of other formalisms. However these are only pragmatic distinctions and the
semantic equivalence of CHC and CLP means that techniques developed in one framework are applicable
to the other.

Relevant concepts from CLP include the approximation of theminimal model of a CLP program us-
ing abstract interpretation, specialisation of a CLP program with respect to a goal and model-preserving
transformation of CLP programs. Relevant concepts drawn from the CHC verification literature include
finding a model of a set of CHCs, property-based abstraction,counterexample generation, and refinement
of property-based abstraction using interpolants.

The results shown in the paper are preliminary and much research remains to be done in exploiting
the many connections and possibilities for cross-fertilisation between CLP and CHC. The contributions
of this paper are:

∗The research leading to these results has received funding from the European Union 7th Framework Programme under grant
agreement no. 318337, ENTRA - Whole-Systems Energy Transparency and the Danish Natural Science Research Council grant
NUSA: Numerical and Symbolic Abstractions for Software Model Checking.

http://dx.doi.org/10.4204/EPTCS.169.7

54 Horn clause verification through constraint specialisation and abstract interpretation

• to demonstrate that abstract interpretation over convex polyhedra is capable of deriving sophisti-
cated invariants, and when used in conjunction with specialisation for propagating constraints it
can frequently solve challenging verification problems;

• to investigate the problem of refinement of polyhedral abstractions, drawing ideas from

counterexample-guided refinement.

In Section 2 we define the basic notation and concepts needed for the verification procedure. Section
3 reviews the technique of abstract interpretation over convex polyhedra, applied to CLP/CHC, along
with the important enhancement of this technique using widening thresholds. In Section 4 a procedure
for specialisation of CHCs is described, based on query-answer transformations and abstract interpreta-
tion. A simple but surprisingly effective verification tool-chain combining specialisation with abstract
interpretation is introduced. Section 5 explains how to usea (spurious) counterexample from a failed
verification attempt to construct a property-based specialisation using interpolants. Experimental results
and related works are reported in Section 6 and Section 7 respectively. Finally in Section 8 we conclude
and discuss possible extensions and improvements.

2 Preliminaries

A CHC is a first order predicate logic formula of the form∀(φ ∧B1(X1)∧ . . .∧Bk(Xk)→H(X)) (k≥ 0),
whereφ is a conjunction of constraints with respect to some background theory,Xi,X are (possibly
empty) vectors of distinct variables,B1, . . . ,Bk,H are predicate symbols,H(X) is the head of the clause
andφ ∧B1(X1)∧ . . .∧Bk(Xk) is the body. Sometimes the clause is writtenH(X)← φ ∧B1(X1), . . . ,Bk(Xk)
and in concrete examples it is written in the formH :- φ, B1(X1),. . .,Bk(Xk). In examples, predicate
symbols start with lowercase letters while we use uppercaseletters for variables.

In this paper we take the constraint theory to be linear arithmetic with the relation symbols≤,≥,
<,> and=. There is a distinguished predicate symbolfalse which is interpreted as false. In practice the
predicatefalse only occurs in the head of clauses; we call clauses whose headis false integrity constraints,
following the terminology of deductive databases. Thus theformula φ1← φ2∧B1(X1), . . . ,Bk(Xk) is
equivalent to the formulafalse← ¬φ1∧ φ2∧B1(X1), . . . ,Bk(Xk). The latter might not be a CHC (e.g.
if φ1 contains=) but can be converted to an equivalent set of CHCs by transforming the formula¬φ1

and distributing any disjunctions that arise over the rest of the body. For example, the formulaX=Y
:- p(X,Y) is equivalent to the set of CHCsfalse :- X>Y, p(X,Y) andfalse :- X<Y, p(X,Y).
Integrity constraints can be seen as safety properties. Forexample if a set of CHCs encodes the behaviour
of a transition system, the bodies of integrity constraintsrepresent unsafe states. Thus proving safety
consists of showing that the bodies of integrity constraints are false in all models of the CHC clauses.
Figure 1 shows an example set of CHCs (taken from [6]), modeled over reals containing an integrity
constraint, and in this example the problem is to prove that the body of the first clause is unsatisfiable.

2.1 The CHC verification problem.

To state this more formally, given a set of CHCsP, the CHC verification problem is to check whether
there exists a model ofP. Obviously any model ofP assigns false to the bodies of integrity constraints.
We restate this property in terms of the derivability of the predicatefalse. Let P |= F mean thatF is a
logical consequence ofP, that is, that every interpretation satisfyingP also satisfiesF.

Lemma 1. P has a model if and only if P6|= false.

Bishoksan Kafle and John P. Gallagher 55

c1. false:- N>0,I=0,A=0,B=0, l(I,A,B,N).

c2. l(I,A,B,N):-I < N, l_body(A,B,A1,B1), I1 = I+1, l(I1,A1,B1,N).

c3. l(I,A,B,N):- I >=N, A + B > 3 * N.

c4. l(I,A,B,N):- I >=N, A + B < 3 * N.

c5. l_body(A0,B0,A1,B1):- A1 = A0+1, B1 = B0+2.

c6. l_body(A0,B0,A1,B1):- A1 = A0+2, B1 = B0+1.

Figure 1: Example programt4.pl [6]

Proof. Writing I(F) to mean that interpretationI satisfiesF, we have:

P 6|= false ≡ there exists some interpretationI such thatI(P) and¬I(false)
by definition of the|= relation

≡ there exists some interpretationI such thatI(P)
(since¬I(false) is true by defn. of false)

≡ P has a model.

This lemma holds for arbitrary interpretations (only assuming that the predicatefalse is interpreted as
false), uses only the textbook definitions of “interpretation” and “model” and does not depend on the
constraint theory.

The verification problem can be formulated deductively rather than model-theoretically. We can
exploit proof procedures for constraint logic programming[24] to reason about the satisfiability of a set
of CHCs. Let the relationP ⊢ A denote thatA is derivable fromP using some proof procedure. If the
proof procedure is sound thenP⊢ A impliesP |= A, which means thatP⊢ false is a sufficient condition
for P to have no model, by Lemma 1. This corresponds to using a soundproof procedure to find or
check a counterexample. On the other hand to show thatP does have a model, soundness is not enough
since we need to establishP 6|= false. As we will see in Section 2.3 we approach this problem by using
approximationsto reason about the non-provability offalse, applying the theory of abstract interpretation
[11] to a complete proof procedure for atomic formulas (the “fixed-point semantics” for constraint logic
programs [24, Section 4]). In effect, we construct by abstract interpretation a proof procedure that is
complete(but possibly not sound) for proofs of atomic formulas. Withsuch a procedure,P 6⊢ false

impliesP 6|= false and thus establishes thatP has a model.

2.2 Representation of Interpretations

An interpretation of a set of CHCs is represented as a set ofconstrained factsof the formA← C where
A is an atomic formulap(Z1, . . . ,Zn) whereZ1, . . . ,Zn are distinct variables andC is a constraint over
Z1, . . . ,Zn. If C is true we writeA← or justA. The constrained factA← C is shorthand for the set of
variable-free factsAθ such thatC θ holds in the constraint theory, and an interpretationM denotes the set
of all facts denoted by its elements;M assigns true to exactly those facts.M1⊆M2 if the set of denoted
facts ofM1 is contained in the set of denoted facts ofM2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each clause. There exists
a minimal model with respect to the subset ordering, denotedM[[P]] whereP is the set of CHCs.M[[P]]

56 Horn clause verification through constraint specialisation and abstract interpretation

can be computed as the least fixed point (lfp) of an immediate consequences operator (calledSD
P in [24,

Section 4]), which is an extension of the standardTP operator from logic programming, extended to han-
dle the constraint domainD. Furthermorelfp(SD

P) can be computed as the limit of the ascending sequence
of interpretations /0,SD

P(/0),SD
P(S

D
P(/0)), This sequence provides a basis for abstract interpretation of

CHC clauses.

2.3 Proof Techniques

Proof by over-approximation of the minimal model. It is a standard theorem of CLP that the minimal
modelM[[P]] is equivalent to the set of atomic consequences ofP. That is,P |= p(v1, . . . ,vn) if and only
if p(v1, . . . ,vn) ∈ M[[P]]. Therefore, the CHC verification problem forP is equivalent to checking that
false 6∈M[[P]]. It is sufficient to find a set of constrained factsM′ such thatM[[P]]⊆M′, wherefalse 6∈M′.
This technique is called proof byover-approximation of the minimal model.

Proof by specialisation. A specialisation of a set of CHCsP with respect to an atomA is the transfor-
mation ofP to another set of CHCsP′ such thatP |= A if and only if P′ |= A. Specialisation is usually
viewed as a program optimisation method, specialising somegeneral-purpose program to a subset of its
possible inputs, thereby removing redundancy and pre-computing statically determined computations.
In our context we use specialisation to focus the verification problem on the formula to be proved. More
specifically, we specialise a set of CHCs with respect to a “query” to the atomfalse; thus the specialised
CHCs entailfalse if and only if the original clauses entailedfalse.

3 Abstract Interpretation over Convex Polyhedra

Convex polyhedron analysis (CPA) [12] is a program analysistechnique based on abstract interpretation
[11]. When applied to a set of CHCsP it constructs an over-approximationM′ of the minimal model of
P, whereM′ contains at most one constrained factp(X)← C for each predicatep. The constraintC is
a conjunction of linear inequalities, representing a convex polyhedron. The first application of convex
polyhedron analysis to CLP was by Benoy and King [4]. Since the domain of convex polyhedra con-
tains infinite increasing chains, the use of awideningoperator for convex polyhedra [11, 12] is needed
to ensure convergence of the abstract interpretation. Furthermore much research has been done on im-
proving the precision of widening operators. One techniques is known as widening-upto, or widening
with thresholds [23]. A threshold is an assertion that is combined with a widening operator to improve
its precision.

Recently, a technique for deriving more effective thresholds was developed [27], which we have
adapted and found to be effective in experimental studies. The thresholds are computed by the following
method. LetSD

P be the standard immediate consequence operator for CHCs mentioned in Section 2.2.
That is, if I is a set of constrained facts,SD

P(I) is the set of constrained facts that can be derived in one
step fromI . Given a constrained factp(Z̄)← C , defineatomconstraints(p(Z̄)← C) to be the set of
constrained facts{p(Z̄)←Ci | C =C1∧ . . .∧Ck,1≤ i ≤ k)}. The functionatomconstraints is extended
to interpretations byatomconstraints(I) =

⋃
p(Z̄)←C∈I{atomconstraints(p(Z̄)← C)}.

Let I⊤ be the interpretation consisting of the set of constrained factsp(Z̄)← true for each predicate
p. We perform three iterations ofSD

P starting withI⊤ (the first three elements of a “top-down” Kleene
sequence) and then extract the atomic constraints. That is,thresholds is defined as follows.

thresholds(P) = atomconstraints(SD(3)
P (I⊤))

Bishoksan Kafle and John P. Gallagher 57

A difference from the method in [27] is that we use the concrete semantic functionSD
P rather than the

abstract semantic function when computing thresholds. Theset of threshold constraints represents an
attempt to find useful predicate properties and when widening they help to preserve invariants that might
otherwise be lost during widening. See [27] for further details. Threshold constraints that are not invari-
ants are simply discarded during widening.

4 Specialisation by constraint propagation

We next present a procedure for specialising CHC clauses. Incontrast to classical specialisation tech-
niques based on partial evaluation with respect to a goal, the specialisation does not unfold the clauses at
all; rather, we compute a specialised version of each clausein the program, in which the constraints from
the goal are propagated top-down and answers are propagatedbottom-up. The implementation is based
on query-answer transformations and abstract interpretation over convex polyhedra.

Let P be a set of CHCs and letA be an atomic formula. For each clauseH ←B in P we compute a
new clauseH ←C,B whereC is a constraint, yielding a programPA specialisedfor A. If the addition
of C makes the clause body unsatisfiable, it is the same as removing the clause fromPA. Clearly PA

may have fewer consequences thanP but our procedure guarantees that it preserves the inferability of
(constrained instances of)A. That is, for every constraintC over the variables ofA, P |= ∀(C→ A) if and
only if PA |= ∀(C→ A).

The procedure is as follows: the inputs are a set of CHCsP and an atomic formulaA.

1. Compute aquery-answer transformationof P with respect toA, denotedPqa
A , containing predicates

pq andpa for each predicatep in P.

2. Compute an over-approximation of the model ofPqa
A , expressed as a set of constrained facts

p∗(X)← C, where∗ is q or a. We assume that each predicatep∗ has exactly one constrained
fact in the model (whereC is possiblyfalseor a disjunction).

3. For each clausep(X)←B in P, let the model ofpa be pa(X)←Ca (whereX is the same tuple of
variables inp(X) andpa(X)).

4. Replace the clausep(X)←B in P by p(X)←Ca,B in PA.

Note that if for some predicatep, Ca is false, then all the clauses forp are removed inPA as their bodies
are unsatisfiable. We now explain each step in turn.

4.1 The query-answer transformation

The query-answer transformation was inspired by – but is a generalisation of – the magic-set transforma-
tion from deductive databases [3]. Its purpose, both in deductive databases and in subsequent applications
in logic program analysis [15] was to simulate goal-directed (top-down) computation or deduction in a
goal-independent (bottom-up) framework. Let us define the transformation.

Given a set of CHCsP and an atomA, the query-answer program forP wrt. A, denotedPqa
A , con-

sists of the following clauses. For an atomA = p(t), Aa andAq represent the atomspa(t) and pq(t)
respectively.

• (Answer clauses). For each clauseH ←C,B1, . . . ,Bn (n≥ 0) in P, Pqa
A contains the clauseHa←

C,Hq,Ba
1, . . . ,B

a
n.

58 Horn clause verification through constraint specialisation and abstract interpretation

• (Query clauses). For each clauseH←C,B1, . . . ,Bi , . . . ,Bn (n≥ 0) in P, Pqa
A contains the following

clauses:
Bq

1←C,Hq.

· · ·
Bq

i ←C,Hq,Ba
1, . . . ,B

a
i−1.

· · ·
Bq

n←C,Hq,Ba
1, . . . ,B

a
n−1.

• (Goal clause).Aq← true.

The programPqa
A encodes a left-to-right, depth-first computation of the query ← A for CHC clauses

P (that is, the standard CLP computation rule, SLD extended with constraints). This is a complete
proof procedure, assuming that all clauses matching a givencall are explored in parallel. (Note: the
incompleteness of standard Prolog CLP proof procedures arises due to the fact that clauses are tried in a
fixed order).

The relationship of the model of the programPqa
A to the computation of the goal←A in P is expressed

by the following property1. An SLD-derivation in CLP is a sequenceG0,G1, . . . ,Gk where eachGi is a
goal←C,B1, . . . ,Bm, whereC is a constraint andB1, . . . ,Bm are atoms. In a left-to-right computation,
Gi+1 is obtained by resolvingB1 with a program clause.

Property 1 (Correctness of query-answer transformation). Let P be a set of CHCs and A be an atom.
Let PqaA be the query-answer program for P wrt. A. Then

(i) if there is an SLD-derivation G0, . . . ,Gi where G0 =← A and Gi =←C,B1, . . . ,Bm, then PqaA |=
∀(C|vars(B1)→ Bq

1);

(ii) if there is an SLD-derivation G0, . . . ,Gi where G0 =←A, containing a sub-derivation Gj1, . . . ,G jk,
where Gji ←C′,B1,B′ and Gjk =←C,B′, then PqaA |= ∀(C|vars(B1)→Ba

1). (This means that the atom
B1 in G ji was successfully answered, with answer constraint C|vars(B1)).

(iii) As a special case of (ii), if there is a successful derivation of the goal← A with answer constraint
C then PqaA |= ∀(C→ Aa).

4.2 Over-approximation of the model of the query-answer program Pqa
false

The query-answer transformation ofP with respect tofalse is computed. It follows from Property 1(iii)
that if false is derivable fromP then Pqa

false
|= falsea. Convex polyhedral analysis ofPqa

false
yields an

overapproximation ofM[[Pqa
false

]], sayM′, containing constrained facts for the query and answer predicates.
These represent the calls and answers generated during all derivations starting from the goalfalse.

4.3 Strengthening the constraints inP

We use the information inM′ to specialise the original clauses inP. SupposeM′ contains constrained
facts pq(X)←Cq and pa(X)←Ca. If there is no constrained factp∗(X)←C∗ for somep∗ then we
considerM′ to containp∗(X)← false. The clauses inP with head predicatep can bestrengthenedusing
the constraintsCq andCa. Namely, for every clausep(X)← B in P (assuming that the constrained
facts are renamed to have the same variablesX) the conjunctionCq∧Ca are added to the bodyB. The
addition ofCq corresponds to propagating constraints “top-down” (via the calls) while the addition of

1 Note that the model ofPqa
A might not correspond exactly to the calls and answers in the SLD-computation, since the CLP

computation treats constraints as syntactic entities through decision procedures and the actual constraints could differ.

Bishoksan Kafle and John P. Gallagher 59

c1. false:- N>0,I=0,A=0,B=0, l(I,A,B,N).

c2. l(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+1*D>0,-1*A+1*B>=0,3*A+ -1*B+ -1*C=0,

1*A+ -1*E= -1,l_body(B,C,F,G),l(E,F,G,D).

c3. l(A,B,C,D):- 3*A+ -3*D>0,1*D>0,2*A+ -1*B>=0,-3*A+3*D> -3,

-1*A+1*B>=0,3*A+ -1*B+ -1*C=0.

c4. l(A,B,C,D):- false.

c5. l_body(A,B,C,D) :- -1*A+2*B>=0, 2*A+ -1*B>=0,

1*A+ -1*C= -1,1*B+ -1*D= -2.

c6. l_body(A,B,C,D) :- -1*A+2*B>=0,2*A+ -1*B>=0,1*A+ -1*C= -2,1*B+ -1*D= -1.

Figure 2: Example programt4.pl [6] with strengthened constraints

Ca represented propagation “bottom-up” (via the answers). Furthermore, note thatCa →Cq since the
answers forp are always stronger than the calls top. Thus it suffices to add the constraintCa to B.

Specialisation by strengthening the constraints preserves the answers of the goal with respect to
which the query-answer transformation was performed. In particular, in our application we have the
following property.

Property 2. If P is a set of CHCs and Pfalse is the set obtained by strengthening the clause constraints
as just described, then P|= false if and only if Pfalse |= false.

The result of strengthening the constraints in Figure 1, using the query-answer program with respect
to the goalfalse, is shown in Figure 2. Note that the constraint in clausec4 is strengthened tofalse.

4.4 Analysis of the model of the specialised clauses

It may be that the clausesPfalse do not contain a clause with headfalse. In this case safety is proven,
since clearlyPfalse 6|= false. If this check fails, the convex polyhedral analysis is now run on the clauses
Pfalse. As the experiments later show, safety is often provable by checking the resulting model; if no
constrained fact forfalse is present, thenPfalse 6|= false. If safety is not proven, there are two possibilities:
the approximate model is not precise enough, butPhas a model, or there is a proof offalse. To distinguish
these we proceed to try to refine the clauses by splitting predicates.

5 Safety Check and Program Refinement

This section outlines a procedure for safety check, counterexample analysis and refinement. Refinement
is considered when a proof of safety or an existence of a real counterexample (that is, a proof offalse
cannot be established.

Safety check and counterexample analysisThe absence of a constrained fact for predicatefalse in
the over-approximation proves that the given set of CHCs is safe. If safety can not be shown, our
implementation of the convex polyhedron analysis producesa derivation tree forfalse as a trace term
which we define formally below. For our program in Figure 1, the set of constrained facts representing
the approximate model is shown below.

f1. l_body(A,B,C,D) :- 1*B+ -1*D>= -2,-1*B+1*D>=1,-1*A+2*B>=0, 2*A+ -1*B>=0,

1*A+1*B+ -1*C+ -1*D= -3.

60 Horn clause verification through constraint specialisation and abstract interpretation

f2. false :- true.

f3. l(A,B,C,D) :- 1*D>0,2*A+ -1*B>=0,-1*A+1*B>=0,-3*A+3*D> -3,

3*A+ -1*B+ -1*C=0.

Since there is a constrained fact forfalse, the shortest derivation for it is found, using clausec1 followed
by clausec3. This will be represented as atrace termc1(c3), which is formally defined below. The
idea of trace terms to capture the shape of derivations was introduced by Gallagher and Lafave [18].

AND-trees and trace terms. Each CHC is associated with an identifier, as shown in Figure 1. These
identifiers are treated as constructors whose arity is the number of non-constraint atoms in the clause
body. The following definitions of derivations and trace terms is adapted from [18].

An AND-treeis a tree each of whose nodes is labelled by an atom and a clause, such that

1. each non-leaf node is labelled by a clauseA← C,A1, . . . ,Ak and an atomA, and has children
labelled byA1, . . . ,Ak,

2. each leaf node is labelled by a clauseA←C and an atomA.

We assume that the variables in node labels are renamed appropriately, details are not given here. Any
finite derivation corresponds to an AND-tree, and each AND-treeT can be associated with a trace term
tr(T) defined as:

1. c j , if T is a single leaf node labelled by the clause of formA←C with identifierc j ; or

2. ci(tr(T1), . . . ,tr(Tn)), if T is labelled by the clause with identifier byci , and has subtreesT1, . . . ,Tn.

A trace-term uniquely defines an AND-tree (up to renaming of variables). The set of constraints of an
AND-tree, represented asconstr(T) is

1. C, if T is a single leaf node labelled by the clause of formA←C; or

2. C∪
⋃

i=1..n(constr(Ti)) if T is labelled by the clauseA←C,A1, . . . ,Ak and has subtreesT1, . . . ,Tn.

We say that an AND-treeT is satisfiable ifSAT(constr(T)). LetT be an AND-tree whose root is labelled
by atomA. Defineproj(T) to beconstr(T)|vars(A).

Interpolants. Given two sets of constraintsC1,C2 such thatC1∪C2 is unsatisfiable, a (Craig) inter-
polant is a constraintI with (1) C1 ⊆ I , (2) I ∪C2 is unsatisfiable and (3)I contains only variables
common toC1 andC2. We implemented the algorithm from [31] for interpolants for linear constraints.

Given an AND-treeT where¬SAT(constr(T)), we can construct an interpolant for each non-root
node ofT, also known as tree interpolants. LetT ′ be a sub-tree ofT, whose root is labelled withA′. Then
the interpolantI associated withA′ is defined as above whereC1 = constr(T ′) andC2 = constr(T)\C1,
and the interpolants of subtree ofT ′ together with the constraints at the root ofT ′ impliesI . Note that by
construction of the AND-tree, the only variables in common betweenC1 andC2 (and hence inI) are the
variables inA′, the label ofT ′. More details on tree interpolation can be found in [8].

The setinterpolant(T) is the set of constrained factsA← I , for all non-root nodes ofT labelled by
atomA with interpolantI as defined above.

Counterexample checking. Given a trace term, letT be the corresponding AND-tree. We report that
the CHCs have no model ifSAT(constr(T)), and our procedure terminates. For our example it can be
verified thatSAT(constr(c1(c3))) does not hold, so the tracec1(c3) is a false alarm. We now use the
interpolants to split predicates and try to get a more precise approximation of the model.

Bishoksan Kafle and John P. Gallagher 61

From the trace termc1(c3) in the running example we deriveinterpolant(c1(c3)) = {I} where
I = l(A,B,C,D)← A+−3∗B+C+D=< 0.

We then split the constrained facts in the approximation of the model, using the corresponding inter-
polants and their negations. In the example we split constrained factf3 by strengthening its constraint
with I and¬I respectively. Fioravantiet al. use a related technique for splitting clauses [16]. Strength-
ening first withI we get
l(A,B,C,D):- D>0,2*A+ -1*B>=0,-1*A+1*B>=0,-3*A+3*D> -3,

3*A+ -1*B+ -1*C=0,A+ -3*B+C+D=<0

which after simplification becomes
l(A,B,C,D) :- -4*A+4*B+ -1*D>=0,1*D>0,-3*A+3*D> -3,2*A+ -1*B>=0,

3*A+ -1*B+ -1*C=0.

We follow the same step with¬I and obtain the following set of constrained facts.
l(A,B,C,D) :- -4*A+4*B+ -1*D>=0,1*D>0,-3*A+3*D> -3,2*A+ -1*B>=0,

3*A+ -1*B+ -1*C=0.

l(A,B,C,D) :- 4*A+ -4*B+1*D>0,-1*A+1*B>=0,-3*A+3*D> -3,2*A+ -1*B>=0,

3*A+ -1*B+ -1*C=0.

These together withf1 and f2 give us a new set of constrained facts, which forms the input to the
refinement phase of our procedure.

Refinement by Predicate Splitting. Refinement consists of obtaining a specialised set of CHCs from
a given set of constrained facts and input set of CHCs. We do this by using polyvariant specialisation
(PS) based on the method of multiple specialisation [32] with a property-based abstract domain based
on the given set of constrained facts. PS is a program specialisation which introduces several new pred-
icates corresponding to specialised versions of the same predicate. Polyvariant specialisation brings the
expressive power of disjunctive predicates into the analysis [17]. Space does not permit a more detailed
description. For our running example we obtain a split of thepredicatel into l 1 andl 3 , and the
specialised program is as follows.

false :- 1*A>0,1*B=0,1*C=0,1*D=0,l_3(B,C,D,A).

l_3(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+1*B>=0,-1*A+1*D>0,4*A+ -4*B+1*D>0,

3*A+ -1*B+ -1*C=0, A+ -1*E= -1,l_body_2(B,C,F,G),l_1(E,F,G,D).

l_3(A,B,C,D) :- 4*A+ -4*B+1*D>0,3*A+ -3*D>0,-1*A+1*B>=0,-3*A+3*D> -3,

3*A+ -1*B+ -1*C=0.

l_1(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+1*B>=0,-1*A+1*D>0,3*A+ -1*B+ -1*C=0,

1*A+ -1*E= -1,l_body_2(B,C,F,G),l_1(E,F,G,D).

l_1(A,B,C,D) :- 3*A+ -3*D>0,2*A+ -1*B>=0,1*D>0,-1*A+1*B>=0,-3*A+3*D> -3,

3*A+ -1*B+ -1*C=0.

l_body_2(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+2*B>=0,1*A+ -1*C= -1,1*B+ -1*D= -2.

l_body_2(A,B,C,D) :- 2*A+ -1*B>=0,-1*A+2*B>=0,1*A+ -1*C= -2,1*B+ -1*D= -1.

The next iteration continues with this specialised program. The intention of splitting and PS is to
guarantee progress of refinement, that is, a counterexampleonce eliminated never occurs again. Our
procedure does not guarantee progress, that is, the same spurious counterexamples might appear in sub-
sequent iterations, but in practice we find the polyvariant specialisation usually eliminates the given
counterexample. The large number of constants in the above examples are derived during invariants
computation. In the next iteration, our example terminateswith a real counter example, thus proving our
example program unsafe (over the real numbers).

62 Horn clause verification through constraint specialisation and abstract interpretation

Toolchain. Our verification procedure is summarised in Figure 3, which is divided into three parts,
an abstractor (inside green dotted box), followed by asafety checkandcounterexample analyserand
refiner (inside red box). It should be noted that the tools inside thegreen and red boxes produce new set
of CHCs by specialisation.

CPS – Constraint Propagation Specialiser
CPA –Convex Polyhedra Analyser SA – Safety Analyser

PS – Polyvariant Specialiser

CHC P
Specialiser -Abstractor - Analyser Refiner-Specialiser

CPS CPA
CHC P’

safecEx

trace

constrs

constrs

CHC P”

CHC P’

SA PS

Figure 3:CHC verification toolchain.

The effects of CPA and PS in our procedure complement each other and the CPA model gets more
accurate during refinement which allows generation of better specialised programs. In essence, it marries
the effectiveness of CPA with PS.

6 Experiments

Table 1 presents the results of applying our toolchain depicted in Figure 3 to a number of benchmark
programs taken from the repository of Horn clause benchmarks in SMT-LIB22 and other sources includ-
ing [19, 26, 22, 5, 14]. The experiments were carried out using a computer, Intel(R) X5355 having 4
processors (each @ 2.66GHz) and total memory of 6 GB. Debian 5(64 bit) is the Operating System
running in it and we set 2 minutes of timeout for each experiment. Our tool-chain is implemented in
32-bit Ciao Prolog [9]3 and the Parma Polyhedra Library [1]4 for this purpose.

In Table 1, columns Program, “n” , Result and time (sec) respectively represent the benchmark pro-
gram, the number of refinement iterations necessary to verify a given property, the results of verification
and the time (in seconds) to verify them. Value 0 in column “n”means that no refinement is necessary,
whereas value greater than 0 indicates the actual number of iterations necessary and value “-” means that
these programs are beyond the reach of our current tool within the given time limit. Problems marked
with (*) were not handled by our tool-chain since their solution generates numbers which do not fit in 32
bits, the limit of our Ciao Prolog implementation. Problemssuch as systemc-token-ring.01-safeil.c con-
tain complicated loop structure with large strongly connected components in the predicate dependency
graph and our convex polyhedron analysis tool is unable to derive the required invariant.

2https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/
3http://ciao-lang.org/
4http://bugseng.com/products/ppl/

Bishoksan Kafle and John P. Gallagher 63

Program n Result time Program n Result time
(secs) (secs)

MAP-disj.c.map.pl 0 safe 1.0 jaffex1c.pl 0 safe 0.01
MAP-forward.c.map.pl 0 safe 1.0 jaffex1a.pl 0 safe 0.01
t1.pl 0 safe 0.01 qrdcmp.smt2 0 safe 118.0
t1-a.pl 0 safe 0.01 choldc.smt2 0 safe 19.0
t2.pl 0 safe 0.01 lop.smt2 0 safe 39.0
t3.pl 0 safe 1.0 pzextr.smt2 0 safe 40.0
t4.pl 1 unsafe 1.0 qrsolv.smt2 0 safe 18.0
t5.pl 0 safe 0.01 tridag.smt2 0 safe 13.0
MAP-disj.c-scaled.pl 0 safe 1.0 systemc-pc-sfifo1 0 unsafe 12.0
INVGEN-id-build 0 safe 1.0 loops-terminator 0 unsafe 0.01
INVGEN-nested5 0 safe 1.0 loops-for-bounded 3 unsafe 5.0
INVGEN-nested6 0 safe 117.0 TRACER-testabs15 0 safe 1.0
INVGEN-nested8 0 safe 1.0 INVGEN-apache-esc-abs 0 safe 2.0
INVGEN-svdsomeloop 0 safe 3.0 DAGGER-barbr.map.c 0 safe 119.0
INVGEN-svd1 2 safe 13.0 systemc-token-ring.01-safeil.c- ? -
INVGEN-svd4 0 safe 5.0 sshs3-srvr1a-safeil.c(*) - ? -
loops-count-up-down 0 unsafe 1.0 sshs3-srvr1b-safeil.c - ? -
loops-sum04 8 unsafe 2.0 amebsa.smt2 - ? -
dfpp12.pl 0 safe 0.01 bandec.smt2(*) - ? -
TRACER-testloop27 1 unsafe 1.0 TRACER-testloop28 - ? -
TRACER-testloop8 0 unsafe 0.01 crank.smt2 - ? -
jaffex1b.pl 0 safe 0.01 pldi12.pl - ? -
jaffex1d.pl 0 safe 0.01 loops-sum01 - ? -

Table 1: Experimental results on CHC benchmark problems

The results of our procedure in a larger set of benchmarks obtained from previous sources are sum-
marised in Table 2. Though our tool-chain is not optimized atall, the overall result shows that it compares
favourably with other advanced verification tools like HSF [20], VeriMAP [14], TRACER [25] etc. in
both time and the number of problems solved, and thus showingthe effectiveness of our approach.

without refinemet with refinement
solved (safe/unsafe) 160 (142/18) 181 (158/23)
unknown/ timeout 49/7 -/35

total time 1293 3410
average time (secs) 5.98 18.73

Table 2: Experimental results on 216 CHC verification problems, where “-” means not relevant.

64 Horn clause verification through constraint specialisation and abstract interpretation

7 Related Work

Verification of CLP programs using abstract interpretationand specialisation has been studied for some
time. The use of an over-approximation of the semantics of a program can be used to establish safety
properties – if a state or property does not appear in an over-approximation, it certainly does not appear
in the actual program behaviour. A general framework for logic program verification through abstraction
was described by Levi [29].

The use of program transformation to verify properties of logic programs was pioneered by Pettorossi
and Proietti [30] and Leuschel [28]. Transformations that preserve the minimal model (or other suitable
models) of logic programs are applied systematically to make properties explicit. For example, if a
program can be transformed to one containing a clauseA← true thenA is a consequence of the program.

Recent work by De Angeliset al. [13, 14] applies a specialisation approach to the Horn clause
verification problem as discussed here, namely, with integrity constraints expressing the properties to
be proved. Both our approach and theirs repeatedly apply specialisations preserving the property to be
proved. However the difference is that their specialisation techniques are based on unfold-fold transfor-
mations, with a sophisticated control procedure controlling unfolding and generalisation. Our specialisa-
tions are restricted to strengthening of constraints or polyvariant splitting based on local conditions. Their
test for success or failure is a simple syntactic check, whereas ours is based on an abstract interpretation
to derive an over-approximation.

Counterexample guided abstraction refinement (CEGAR) [10]has been successfully used in veri-
fication to automatically refine (predicate) abstractions to reduce false alarms but not much has been
explored in refining abstractions in the convex polyhedral domain. See [7, 21] for more details about the
use of interpolation in refinement. A number of tools implementing predicate abstraction and refinement
are available, such as HSF [20] and BLAST [2]. TRACER [19] is averification tool based on CLP that
uses symbolic execution.

Informally one can say that approaches differ in where the “hard work” is performed. In the work
of De Angeliset al. the specialisation procedure is the core, whereas in the CEGAR approaches the
refinement step is crucial, and interpolation plays a central role. In our approach, by contrast, most of
the hard work is done by the abstract interpretation, which finds useful invariants as well as propagating
constraints globally. The main problem is to find effective ways of refining polyhedral abstractions.
Finding the most effective balance between specialisation, abstraction and refinement techniques is a
matter of ongoing research.

8 Conclusion and Future works

We described an iterative procedure for Horn clause verification which interleaves abstract interpretation
with specialisation. A specialised set of CHCs is produced first by strengthening the constraints in the
given clauses using the results of the abstract interpretation. Then the procedure terminates if an abstract
interpretation of the resulting program is sufficient to verify the required properties, otherwise, a poly-
variant specialisation guided by an abstract counterexample is performed using the inferred constraints
as well as interpolated constraints.

In the future, we would like to find a way of ensuring progress of refinement, maybe using the
powerset polyhedra domain, and also interface our toolchain with SMT solvers for satisfiability checking
and interpolant generation.

Bishoksan Kafle and John P. Gallagher 65

References

[1] R. Bagnara, P. M. Hill & E. Zaffanella (2008):The Parma Polyhedra Library: Toward a Complete Set of
Numerical Abstractions for the Analysis and Verification ofHardware and Software Systems. Science of
Computer Programming72(1–2), pp. 3–21. Available athttp://dx.doi.org/10.1016/j.scico.2007.
08.001.

[2] T. Ball, V. Levin & S. K. Rajamani (2011):A decade of software model checking with SLAM. Commun.
ACM 54(7), pp. 68–76. Available athttp://doi.acm.org/10.1145/1965724.1965743.

[3] F. Bancilhon, D. Maier, Y. Sagiv & J. Ullman (1986):Magic Sets and other strange ways to implement
logic programs. In: Proceedings of the 5th ACM SIGMOD-SIGACT Symposium on Principles of Database
Systems. Available athttp://dx.doi.org/10.1145/6012.15399.

[4] F. Benoy & A. King (1996): Inferring Argument Size Relationships with CLP(R). In J. P. Gallagher, edi-
tor: Logic-Based Program Synthesis and Transformation (LOPSTR’96), Springer-Verlag Lecture Notes in
Computer Science1207, pp. 204–223. Available athttp://dx.doi.org/10.1007/3-540-62718-9_12.

[5] D. Beyer (2013):Second Competition on Software Verification - (Summary of SV-COMP 2013). In N. Piter-
man & S. A. Smolka, editors:TACAS, Lecture Notes in Computer Science7795, Springer, pp. 594–609.
Available athttp://dx.doi.org/10.1007/978-3-642-36742-7_43.

[6] D. Beyer, T. A. Henzinger, R. Majumdar & A. Rybalchenko (2007): Path invariants. In J. Ferrante & K. S.
McKinley, editors: PLDI, ACM, pp. 300–309. Available athttp://doi.acm.org/10.1145/1250734.
1250769.

[7] N. Bjørner, K. L. McMillan & A. Rybalchenko (2013):On Solving Universally Quantified Horn Clauses. In
F. Logozzo & M. Fähndrich, editors:SAS, Lecture Notes in Computer Science7935, Springer, pp. 105–125.
Available athttp://dx.doi.org/10.1007/978-3-642-38856-9_8.

[8] R. Blanc, A. Gupta, L. Kovács & B. Kragl (2013):Tree Interpolation in Vampire. In K. L. McMillan,
A. Middeldorp & A. Voronkov, editors:LPAR, Lecture Notes in Computer Science8312, Springer, pp.
173–181. Available athttp://dx.doi.org/10.1007/978-3-642-45221-5_13.

[9] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garcı́a & G. Puebla (1997):The Ciao Prolog
system. Reference manual. Technical Report CLIP3/97.1, School of Computer Science,Technical University
of Madrid (UPM). Available from http://www.clip.dia.fi.upm.es/.

[10] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu & H. Veith (2003):Counterexample-guided abstraction refinement
for symbolic model checking. J. ACM 50(5), pp. 752–794. Available athttp://doi.acm.org/10.1145/
876638.876643.

[11] P. Cousot & R. Cousot (1977):Abstract Interpretation: A Unified Lattice Model for StaticAnalysis of Pro-
grams by Construction or Approximation of Fixpoints. In R. M. Graham, M. A. Harrison & R. Sethi, editors:
Conference Record of the Fourth ACM Symposium on Principlesof Programming Languages, Los Angeles,
California, USA, January 1977, ACM, pp. 238–252. Available athttp://dl.acm.org/citation.cfm?
id=512950.

[12] P. Cousot & N. Halbwachs (1978):Automatic Discovery of Linear Restraints Among Variables of a Program.
In A. V. Aho, S. N. Zilles & T. G. Szymanski, editors:Conference Record of the Fifth Annual ACM Sym-
posium on Principles of Programming Languages, Tucson, Arizona, USA, January 1978, ACM Press, pp.
84–96. Available athttp://dl.acm.org/citation.cfm?id=512760.

[13] E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti (2014): Program verification via iterated special-
ization. Sci. Comput. Program.95, pp. 149–175. Available athttp://dx.doi.org/10.1016/j.scico.
2014.05.017.

[14] E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proietti (2014): VeriMAP: A Tool for Verifying Programs
through Transformations. In E. Ábrahám & K. Havelund, editors:TACAS, Lecture Notes in Computer
Science8413, Springer, pp. 568–574. Available athttp://dx.doi.org/10.1007/978-3-642-54862-8_

47.

http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://doi.acm.org/10.1145/1965724.1965743
http://dx.doi.org/10.1145/6012.15399
http://dx.doi.org/10.1007/3-540-62718-9_12
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://doi.acm.org/10.1145/1250734.1250769
http://doi.acm.org/10.1145/1250734.1250769
http://dx.doi.org/10.1007/978-3-642-38856-9_8
http://dx.doi.org/10.1007/978-3-642-45221-5_13
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/876638.876643
http://dl.acm.org/citation.cfm?id=512950
http://dl.acm.org/citation.cfm?id=512950
http://dl.acm.org/citation.cfm?id=512760
http://dx.doi.org/10.1016/j.scico.2014.05.017
http://dx.doi.org/10.1016/j.scico.2014.05.017
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1007/978-3-642-54862-8_47

66 Horn clause verification through constraint specialisation and abstract interpretation

[15] S. Debray & R. Ramakrishnan (1994):Abstract Interpretation of Logic Programs Using Magic Transfor-
mations. Journal of Logic Programming18, pp. 149–176. Available athttp://dx.doi.org/10.1016/
0743-1066(94)90050-7.

[16] F. Fioravanti, A. Pettorossi & M. Proietti (2002):Specialization with Clause Splitting for Deriving Deter-
ministic Constraint Logic Programs. In: In Proc. IEEE Conference on Systems, Man and Cybernetics,
Hammamet, IEEE Press. Available athttp://dx.doi.org/10.1109/ICSMC.2002.1167971.

[17] F. Fioravanti, A. Pettorossi, M. Proietti & V. Senni (2013): Controlling Polyvariance for Specialization-
based Verification. Fundam. Inform.124(4), pp. 483–502. Available athttp://dx.doi.org/10.3233/
FI-2013-845.

[18] J. P. Gallagher & L. Lafave (1996):Regular Approximation of Computation Paths in Logic and Functional
Languages. In O. Danvy, R. Glück & P. Thiemann, editors:Partial Evaluation, Springer-Verlag Lecture Notes
in Computer Science1110, pp. 115–136. Available athttp://dx.doi.org/10.1007/3-540-61580-6_
7.

[19] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard & P. J.Stuckey (2013):Failure tabled constraint logic
programming by interpolation. TPLP13(4-5), pp. 593–607. Available athttp://dx.doi.org/10.1017/
S1471068413000379.

[20] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea & A. Rybalchenko (2012):HSF(C): A Software Verifier
Based on Horn Clauses - (Competition Contribution). In C. Flanagan & B. König, editors:TACAS, LNCS
7214, Springer, pp. 549–551. Available athttp://dx.doi.org/10.1007/978-3-642-28756-5_46.

[21] A. Gupta, C. Popeea & A. Rybalchenko (2011):Solving Recursion-Free Horn Clauses over LI+UIF. In
H. Yang, editor:APLAS, Lecture Notes in Computer Science7078, Springer, pp. 188–203. Available at
http://dx.doi.org/10.1007/978-3-642-25318-8_16.

[22] A. Gupta & A. Rybalchenko (2009):InvGen: An Efficient Invariant Generator. In A. Bouajjani & O. Maler,
editors:CAV, Lecture Notes in Computer Science5643, Springer, pp. 634–640. Available athttp://dx.

doi.org/10.1007/978-3-642-02658-4_48.

[23] N. Halbwachs, Y. E. Proy & P. Raymound (1994):Verification of Linear hybrid systems by means of convex
approximations. In: Proceedings of the First Symposium on Static Analysis, LNCS 864, pp. 223–237.
Available athttp://dx.doi.org/10.1007/3-540-58485-4_43.

[24] J. Jaffar & M. Maher (1994):Constraint Logic Programming: A Survey. Journal of Logic Programming
19/20, pp. 503–581. Available athttp://dx.doi.org/10.1016/0743-1066(94)90033-7.

[25] J. Jaffar, V. Murali, J. A. Navas & A. E. Santosa (2012):TRACER: A Symbolic Execution Tool for Verification.
In P. Madhusudan & S. A. Seshia, editors:CAV, Lecture Notes in Computer Science7358, Springer, pp.
758–766. Available athttp://dx.doi.org/10.1007/978-3-642-31424-7_61.

[26] J. Jaffar, J. A. Navas & A. E. Santosa (2011):Unbounded Symbolic Execution for Program Verification.
In S. Khurshid & K. Sen, editors:RV, Lecture Notes in Computer Science7186, Springer, pp. 396–411.
Available athttp://dx.doi.org/10.1007/978-3-642-29860-8_32.

[27] L. Lakhdar-Chaouch, B. Jeannet & A. Girault (2011):Widening with Thresholds for Programs with Complex
Control Graphs. In T. Bultan & P.-A. Hsiung, editors:ATVA 2011, Lecture Notes in Computer Science
6996, Springer, pp. 492–502. Available athttp://dx.doi.org/10.1007/978-3-642-24372-1_38.

[28] M. Leuschel & T. Massart (1999):Infinite State Model Checking by Abstract Interpretation and Program
Specialisation. In A. Bossi, editor:LOPSTR’99, Lecture Notes in Computer Science1817, Springer, pp.
62–81. Available athttp://dx.doi.org/10.1007/10720327_5.

[29] G. Levi (2000):Abstract Interpretation Based Verification of Logic Programs. Electr. Notes Theor. Comput.
Sci.40, p. 243. Available athttp://dx.doi.org/10.1016/S1571-0661(05)80052-0.

[30] A. Pettorossi & M. Proietti (2000):Perfect Model Checking via Unfold/Fold Transformations. In J. W.
Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L. M. Pereira, Y. Sagiv & P. J. Stuckey,
editors:Computational Logic, Lecture Notes in Computer Science1861, Springer, pp. 613–628. Available
athttp://dx.doi.org/10.1007/3-540-44957-4_41.

http://dx.doi.org/10.1016/0743-1066(94)90050-7
http://dx.doi.org/10.1016/0743-1066(94)90050-7
http://dx.doi.org/10.1109/ICSMC.2002.1167971
http://dx.doi.org/10.3233/FI-2013-845
http://dx.doi.org/10.3233/FI-2013-845
http://dx.doi.org/10.1007/3-540-61580-6_7
http://dx.doi.org/10.1007/3-540-61580-6_7
http://dx.doi.org/10.1017/S1471068413000379
http://dx.doi.org/10.1017/S1471068413000379
http://dx.doi.org/10.1007/978-3-642-28756-5_46
http://dx.doi.org/10.1007/978-3-642-25318-8_16
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/3-540-58485-4_43
http://dx.doi.org/10.1016/0743-1066(94)90033-7
http://dx.doi.org/10.1007/978-3-642-31424-7_61
http://dx.doi.org/10.1007/978-3-642-29860-8_32
http://dx.doi.org/10.1007/978-3-642-24372-1_38
http://dx.doi.org/10.1007/10720327_5
http://dx.doi.org/10.1016/S1571-0661(05)80052-0
http://dx.doi.org/10.1007/3-540-44957-4_41

Bishoksan Kafle and John P. Gallagher 67

[31] A. Rybalchenko & V. Sofronie-Stokkermans (2010):Constraint solving for interpolation. J. Symb. Comput.
45(11), pp. 1212–1233. Available athttp://dx.doi.org/10.1016/j.jsc.2010.06.005.

[32] W. H. Winsborough (1989):Path-Dependent Reachability Analysis for Multiple Specialization. In E. L. Lusk
& R. A. Overbeek, editors:NACLP, MIT Press, pp. 133–153. Available athttp://dblp.uni-trier.de/
db/conf/slp/slp89.html#Winsborough89.

http://dx.doi.org/10.1016/j.jsc.2010.06.005
http://dblp.uni-trier.de/db/conf/slp/slp89.html#Winsborough89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#Winsborough89

	1 Introduction
	2 Preliminaries
	2.1 The CHC verification problem.
	2.2 Representation of Interpretations
	2.3 Proof Techniques

	3 Abstract Interpretation over Convex Polyhedra
	4 Specialisation by constraint propagation
	4.1 The query-answer transformation
	4.2 Over-approximation of the model of the query-answer program Pqafalse
	4.3 Strengthening the constraints in P
	4.4 Analysis of the model of the specialised clauses

	5 Safety Check and Program Refinement
	6 Experiments
	7 Related Work
	8 Conclusion and Future works

