Convex polyhedral abstractions, specialisation and
property-based predicate splitting in Horn clause verificdion*

Bishoksan Kafle John P. Gallagher
Roskilde University Roskilde University
Denmark Denmark
kafle@ruc.dk IMDEA Software Institute
Madrid, Spain
jpg@ruc.dk

We present an approach to constrained Horn clause (CHGjcation combining three techniques:
abstract interpretation over a domain of convex polyhespracialisation of the constraints in CHCs
using abstract interpretation of query-answer transfdrol@uses, and refinement by splitting pred-
icates. The purpose of the work is to investigate how angalgsd transformation tools developed
for constraint logic programs (CLP) can be applied to therHdause verification problem. Ab-
stract interpretation over convex polyhedra is capablesoivthg sophisticated invariants and when
used in conjunction with specialisation for propagatingstoaints it can frequently solve challeng-
ing verification problems. This is a contribution in itsddfjt refinement is needed when it fails, and
the question of how to refine convex polyhedral analyses baveen studied much. We present
a refinement technique based on interpolants derived froouaterexample trace; these are used
to drive a property-based specialisation that splits agds, leading in turn to more precise con-
vex polyhedral analyses. The process of specialisaticalysis and splitting can be repeated, in a
manner similar to the CEGAR and iterative specialisatigorapches.

1 Introduction

In this paper we explore the use of techniques used in cémstayic program (CLP) analysis and
specialisation, for the purpose of CHC verification. Purd®@d.syntactically and semantically the same
as CHC. Unlike CLP, CHCs are not always regarded as exeeusabfjrams, but rather as specifications
or semantic representations of other formalisms. Howdwesed are only pragmatic distinctions and the
semantic equivalence of CHC and CLP means that techniqwetoged in one framework are applicable
to the other.

Relevant concepts from CLP include the approximation oftir@dmal model of a CLP program us-
ing abstract interpretation, specialisation of a CLP progwith respect to a goal and model-preserving
transformation of CLP programs. Relevant concepts draam the CHC verification literature include
finding a model of a set of CHCs, property-based abstraatiommterexample generation, and refinement
of property-based abstraction using interpolants.

The results shown in the paper are preliminary and much refseamains to be done in exploiting
the many connections and possibilities for cross-featii@ between CLP and CHC. The contributions
of this paper are:

*The research leading to these results has received fundimgtfie European Union 7th Framework Programme under grant
agreement no. 318337, ENTRA - Whole-Systems Energy Traespgand the Danish Natural Science Research Council grant
NUSA: Numerical and Symbolic Abstractions for Software Mb@hecking.

Nikolaj Bjgrner, Fabio Fioravanti, Andrey Rybalchenko,
Valerio Senni (Eds.): First Workshop on

Horn Clauses for Verification and Synthesis (HCVS 2014)
EPTCS 169, 2014, pp. 53367, doi:10.4204/EPTCS.169.7

http://dx.doi.org/10.4204/EPTCS.169.7

54 Horn clause verification through constraint specialisaiad abstract interpretation

¢ to demonstrate that abstract interpretation over convéghpdra is capable of deriving sophisti-
cated invariants, and when used in conjunction with spisai&bn for propagating constraints it
can frequently solve challenging verification problems;

¢ to investigate the problem of refinement of polyhedral alusions, drawing ideas from
counterexample-guided refinement.

In Sectior 2 we define the basic notation and concepts needéukefverification procedure. Section
reviews the technique of abstract interpretation overeompolyhedra, applied to CLP/CHC, along
with the important enhancement of this technigue using miigthresholds. In Sectidd 4 a procedure
for specialisation of CHCs is described, based on queryrangansformations and abstract interpreta-
tion. A simple but surprisingly effective verification techain combining specialisation with abstract
interpretation is introduced. Sectibh 5 explains how to aigepurious) counterexample from a failed
verification attempt to construct a property-based spisat@bn using interpolants. Experimental results
and related works are reported in Secfibn 6 and Section @cagely. Finally in Sectiofl8 we conclude
and discuss possible extensions and improvements.

2 Preliminaries

A CHC is a first order predicate logic formula of the fokfp A B1(X1) A ... ABk(Xk) — H(X)) (k> 0),
where @ is a conjunction of constraints with respect to some baakugtotheory, X, X are (possibly
empty) vectors of distinct variableBy, ...,By,H are predicate symbols{(X) is the head of the clause
and@A By (X1) A... ABk(Xk) is the body. Sometimes the clause is writte{X) < @ AB1(X1),...,Bk(Xk)
and in concrete examples it is written in the fokm: - ¢, B1(X1),...,Bc(Xk). In examples, predicate
symbols start with lowercase letters while we use upperedisss for variables.

In this paper we take the constraint theory to be linear raugttic with the relation symbols, >,
<,> and=. There is a distinguished predicate symfatde which is interpreted as false. In practice the
predicatefalse only occurs in the head of clauses; we call clauses whoseififdst integrity constraints
following the terminology of deductive databases. Thusftrenula ¢ < @ A B1(X1),...,Bk(Xk) is
equivalent to the formuléalse < =g A @ A B1(X1),...,Bk(Xk). The latter might not be a CHC (e.qg.
if @ contains=) but can be converted to an equivalent set of CHCs by tramdfigr the formula—q,
and distributing any disjunctions that arise over the réghe body. For example, the formubsY
:- p(X,Y) is equivalent to the set of CHCSalse :- X>Y, p(X,Y) andfalse :- X<Y, p(X,Y).
Integrity constraints can be seen as safety propertiesexXeonple if a set of CHCs encodes the behaviour
of a transition system, the bodies of integrity constramefsresent unsafe states. Thus proving safety
consists of showing that the bodies of integrity consteaarie false in all models of the CHC clauses.
Figure[1 shows an example set of CHCs (taken from [6]), maleler reals containing an integrity
constraint, and in this example the problem is to prove thebbdy of the first clause is unsatisfiable.

2.1 The CHC verification problem.

To state this more formally, given a set of CHEsthe CHC verification problem is to check whether
there exists a model &. Obviously any model oP assigns false to the bodies of integrity constraints.
We restate this property in terms of the derivability of thiedicatefalse. Let P = F mean thafF is a
logical consequence &, that is, that every interpretation satisfyiRglso satisfie$.

Lemma 1. P has a model if and only if B false.

Bishoksan Kafle and John P. Gallagher 55

cl. false:- N>0,I=0,A=0,B=0, 1(I,A,B,N).

c2. 1(I,A,B,N):-I < N, 1_body(A,B,A1,B1), I1 = I+1, 1(I1,A1,B1,N).
c3. 1(I,A,B,N):- I >=N, A + B > 3 * N.

c4. 1(I,A,B,N):- I >=N, A + B < 3 * N.

c5. 1_body(A0,BO,A1,B1):- Al
c6. 1_body(A0,BO,A1,B1):- Al

AO+1, B1
AO+2, B1

BO+2.
BO+1.

Figure 1: Example progrard.pl [6]

Proof. Writing | (F) to mean that interpretationsatisfiesd, we have:

P £ false = there exists some interpretatibisuch that (P) and—I (false)
by definition of thel= relation

there exists some interpretatibsuch that (P)

(since—l (false) is true by defnof false)

P has a model

O

This lemma holds for arbitrary interpretations (only assgrthat the predicatélse is interpreted as
false), uses only the textbook definitions of “interpretati and “model” and does not depend on the
constraint theory.

The verification problem can be formulated deductively eatthan model-theoretically. We can
exploit proof procedures for constraint logic programmifd] to reason about the satisfiability of a set
of CHCs. Let the relatior® - A denote thaf is derivable fromP using some proof procedure. If the
proof procedure is sound théh- A impliesP = A, which means tha® |- false is a sufficient condition
for P to have no model, by Lemma 1. This corresponds to using a sproaf procedure to find or
check a counterexample. On the other hand to showRliates have a model, soundness is not enough
since we need to establighj~ false. As we will see in Sectioh 213 we approach this problem byaisin
approximationgo reason about the non-provability fafse, applying the theory of abstract interpretation
[11] to a complete proof procedure for atomic formulas (tfieetd-point semantics” for constraint logic
programs([24, Section 4]). In effect, we construct by alestiaterpretation a proof procedure that is
complete(but possibly not sound) for proofs of atomic formulas. Witlch a procedureR t/ false
implies P [~ false and thus establishes tHathas a model.

2.2 Representation of Interpretations

An interpretation of a set of CHCs is represented as a satridtrained factef the formA < ¢ where
A'is an atomic formulep(Zs,...,Z,) whereZy,...,Z, are distinct variables an@ is a constraint over
Z1,...,Zn. If € istrue we write A < or justA. The constrained fadk < % is shorthand for the set of
variable-free fact&\0 such thats’6 holds in the constraint theory, and an interpretatibdenotes the set
of all facts denoted by its elementd; assigns true to exactly those fack4; C M, if the set of denoted
facts ofM; is contained in the set of denoted factdwf.

Minimal models. A model of a set of CHCs is an interpretation that satisfieb etauise. There exists
a minimal model with respect to the subset ordering, denbtg]] whereP is the set of CHCsM[P]]

56 Horn clause verification through constraint specialisaiad abstract interpretation

can be computed as the least fixed poifit)(of an immediate consequences operator (cedfeih [24,
Section 4]), which is an extension of the standgseperator from logic programming, extended to han-
dle the constraint domai. Furthermorefp(Sp) can be computed as the limit of the ascending sequence
of interpretations ¢85 (0),S5 (S (0)),.... This sequence provides a basis for abstract interpretafio
CHC clauses.

2.3 Proof Techniques

Proof by over-approximation of the minimal model. Itis a standard theorem of CLP that the minimal
modelM[P] is equivalent to the set of atomic consequenceB.dfhat is,P = p(vi, ..., V) if and only

if p(vi,...,vn) € M[[P]. Therefore, the CHC verification problem fBris equivalent to checking that
false ¢ M[[P]. It is sufficient to find a set of constrained fadt$ such thaM|[[P]] C M’, wherefalse ¢ M'.
This technique is called proof lyver-approximation of the minimal model

Proof by specialisation. A specialisation of a set of CH@3with respect to an atorA is the transfor-
mation of P to another set of CHCB' such thatP = A if and only if P’ = A. Specialisation is usually
viewed as a program optimisation method, specialising sgeneral-purpose program to a subset of its
possible inputs, thereby removing redundancy and pre-atingp statically determined computations.
In our context we use specialisation to focus the verificagimblem on the formula to be proved. More
specifically, we specialise a set of CHCs with respect to @rgjuto the atonfalse; thus the specialised
CHCs entailfalse if and only if the original clauses entailéalse.

3 Abstract Interpretation over Convex Polyhedra

Convex polyhedron analysis (CPA) [12] is a program analissinique based on abstract interpretation
[11]. When applied to a set of CH®it constructs an over-approximatidi’ of the minimal model of

P, whereM’ contains at most one constrained facK) + ¢ for each predicat@. The constrain®’ is

a conjunction of linear inequalities, representing a camwalyhedron. The first application of convex
polyhedron analysis to CLP was by Benoy and King [4]. Sineedbmain of convex polyhedra con-
tains infinite increasing chains, the use of@eningoperator for convex polyhedra [11,112] is needed
to ensure convergence of the abstract interpretation.h&umore much research has been done on im-
proving the precision of widening operators. One techriggeknown as widening-upto, or widening
with thresholds[[23]. A threshold is an assertion that is loiored with a widening operator to improve
its precision.

Recently, a technique for deriving more effective thredholvas developed [27], which we have
adapted and found to be effective in experimental studige.tfiresholds are computed by the following
method. LetS be the standard immediate consequence operator for CHComeshin Sectioh 2]2.
That is, if | is a set of constrained factSp(1) is the set of constrained facts that can be derived in one
step froml. Given a constrained fagqi(Z) < ¢, defineatomconstraints(p(Z) < %) to be the set of
constrained fact§p(Z) <— Ci | ¢ =CyA...AC, 1 <i <K)}. The functionatomconstraints is extended
to interpretations bytomconstraints(l) = Upyz) ¢l {atomconstraints(p(Z) <€) }.

Let I+ be the interpretation consisting of the set of constraiaetsip(Z) < true for each predicate
p. We perform three iterations & starting withl+ (the first three elements of a “top-down” Kleene
sequence) and then extract the atomic constraints. Thétésholds is defined as follows.

thresholds(P) = atomconstraints($(3) (I1))

Bishoksan Kafle and John P. Gallagher 57

A difference from the method in [27] is that we use the coreesetmantic functiord rather than the
abstract semantic function when computing thresholds. sBtef threshold constraints represents an
attempt to find useful predicate properties and when widgthiay help to preserve invariants that might
otherwise be lost during widening. Seel[27] for further deta hreshold constraints that are not invari-
ants are simply discarded during widening.

4 Specialisation by constraint propagation

We next present a procedure for specialising CHC clausesoritrast to classical specialisation tech-
niques based on partial evaluation with respect to a gaaktlecialisation does not unfold the clauses at
all; rather, we compute a specialised version of each clause program, in which the constraints from
the goal are propagated top-down and answers are propdgatech-up. The implementation is based
on guery-answer transformations and abstract interjiataier convex polyhedra.

Let P be a set of CHCs and létbe an atomic formula. For each claude— % in P we compute a
new clauseH + C, % whereC is a constraint, yielding a prograR) specialisedfor A. If the addition
of C makes the clause body unsatisfiable, it is the same as regqtwinclause fronPa. Clearly Pa
may have fewer consequences thiabut our procedure guarantees that it preserves the infigyatf
(constrained instances of) That is, for every constraii@ over the variables o, P = V(C — A) if and
only if P = V(C — A).

The procedure is as follows: the inputs are a set of CA@gsd an atomic formulé.

1. Compute auery-answer transformatioof P with respect t&A, denoted®,?, containing predicates
p? and p? for each predicat@ in P.

2. Compute an over-approximation of the modelRif, expressed as a set of constrained facts
p*(X) < C, wherex is q or a. We assume that each predicgdehas exactly one constrained
fact in the model (wher€ is possiblyfalseor a disjunction).

3. For each clausp(X) < Zin P, let the model ofp® be p*(X) «<— C? (whereX is the same tuple of
variables inp(X) and p?(X)).

4. Replace the clauggX) < Z in P by p(X) <~ C?, 2 in Pa.

Note that if for some predicatg, C? is false, then all the clauses fqr are removed i’y as their bodies
are unsatisfiable. We now explain each step in turn.

4.1 The query-answer transformation

The query-answer transformation was inspired by — but isvaigdisation of — the magic-set transforma-
tion from deductive databases [3]. Its purpose, both in didackidatabases and in subsequent applications
in logic program analysis [15] was to simulate goal-dirdcfisp-dowr) computation or deduction in a
goal-independentbpttom-up framework. Let us define the transformation.

Given a set of CHC® and an atomA, the query-answer program férwrt. A, denotedP,”, con-
sists of the following clauses. For an atgin= p(t), A% and A% represent the atomg®(t) and p4(t)
respectively.

e (Answer clauses). For each claude— C,By,...,B, (n> 0) in P, P{® contains the clause® «+
C,H9.B2, ... B2,

58 Horn clause verification through constraint specialisaiad abstract interpretation

e (Query clauses). For each cladse—C,B;,...,B;,...,B, (n>0) in P, P{® contains the following
clauses:
BY « C,Hq.

BY + C,HY,B2,... B ,.

B« C,H9,B3,...,B2 ;.
e (Goal clause)Ad « true.

The programP,® encodes a left-to-right, depth-first computation of thergue- A for CHC clauses
P (that is, the standard CLP computation rule, SLD extenddfl wonstraints). This is a complete
proof procedure, assuming that all clauses matching a gia#irare explored in parallel. (Note: the
incompleteness of standard Prolog CLP proof procedursssadue to the fact that clauses are tried in a
fixed order).

The relationship of the model of the progr&gf to the computation of the goat Ain Pis expressed
by the following proper@. An SLD-derivation in CLP is a sequen&, Gy, ...,Gk where eacl; is a
goal<«+ C,By,...,Bm, whereC is a constraint an®,,...,By, are atoms. In a left-to-right computation,
Gj. 1 is obtained by resolvin®; with a program clause.

Property 1 (Correctness of query-answer transformatiobngt P be a set of CHCs and A be an atom.
Let B® be the query-answer program for P wrt. A. Then

(i) if there is an SLD-derivation &...,G;j where G =+ A and G =« C,B,...,Bm, then B° =
V(C|vars(Bl) — B?_);

(i) ifthere is an SLD-derivation @ ..., G where G =< A, containing a sub-derivation G...,G;j,,
where G, +- C',B;,B'and G, =« C,B/, then B* |=(C|,.,5(8,) — B}). (This means that the atom
B1 in Gj; was successfully answered, with answer constrajpf,{g,))-

(iif) As a special case of (ii), if there is a successful dation of the goak— A with answer constraint
C then B =V(C — A%).

4.2 Over-approximation of the model of the query-answer prgram P

false

The query-answer transformation Bfwith respect tdfalse is computed. It follows from Properiy 1(iii)
that if false is derivable fromP then P3| = false®. Convex polyhedral analysis ¥}, yields an
overapproximation of[[P_], sayM’, containing constrained facts for the query and answeliqass.

These represent the calls and answers generated durirgrigdittbns starting from the goé&dlse.

4.3 Strengthening the constraints inP

We use the information i’ to specialise the original clausesf SupposeM’ contains constrained
facts p9(X) «<— C% and p?(X) « C?. If there is no constrained fagt*(X) < C* for somep* then we
considerM’ to containp*(X) + false The clauses i with head predicat@ can bestrengthenedising
the constraint€? andC?. Namely, for every claus@(X) <— £ in P (assuming that the constrained
facts are renamed to have the same varialethe conjunctiorC% A C? are added to the bodg. The
addition ofC9 corresponds to propagating constraints “top-down” (v c¢hlls) while the addition of

1 Note that the model d%’ja might not correspond exactly to the calls and answers in i@ &mputation, since the CLP
computation treats constraints as syntactic entitiesutiiralecision procedures and the actual constraints coffiat. di

Bishoksan Kafle and John P. Gallagher 59

cl. false:- N>0,I=0,A=0,B=0, 1(I,A,B,N).
c2. 1(A,B,C,D) :- 2%A+ -1%B>=0,-1%A+1%D>0,-1%A+1%B>=0,3*A+ —-1%B+ —-1xC=0,
1xA+ -1%E= -1,1_body(B,C,F,G),1(E,F,G,D).
c3. 1(A,B,C,D) :— 3*%A+ -3*D>0,1*D>0,2*xA+ -1*B>=0,-3*A+3*D> -3,
—-1%A+1%B>=0,3%A+ —1*B+ -1*C=0.
c4. 1(A,B,C,D):- false.

c5. 1_body(A,B,C,D) :- -1%A+2%B>=0, 2xA+ -1%B>=0,
1xA+ -1xC= -1,1*%B+ —-1xD= -2.
c6. 1_body(A,B,C,D) :- -1%A+2%B>=0,2*%A+ -1*B>=0,1%A+ -1xC= -2,1xB+ -1%D= -1.

Figure 2: Example programtd.pl [6] with strengthened constraints

C? represented propagation “bottom-up” (via the answersythetmore, note that® — C9 since the
answers foip are always stronger than the callsgoThus it suffices to add the constrafit to 4.

Specialisation by strengthening the constraints presettve answers of the goal with respect to
which the query-answer transformation was performed. hiqudar, in our application we have the
following property.

Property 2. If P is a set of CHCs and;Rx. is the set obtained by strengthening the clause constraints
as just described, then [P false if and only if R,se = false.

The result of strengthening the constraints in Figuire gigie query-answer program with respect
to the goalfalse, is shown in Figurél2. Note that the constraint in clacsés strengthened tbalse.

4.4 Analysis of the model of the specialised clauses

It may be that the clausd3,. do not contain a clause with heéalse. In this case safety is proven,
since clearlyP, s [~ false. If this check fails, the convex polyhedral analysis is now on the clauses
Pise- As the experiments later show, safety is often provableHscking the resulting model; if no
constrained fact fofalse is present, the, . [~ false. If safety is not proven, there are two possibilities:
the approximate model is not precise enoughFduds a model, or there is a prooffafse. To distinguish
these we proceed to try to refine the clauses by splittingiqaess.

5 Safety Check and Program Refinement

This section outlines a procedure for safety check, coarégnple analysis and refinement. Refinement
is considered when a proof of safety or an existence of a maiterexample (that is, a proof &flse
cannot be established.

Safety check and counterexample analysis The absence of a constrained fact for predidale in
the over-approximation proves that the given set of CHCsfe.s If safety can not be shown, our
implementation of the convex polyhedron analysis producegrivation tree fofalse as a trace term
which we define formally below. For our program in Figlie ¥ #et of constrained facts representing
the approximate model is shown below.

f1. 1_body(A,B,C,D) :- 1B+ -1*D>= -2,-1%B+1*D>=1,-1%A+2%B>=0, 2*A+ -1*B>=0,
1xA+1xB+ -1%C+ -1%D= -3.

60 Horn clause verification through constraint specialisaiad abstract interpretation

f2. false :- true.
£f3. 1(A,B,C,D) :- 1*D>0,2%A+ —-1*B>=0,-1*A+1*B>=0,-3*A+3*D> -3,
3xA+ —-1%B+ —-1%C=0.

Since there is a constrained fact false, the shortest derivation for it is found, using claugeollowed
by clausec3. This will be represented asteace termc1(c3), which is formally defined below. The
idea of trace terms to capture the shape of derivations welurced by Gallagher and Lafave [18].

AND-trees and trace terms. Each CHC is associated with an identifier, as shown in FigurEhkse
identifiers are treated as constructors whose arity is tineben of non-constraint atoms in the clause
body. The following definitions of derivations and tracenteris adapted from [18].

An AND-treeis a tree each of whose nodes is labelled by an atom and a ctacsethat

1. each non-leaf node is labelled by a cladse- C,A4,...,Ax and an atomA, and has children
labelled byA,, ..., A,

2. each leaf node is labelled by a cladse- C and an atonA.

We assume that the variables in node labels are renamedpaippety, details are not given here. Any
finite derivation corresponds to an AND-tree, and each AK2T can be associated with a trace term
tr(T) defined as:

1. ¢;, if T is asingle leaf node labelled by the clause of fakm- C with identifierc;; or
2. Gi(tr(Ta),...,tr(Ty)), if T is labelled by the clause with identifier lsy; and has subtreds, ..., T,.

A trace-term uniquely defines an AND-tree (up to renamingasfables). The set of constraints of an
AND-tree, represented asnstr(T) is

1. C,if T is a single leaf node labelled by the clause of fégkm- C; or
2. CUUi_1 n(constr(T;)) if T is labelled by the claus& < C,Aq,...,Ac and has subtre€s, ..., T,.

We say that an AND-tre€ is satisfiable iSAT (constr(T)). LetT be an AND-tree whose root is labelled
by atomA. Defineproj(T) to beconstr(T)| ars(a)-

Interpolants. Given two sets of constraints;,C, such thaiC; UC; is unsatisfiable, a (Craig) inter-
polant is a constraint with (1) C; C 1, (2) | UG, is unsatisfiable and (3) contains only variables
common taC; andC,. We implemented the algorithm from [31] for interpolants lioear constraints.

Given an AND-treel where—SAT (constr(T)), we can construct an interpolant for each non-root
node ofT, also known as tree interpolants. O€tbe a sub-tree of, whose root is labelled witA’. Then
the interpolant associated wit\' is defined as above whe@ = constr(T’) andC;, = constr(T) \ Cy,
and the interpolants of subtree Dftogether with the constraints at the rooffdfimplies|. Note that by
construction of the AND-tree, the only variables in commetweenC, andC, (and hence in) are the
variables ind’, the label ofT’. More details on tree interpolation can be found_in [8].

The setinterpolant(T) is the set of constrained facés« |, for all non-root nodes of labelled by
atomA with interpolantl as defined above.

Counterexample checking. Given a trace term, Ief be the corresponding AND-tree. We report that
the CHCs have no model §AT (constr(T)), and our procedure terminates. For our example it can be
verified thatSAT (constr(c1(c3))) does not hold, so the traee (c3) is a false alarm. We now use the
interpolants to split predicates and try to get a more peegpgproximation of the model.

Bishoksan Kafle and John P. Gallagher 61

From the trace terne1(c3) in the running example we deriveterpolant(c1(c3)) = {l} where
| =1(A,B,C,D)+ A+ —3%B+C+D=<0.
We then split the constrained facts in the approximatiorhefrhodel, using the corresponding inter-
polants and their negations. In the example we split congtiafactf3 by strengthening its constraint
with | and -l respectively. Fioravantt al. use a related technique for splitting clauses [16]. Stiengt
ening first withl we get
1(A,B,C,D):- D>0,2*A+ -1%B>=0,-1*%A+1*B>=0,-3*A+3*D> -3,
3xA+ -1xB+ -1%C=0,A+ -3*B+C+D=<0

which after simplification becomes

1(A,B,C,D) :- -4*xA+4%B+ -1xD>=0,1*D>0,-3*A+3*%D> -3,2%A+ -1*%B>=0,
3xA+ -1%B+ —-1xC=0.

We follow the same step withl and obtain the following set of constrained facts.

1(A,B,C,D) :- -4xA+4%B+ -1xD>=0,1*D>0,-3*A+3*%D> -3,2%A+ -1*%B>=0,
3xA+ -1%B+ —-1xC=0.

1(A,B,C,D) :- 4xA+ -4xB+1*D>0,-1*A+1%B>=0,-3*A+3%D> -3,2*%A+ —-1*B>=0,
3xA+ -1%B+ —-1xC=0.

These together witli1 and £2 give us a new set of constrained facts, which forms the inpuhe

refinement phase of our procedure.

Refinement by Predicate Splitting. Refinement consists of obtaining a specialised set of CHis fr

a given set of constrained facts and input set of CHCs. We iddothusing polyvariant specialisation
(PS) based on the method of multiple specialisation [32hwifproperty-based abstract domain based
on the given set of constrained facts. PS is a program sgtiah which introduces several new pred-
icates corresponding to specialised versions of the saatkgate. Polyvariant specialisation brings the
expressive power of disjunctive predicates into the ama[\l3]]. Space does not permit a more detailed
description. For our running example we obtain a split of phedicatel into 1.1 and1_3 , and the
specialised program is as follows.

false :- 1*A>0,1%B=0,1%C=0,1xD=0,1_3(B,C,D,A).
1_3(A,B,C,D) :- 2%A+ —-1*B>=0,-1*A+1%B>=0,-1xA+1*D>0,4*A+ -4xB+1xD>0,
3xA+ -1*B+ -1*C=0, A+ -1xE= -1,1_body_2(B,C,F,G),1_1(E,F,G,D).
1_3(A,B,C,D) :- 4*A+ -4xB+1xD>0,3%A+ -3*D>0,-1*A+1xB>=0,-3*xA+3*D> -3,
3*A+ -1xB+ -1xC=0.
1_1(A,B,C,D) :- 2%A+ —-1*B>=0,-1*A+1xB>=0,-1xA+1xD>0,3*A+ -1xB+ -1%C=0,
1xA+ -1xE= -1,1_body_2(B,C,F,G),1_1(E,F,G,D).
1_1(A,B,C,D) :- 3%A+ -3*D>0,2%A+ -1*B>=0,1*D>0,-1%A+1%¥B>=0,-3%A+3*xD> -3,
3*A+ —-1xB+ -1xC=0.
1_body_2(A,B,C,D) :-— 2%xA+ -1*B>=0,-1*A+2*B>=0,1xA+ -1*C= -1,1*%B+ -1xD= -2.
1_body_2(A,B,C,D) :-— 2%xA+ -1*B>=0,-1*%A+2*B>=0,1xA+ -1*C= -2,1*%B+ -1xD= -1.

The next iteration continues with this specialised progrdrhe intention of splitting and PS is to
guarantee progress of refinement, that is, a counterexapmgle eliminated never occurs again. Our
procedure does not guarantee progress, that is, the sameusptounterexamples might appear in sub-
sequent iterations, but in practice we find the polyvariggcglisation usually eliminates the given
counterexample. The large number of constants in the abxammes are derived during invariants
computation. In the next iteration, our example terminatits a real counter example, thus proving our
example program unsafe (over the real numbers).

62 Horn clause verification through constraint specialisaiad abstract interpretation

Toolchain. Our verification procedure is summarised in Figure 3, whghlivided into three parts,
an abstractor (inside green dotted box), followed bysafety checland counterexample analysemnd
refiner (inside red box). It should be noted that the tools insidegiieen and red boxes produce new set
of CHCs by specialisation.

CPA —Convex Polyhedra Analyser SA — Safety Analyser
CPS - Constraint Propagation Specialiser PS — Polyvariant Specialiser
Specialiser -Abstractor - Analyser ' Refiner-Specialiser
CHCP ! I
! CHCP' !
cEszafe : !
CHC P’ trace ' constrs
CPS CPA SA I PS |
constrs ! |
CHCP”

Figure 3:CHC verification toolchain.

The effects of CPA and PS in our procedure complement eaeh atid the CPA model gets more
accurate during refinement which allows generation of befiecialised programs. In essence, it marries
the effectiveness of CPA with PS.

6 Experiments

Table[1 presents the results of applying our toolchain degin Figure B to a number of benchmark
programs taken from the repository of Horn clause benchsiarBMT-LIBZ and other sources includ-
ing [19,[26,22] 5] 14]. The experiments were carried outgusitomputer, Intel(R) X5355 having 4
processors (each @ 2.66GHz) and total memory of 6 GB. Debi@4 bit) is the Operating System
running in it and we set 2 minutes of timeout for each expentm®ur tool-chain is implemented in
32-bit Ciao Prolog [‘ﬁ and the Parma Polyhedra Libraryﬂi])r this purpose.

In Table[1, columns Program, “n” , Result and time (sec) retypaly represent the benchmark pro-
gram, the number of refinement iterations necessary topagfiven property, the results of verification
and the time (in seconds) to verify them. Value 0 in column fimdans that no refinement is necessary,
whereas value greater than 0 indicates the actual numbterafions necessary and value “-" means that
these programs are beyond the reach of our current toolmiitie given time limit. Problems marked
with (*) were not handled by our tool-chain since their smntgenerates numbers which do not fit in 32
bits, the limit of our Ciao Prolog implementation. Problesugh as systemc-token-ring.01-safeil.c con-
tain complicated loop structure with large strongly cortedaomponents in the predicate dependency
graph and our convex polyhedron analysis tool is unable fivaléhe required invariant.

2nttps://svn.sosy-lab.org/software/sv-benchmarkskitlauses/
Shttp://ciao-lang.org/
4http://bugseng.com/products/ppl/

Bishoksan Kafle and John P. Gallagher 63

Program n | Result| time | Program n | Result| time
(secs) (secs)
MAP-disj.c.map.pl 0 | safe 1.0 jaffex1c.pl 0 | safe 0.01
MAP-forward.c.map.pl| 0 | safe 1.0 jaffexla.pl 0 | safe 0.01
t1.pl 0 | safe 0.01 | grdcmp.smt2 0 | safe 118.0
tl-a.pl 0 | safe 0.01 | choldc.smt2 0 | safe 19.0
t2.pl 0 | safe 0.01 | lop.smt2 0 | safe 39.0
t3.pl 0 | safe 1.0 pzextr.smt2 0 | safe 40.0
t4.pl 1 | unsafe| 1.0 grsolv.smt2 0 | safe 18.0
t5.pl 0 | safe 0.01 | tridag.smt2 0 | safe 13.0
MAP-disj.c-scaled.pl | O | safe 1.0 systemc-pc-sfifdl 0 | unsafe| 12.0
INVGEN-id-build 0 | safe 1.0 loops-terminator 0 | unsafe| 0.01
INVGEN-nested5 0 | safe 1.0 loops-for-bounded 3 | unsafe| 5.0
INVGEN-nested6 0 | safe 117.0 | TRACER-testabs15 0 | safe 1.0
INVGEN-nested8 0 | safe 1.0 INVGEN-apache-esc-abs 0 | safe 2.0
INVGEN-svdsomeloop O | safe 3.0 DAGGER-barbr.map.c 0 | safe 119.0
INVGEN-svdl 2 | safe 13.0 | systemc-token-ring.01-safeilic- | ? -
INVGEN-svd4 0 | safe 5.0 sshs3-srvrla-safeil.c(*) -7 -
loops-count-up-down | O | unsafe| 1.0 sshs3-srvrlb-safeil.c -7 -
loops-sum04 8 | unsafe| 2.0 amebsa.smt2 -7 -
dfpp12.pl 0 | safe 0.01 | bandec.smt2(*) -7 -
TRACER-testloop27 | 1 | unsafe| 1.0 TRACER-testloop28 -7 -
TRACER-testloop8 0 | unsafe| 0.01 | crank.smt2 -7 -
jaffex1b.pl 0 | safe 0.01 | pldi12.pl -7 -
jaffexdd.pl 0 | safe 0.01 | loops-sum0O1 -7 -

Table 1: Experimental results on CHC benchmark problems

The results of our procedure in a larger set of benchmarlairadat from previous sources are sum-
marised in Tablel2. Though our tool-chain is not optimizeallathe overall result shows that it compares
favourably with other advanced verification tools like H&B], VeriMAP [14], TRACER [25] etc. in
both time and the number of problems solved, and thus shathiangffectiveness of our approach.

without refinemet| with refinement
solved (safe/unsafe) 160 (142/18) 181 (158/23)

unknown/ timeout 49/7 -/135
total time 1293 3410
average time (secs 5.98 18.73

Table 2: Experimental results on 216 CHC verification protdewhere “-” means not relevant.

64 Horn clause verification through constraint specialisaiad abstract interpretation

7 Related Work

Verification of CLP programs using abstract interpretatma specialisation has been studied for some
time. The use of an over-approximation of the semantics abgrpm can be used to establish safety
properties — if a state or property does not appear in anawereximation, it certainly does not appear
in the actual program behaviour. A general framework fordggogram verification through abstraction
was described by Levi[29].

The use of program transformation to verify properties gidgrograms was pioneered by Pettorossi
and Proietti[[30] and Leuschel [28]. Transformations thasprve the minimal model (or other suitable
models) of logic programs are applied systematically to enpioperties explicit. For example, if a
program can be transformed to one containing a clausetrue thenAis a consequence of the program.

Recent work by De Angeligt al. [13,[14] applies a specialisation approach to the Horn elaus
verification problem as discussed here, namely, with iitiegonstraints expressing the properties to
be proved. Both our approach and theirs repeatedly applyiaisations preserving the property to be
proved. However the difference is that their specialisatechnigues are based on unfold-fold transfor-
mations, with a sophisticated control procedure contrgllinfolding and generalisation. Our specialisa-
tions are restricted to strengthening of constraints gryawlant splitting based on local conditions. Their
test for success or failure is a simple syntactic check, admours is based on an abstract interpretation
to derive an over-approximation.

Counterexample guided abstraction refinement (CEGAR) [i8] been successfully used in veri-
fication to automatically refine (predicate) abstractiomseduce false alarms but not much has been
explored in refining abstractions in the convex polyhedoamhdin. See |7, 21] for more details about the
use of interpolation in refinement. A number of tools impletiiey predicate abstraction and refinement
are available, such as HSF [20] and BLAST [2]. TRACER/[19] igedfication tool based on CLP that
uses symbolic execution.

Informally one can say that approaches differ in where thadiwork” is performed. In the work
of De Angeliset al. the specialisation procedure is the core, whereas in theAFE&proaches the
refinement step is crucial, and interpolation plays a céntta. In our approach, by contrast, most of
the hard work is done by the abstract interpretation, whintisfiuseful invariants as well as propagating
constraints globally. The main problem is to find effectivayw of refining polyhedral abstractions.
Finding the most effective balance between specialisa@astraction and refinement techniques is a
matter of ongoing research.

8 Conclusion and Future works

We described an iterative procedure for Horn clause vetificavhich interleaves abstract interpretation
with specialisation. A specialised set of CHCs is produced By strengthening the constraints in the
given clauses using the results of the abstract interfppatat hen the procedure terminates if an abstract
interpretation of the resulting program is sufficient toifyethe required properties, otherwise, a poly-
variant specialisation guided by an abstract counterelaimmperformed using the inferred constraints
as well as interpolated constraints.

In the future, we would like to find a way of ensuring progre$gafinement, maybe using the
powerset polyhedra domain, and also interface our toalcléih SMT solvers for satisfiability checking
and interpolant generation.

Bishoksan Kafle and John P. Gallagher 65

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

R. Bagnara, P. M. Hill & E. Zaffanella (2008)fhe Parma Polyhedra Library: Toward a Complete Set of
Numerical Abstractions for the Analysis and VerificationHzfrdware and Software Systems$cience of

Computer Programmingl2(1-2), pp. 3-21. Available attp://dx.doi.org/10.1016/j.scico.2007.
08.001.

T. Ball, V. Levin & S. K. Rajamani (2011)A decade of software model checking with SLA®bmmun.
ACM 54(7), pp. 68-76. Available atttp://doi.acm.org/10.1145/1965724.1965743.

F. Bancilhon, D. Maier, Y. Sagiv & J. Ullman (1986Magic Sets and other strange ways to implement
logic programs In: Proceedings of thé¢' 5ACM SIGMOD-SIGACT Symposium on Principles of Database
SystemsAvailable athttp://dx.doi.org/10.1145/6012.15399.

F. Benoy & A. King (1996): Inferring Argument Size Relationships with CLP.(R) J. P. Gallagher, edi-
tor: Logic-Based Program Synthesis and Transformation (LOPSE)RSpringer-Verlag Lecture Notes in
Computer Scienck207, pp. 204-223. Available Bttp://dx.doi.org/10.1007/3-540-62718-9_12.

D. Beyer (2013):Second Competition on Software Verification - (Summary 6€€GWIP 2013) In N. Piter-
man & S. A. Smolka, editorsTACAS, Lecture Notes in Computer Scien¢g@95, Springer, pp. 594—-609.
Available athttp://dx.doi.org/10.1007/978-3-642-36742-7_43.

D. Beyer, T. A. Henzinger, R. Majumdar & A. Rybalchenk®(@7): Path invariants In J. Ferrante & K. S.
McKinley, editors: PLDI, ACM, pp. 300-309. Available &ttp://doi.acm.org/10.1145/1250734.
1250769.

N. Bjgrner, K. L. McMillan & A. Rybalchenko (2013)0On Solving Universally Quantified Horn Clausés
F. Logozzo & M. Fahndrich, editorsSAS Lecture Notes in Computer Scienc@35, Springer, pp. 105-125.
Available athttp://dx.doi.org/10.1007/978-3-642-38856-9_8.

R. Blanc, A. Gupta, L. Kovacs & B. Kragl (2013)Tree Interpolation in Vampire In K. L. McMillan,
A. Middeldorp & A. Voronkov, editors:LPAR, Lecture Notes in Computer Scien8812, Springer, pp.
173-181. Available aittp://dx.doi.org/10.1007/978-3-642-45221-5_13.

F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. Lé@ezcia & G. Puebla (1997)fhe Ciao Prolog
system. Reference manu@échnical Report CLIP3/97.1, School of Computer Sciefieehnical University
of Madrid (UPM). Available from http://www.clip.dia.fi.up.es/.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu & H. Veith (2008)ounterexample-guided abstraction refinement
for symbolic model checkingl. ACM50(5), pp. 752—794. Available attp://doi.acm.org/10.1145/
876638.876643.

P. Cousot & R. Cousot (19778bstract Interpretation: A Unified Lattice Model for Statimalysis of Pro-
grams by Construction or Approximation of Fixpoints R. M. Graham, M. A. Harrison & R. Sethi, editors:
Conference Record of the Fourth ACM Symposium on Principfé&ogramming Languages, Los Angeles,
California, USA, January 197ACM, pp. 238-252. Available atttp://dl.acm.org/citation.cfm?
1d=512950.

P. Cousot & N. Halbwachs (1978)utomatic Discovery of Linear Restraints Among Variabliess Brogram

In A. V. Aho, S. N. Zilles & T. G. Szymanski, editorsConference Record of the Fifth Annual ACM Sym-
posium on Principles of Programming Languages, Tucsorgofid, USA, January 1978CM Press, pp.
84-96. Available ahttp://dl.acm.org/citation.cfm?id=512760.

E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proig2014): Program verification via iterated special-
ization Sci. Comput. Progran?5, pp. 149-175. Available afttp://dx.doi.org/10.1016/j.scico.
2014.05.017.

E. De Angelis, F. Fioravanti, A. Pettorossi & M. Proig014): VeriMAP: A Tool for Verifying Programs
through Transformations In E. Abraham & K. Havelund, editorsTACAS, Lecture Notes in Computer
Science8413, Springer, pp. 568-574. Availabléatp: //dx.doi.org/10.1007/978-3-642-54862-8_
47.

http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1016/j.scico.2007.08.001
http://doi.acm.org/10.1145/1965724.1965743
http://dx.doi.org/10.1145/6012.15399
http://dx.doi.org/10.1007/3-540-62718-9_12
http://dx.doi.org/10.1007/978-3-642-36742-7_43
http://doi.acm.org/10.1145/1250734.1250769
http://doi.acm.org/10.1145/1250734.1250769
http://dx.doi.org/10.1007/978-3-642-38856-9_8
http://dx.doi.org/10.1007/978-3-642-45221-5_13
http://doi.acm.org/10.1145/876638.876643
http://doi.acm.org/10.1145/876638.876643
http://dl.acm.org/citation.cfm?id=512950
http://dl.acm.org/citation.cfm?id=512950
http://dl.acm.org/citation.cfm?id=512760
http://dx.doi.org/10.1016/j.scico.2014.05.017
http://dx.doi.org/10.1016/j.scico.2014.05.017
http://dx.doi.org/10.1007/978-3-642-54862-8_47
http://dx.doi.org/10.1007/978-3-642-54862-8_47

66 Horn clause verification through constraint specialisaiad abstract interpretation

[15] S. Debray & R. Ramakrishnan (1994)bstract Interpretation of Logic Programs Using Magic Tsior-
mations Journal of Logic Programmin§)8, pp. 149-176. Available atttp://dx.doi.org/10.1016/
0743-1066(94)90050-7.

[16] F. Fioravanti, A. Pettorossi & M. Proietti (2002%pecialization with Clause Splitting for Deriving Deter-
ministic Constraint Logic ProgramsIn: In Proc. IEEE Conference on Systems, Man and Cybernetics,
HammametlEEE Press. Available atttp://dx.doi.org/10.1109/ICSMC.2002.1167971.

[17] F. Fioravanti, A. Pettorossi, M. Proietti & V. Senni (BB): Controlling Polyvariance for Specialization-
based Verification Fundam. Inform124(4), pp. 483-502. Available attp://dx.doi.org/10.3233/
FI-2013-845.

[18] J. P. Gallagher & L. Lafave (1996Regular Approximation of Computation Paths in Logic and &tional
Languagesin O. Danvy, R. Glick & P. Thiemann, editorBartial EvaluationSpringer-Verlag Lecture Notes
in Computer Scienc#110, pp. 115-136. Available attp://dx.doi.org/10.1007/3-540-61580-6_
7.

[19] G. Gange, J. A. Navas, P. Schachte, H. Sgndergaard &Rudkey (2013)Failure tabled constraint logic
programming by interpolationTPLP13(4-5), pp. 593-607. Available attp://dx.doi.org/10.1017/
S1471068413000379.

[20] S. Grebenshchikov, A. Gupta, N. P. Lopes, C. Popeea &barkchenko (2012)HSF(C): A Software Verifier
Based on Horn Clauses - (Competition Contributiol) C. Flanagan & B. Konig, editorsTACAS, LNCS
7214, Springer, pp. 549-551. Availablehattp://dx.doi.org/10.1007/978-3-642-28756-5_46.

[21] A. Gupta, C. Popeea & A. Rybalchenko (201 B5olving Recursion-Free Horn Clauses over LI+UIn
H. Yang, editor: APLAS, Lecture Notes in Computer Sciencé78, Springer, pp. 188-203. Available at
http://dx.doi.org/10.1007/978-3-642-25318-8_16.

[22] A. Gupta & A. Rybalchenko (2009)nvGen: An Efficient Invariant Generatoin A. Bouajjani & O. Maler,
editors: CAV, Lecture Notes in Computer Sciens643, Springer, pp. 634-640. Availabletattp: //dx.
doi.org/10.1007/978-3-642-02658-4_48.

[23] N. Halbwachs, Y. E. Proy & P. Raymound (199¥krification of Linear hybrid systems by means of convex
approximations In: Proceedings of the First Symposium on Static AnalykSCS 864, pp. 223-237.
Available athttp://dx.doi.org/10.1007/3-540-58485-4_43.

[24] J. Jaffar & M. Maher (1994)Constraint Logic Programming: A Surveyournal of Logic Programming
19/20, pp. 503-581. Available attp://dx.doi.org/10.1016/0743-1066(94)90033-7.

[25] J. Jaffar, V. Murali, J. A. Navas & A. E. Santosa (201PRACER: A Symbolic Execution Tool for Verification
In P. Madhusudan & S. A. Seshia, editoiGAV, Lecture Notes in Computer Scien¢858, Springer, pp.
758-766. Available aittp://dx.doi.org/10.1007/978-3-642-31424-7_61.

[26] J. Jaffar, J. A. Navas & A. E. Santosa (201Unbounded Symbolic Execution for Program Verification
In S. Khurshid & K. Sen, editorsRV, Lecture Notes in Computer Scien¢&86, Springer, pp. 396-411.
Available athttp://dx.doi.org/10.1007/978-3-642-29860-8_32.

[27] L. Lakhdar-Chaouch, B. Jeannet & A. Girault (201®jidening with Thresholds for Programs with Complex
Control Graphs In T. Bultan & P.-A. Hsiung, editorsATVA 2011, Lecture Notes in Computer Science
6996, Springer, pp. 492-502. Availablehattp://dx.doi.org/10.1007/978-3-642-24372-1_38.

[28] M. Leuschel & T. Massart (1999)nfinite State Model Checking by Abstract Interpretatior &rogram
Specialisation In A. Bossi, editor:LOPSTR’99 Lecture Notes in Computer Scient817, Springer, pp.
62-81. Available ahttp://dx.doi.org/10.1007/10720327_5.

[29] G. Levi (2000):Abstract Interpretation Based Verification of Logic Progra Electr. Notes Theor. Comput.
Sci. 40, p. 243. Available d@tttp: //dx.doi.org/10.1016/31571-0661(05)80052-0.

[30] A. Pettorossi & M. Proietti (2000)Perfect Model Checking via Unfold/Fold Transformationk J. W.
Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-K. Lau, C. Palam&d¢ L. M. Pereira, Y. Sagiv & P. J. Stuckey,
editors: Computational LogicLecture Notes in Computer Scient861, Springer, pp. 613—-628. Available
athttp://dx.doi.org/10.1007/3-540-44957-4_41,

http://dx.doi.org/10.1016/0743-1066(94)90050-7
http://dx.doi.org/10.1016/0743-1066(94)90050-7
http://dx.doi.org/10.1109/ICSMC.2002.1167971
http://dx.doi.org/10.3233/FI-2013-845
http://dx.doi.org/10.3233/FI-2013-845
http://dx.doi.org/10.1007/3-540-61580-6_7
http://dx.doi.org/10.1007/3-540-61580-6_7
http://dx.doi.org/10.1017/S1471068413000379
http://dx.doi.org/10.1017/S1471068413000379
http://dx.doi.org/10.1007/978-3-642-28756-5_46
http://dx.doi.org/10.1007/978-3-642-25318-8_16
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/978-3-642-02658-4_48
http://dx.doi.org/10.1007/3-540-58485-4_43
http://dx.doi.org/10.1016/0743-1066(94)90033-7
http://dx.doi.org/10.1007/978-3-642-31424-7_61
http://dx.doi.org/10.1007/978-3-642-29860-8_32
http://dx.doi.org/10.1007/978-3-642-24372-1_38
http://dx.doi.org/10.1007/10720327_5
http://dx.doi.org/10.1016/S1571-0661(05)80052-0
http://dx.doi.org/10.1007/3-540-44957-4_41

Bishoksan Kafle and John P. Gallagher 67

[31] A. Rybalchenko & V. Sofronie-Stokkermans (201Q@pnstraint solving for interpolationJ. Symb. Comput.
45(11), pp. 1212-1233. Available&ttp: //dx.doi.org/10.1016/j.jsc.2010.06.005.

[32] W. H. Winsborough (1989Path-Dependent Reachability Analysis for Multiple Spkzagion. In E. L. Lusk
& R. A. Overbeek, editorsNACLP, MIT Press, pp. 133-153. Availablelattp: //dblp.uni-trier.de/
db/conf/slp/slp89.html#Winsborough89.

http://dx.doi.org/10.1016/j.jsc.2010.06.005
http://dblp.uni-trier.de/db/conf/slp/slp89.html#Winsborough89
http://dblp.uni-trier.de/db/conf/slp/slp89.html#Winsborough89

	1 Introduction
	2 Preliminaries
	2.1 The CHC verification problem.
	2.2 Representation of Interpretations
	2.3 Proof Techniques

	3 Abstract Interpretation over Convex Polyhedra
	4 Specialisation by constraint propagation
	4.1 The query-answer transformation
	4.2 Over-approximation of the model of the query-answer program Pqafalse
	4.3 Strengthening the constraints in P
	4.4 Analysis of the model of the specialised clauses

	5 Safety Check and Program Refinement
	6 Experiments
	7 Related Work
	8 Conclusion and Future works

