
Hossein Hojjat and Bishoksan Kafle (Eds.): 8th Workshop on
Horn Clauses for Verification and Synthesis (HCVS 2021)
EPTCS 344, 2021, pp. 22–35, doi:10.4204/EPTCS.344.3

© Kafle, Gallagher, Hermenegildo, Klemen, López-Garcı́a and Morales
This work is licensed under the
Creative Commons Attribution License.

Regular Path Clauses and Their Application in Solving Loops

Bishoksan Kafle*

IMDEA Software Institute, Spain

John P. Gallagher
Roskilde University, Denmark

IMDEA Software Institute, Spain

Manuel V. Hermenegildo
IMDEA Software Institute, Spain

U. Politécnica de Madrid, Spain

Maximiliano Klemen
IMDEA Software Institute, Spain

Pedro López-Garcı́a
IMDEA Software Institute, Spain

Spanish Council for Sci. Research (CSIC)

José F. Morales
IMDEA Software Institute, Spain

U. Politécnica de Madrid, Spain

A well-established approach to reasoning about loops during program analysis is to capture the effect
of a loop by extracting recurrences from the loop; these express relationships between the values of
variables, or program properties such as cost, on successive loop iterations. Recurrence solvers
are capable of computing closed forms for some recurrences, thus deriving precise relationships
capturing the complete loop execution. However, many recurrences extracted from loops cannot
be solved, due to their having multiple recursive cases or multiple arguments. In the literature,
several techniques for approximating the solution of unsolvable recurrences have been proposed. The
approach presented in this paper is to define transformations based on regular path expressions and
loop counters that (i) transform multi-path loops to single-path loops, giving rise to recurrences with a
single recursive case, and (ii) transform multi-argument recurrences to single-argument recurrences,
thus enabling the use of recurrence solvers on the transformed recurrences. Using this approach,
precise solutions can sometimes be obtained that are not obtained by approximation methods.
Keywords: Horn clauses, path programs, multi-path recurrences, multi-argument recurrences.

1 Introduction

Inferring the effect of loops is a critical program analysis task, as loops can give rise to an infinite
number of program states, thus necessitating approximate solutions in general. One approach, often
used in automatic resource analysis, is to extract recurrence relations from loops, and then try to solve
the recurrences to get a closed form expression [34, 8, 7, 26, 2]. This approach has also been used for
non-linear invariant synthesis in a series of papers [11, 23, 22] by Kincaid et al. and Humenberger et
al. [19]. When the recurrences are solvable, precise solutions are obtained. By contrast, approximation
methods such as abstract interpretation over some abstract domain construct solutions whose precision
is limited by the expressiveness of the domain.

We present an approach to solving such loops formulated in terms of constrained Horn clauses
(CHCs), which are capable of expressing the semantics of imperative programs [28, 17, 24, 13, 14,
16, 6, 21, 12]. Clauses are assumed to have numerical variables (of infinite precision); we assume that
variables values have been abstracted with respect to their numerical sizes, by performing a program
transformation that uses the desired metrics (such as list length, term depth, term size, etc. [26]).

Existing computer algebra systems (CASs) are powerful tools that can obtain an exact closed-form
solution for many mathematical recurrences, usually deterministic single-argument recurrences with a
single recursive case. However, many loops give rise to recurrences that are not of this form and are
unsolvable by CASs. That is, they contain multiple recursive cases, or define functions with multiple
arguments, or both.

*Email. bishoksan.kafle@imdea.org

http://dx.doi.org/10.4204/EPTCS.344.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Kafle, Gallagher, Hermenegildo, Klemen, López-Garcı́a and Morales 23

On multiple recursive cases. Our approach differs from previous works [11, 23, 22, 2] on treating
multi-path loops that give rise to multiple recursive cases, in that we transform each multi-path loop
into a program containing nested loops, each of which has a single path. The transformation preserves
all the different paths and uses regular path expressions. Previous approaches generate one recursive
equation for each multi-path loop by merging different loop paths, which may result in a significant
loss of precision. Various forms of control-flow refinement [15, 31] can transform a restricted form of
multi-path loops, called multi-phase loops, into a semantically equivalent sequence of single path loops.
Polyvariant specialisation [10, 25, 30] can achieve the same goal. These specialisation techniques are in
any case orthogonal and complementary to the ones that we propose.

As regards solving, Kincaid et al. [11, 23, 22] can obtain a closed-form solution of a system of
inequations, whereas, like [2], we rely on existing CASs to obtain a closed-form solution of a system
of recurrences. Humenberger et al. [19] can generate polynomial invariants from multi-path numeric
loops with polynomial assignments (also known as extended p-solvable loops). They take each single
path loop separately, derive a system of recurrences from it and solve them to a closed-form. Then, from
the closed-form, they derive the polynomial invariant ideal and combine the ideals of each loop-path
iteratively until a fixed-point is reached. In contrast to this, we do not need a fixed point computation that
exploits the special properties of polynomial ideals, but rather aim to transform multi-path loops into a
form to which existing solvers can be applied.

On multiple-argument functions. Our approach in this area is motivated by and adapted from the
work of Farzan and Kincaid [11]. In their work, separate recurrences are derived by constructing, for
each argument, a function of one argument, namely a loop counter k, which defines the value of the
argument on the kth loop iteration. We go beyond [11] and present a systematic approach for constructing
these functions, based on regular path programs, and show that the separate recurrences can be solved
to yield a solution for the original multi-argument recurrence. In [2] the recurrence is re-expressed as
a function of a single loop counter variable, but separate functions are not derived for each argument.
Farzan and Kincaid [11] use a quantifier elimination procedure available only to a handful of theories to
eliminate the counter, whereas we follow the approach of Albert et al. [2] in using a ranking function to
estimate its value.

In both of the aspects above, the concept of a path program plays an essential role in our approach.
The main contributions of the paper are as follows:

• A transformation that reformulates multi-path loops (that give rise to recurrences with multiple
recursive cases) as single-path loops (that give rise to recurrences with single recursive case) (§3).

• A transformation that derives single argument recurrences from multi-argument ones (§4).

The paper is organized as follows. After covering introductory materials in §2, we introduce regular path
programs in §3 and path programs with counters in §4. Finally, we present concluding remarks in §6.

2 Preliminaries

We assume that a program P is represented as a set of constrained Horn clauses (CHCs) of the form
c : p(x)← φ ∧ p1(xi)∧ . . .∧ pn(xn),n ≥ 0, where c is a unique identifier for the clause in P, p and
pi are predicates, x and xi are sequences of distinct variables (the symbol x represents a sequence of
variables x1, . . . ,xn), and the formula φ is a conjunction of constraints over some constraint theory T.
Sometimes we treat a conjunction of constraints as a set of constraints. p(x) is called the head and

24 Regular Path Clauses and Their Application in Solving Loops

φ ∧ p1(xi)∧ . . .∧ pn(xn) is called the body of the clause. If n = 0, then the clause is called a constrained
fact, if n ≤ 1 then it is called a linear clause and non-linear if it is not linear. For convenience we
sometimes write an empty conjunction as true, thus a constrained fact p(x)← φ is sometimes written as
as p(x)← φ , true; and the head of the clause can be the predicate false. A program is called linear if it
contains only linear clauses. Normally, we write a clause as p(x)← φ , p1(xi), . . . , pn(xn) using comma
instead of ∧. The expression vars(t) represents the set of variables of a term t.

A finite leftmost-derivation (or simply derivation) in a program P is a sequence ← G0, . . . ,← Gn

where for 0 ≤ i ≤ n− 1 Gi = ϕi,q1(y1), . . . ,qk(yk), P contains a (suitably renamed) clause q1(y1)←
φ ,r1(z1), . . . ,rm(zm), φi+1 = ϕi∧φ and Gi+1 = ϕi+1,r1(z1), . . . ,rm(zm),q2(y2), . . . ,qk(yk). The deriva-
tion is feasible if ϕn is satisfiable. A derivation is successful if it is feasible and Gn = ϕn, true.

c1. wh(a,b)← a> 0,b> 0,wh(a,b−1)
c2. wh(a,b)← a> 0,b≤ 0,wh(a−1,b+a)
c3. wh(a,b)← a≤ 0

wh true

c1

c2

c3

Figure 1: (left) Multi-path loop and (right) its CFG.

Definition 1 (Control flow graph, path, loop) A control flow graph (CFG) of a linear program P is a
labelled directed graph 〈N,E〉 where

• N is a set of nodes consisting of predicates of P (including true and false);

• E is a set of labelled edges. There is an edge from p to p1 labelled by c if there is a clause
p(x)← φ ∧ p1(x1) ∈ P having identifier c.

A path of length n (n≥ 0) in a CFG is a possibly empty sequence of n connected edges, and is written
as a sequence of edge labels. A loop is a non-empty path which starts and ends with the same node n
and does not visit n in between. A loop is directly recursive if it is of length 1.

Figure 1 shows an example of a linear program and its CFG.
Let c1 . . .cn (n≥ 0) be a (possibly empty) path in the CFG for P. Then the derivation←G0, . . . ,←Gn

corresponds to c1 . . .cn if (i) G0 = ϕ0, p0(x0), where ϕ0 is empty and (if n > 0) the edge c1 starts at p0;
(ii) for 1≤ i≤ n, Gi−1 = ϕi−1, pi(xi) and ci is the identifier of a (renamed) clause pi−1(xi−1)← φi, pi(xi)
in P, ϕi = ϕi−1∧φi and Gi = ϕi, pi(xi). If n = 0 then p0 is an arbitrary predicate from P.

We say that a path is feasible or successful if and only if the derivation corresponding to the path is
feasible or successful respectively.

Definition 2 (Recurrence equation) A recurrence equation is an equation of the form f(x) = e(x)+
∑

n
i=1 ai ∗ fi(xi),φ where e(x) is an arbitrary arithmetic expression, ai some constant, f and fi are function

symbols, where fi is not necessarily different from f, x,xi are sequence of variables and φ is a formula
over Z. If n≤ 1, then it is called a linear (recurrence) equation.

A set of such equations is called a (recurrence) equation system. Each equation in a system is given an
id which uniquely identifies it. A linear equation system is the one in which all equations are linear.

Definition 3 (Equation graph) An equation graph (EG) of a linear equation system S is a labelled
directed graph GS = 〈N,E,entry,exit〉 where

Kafle, Gallagher, Hermenegildo, Klemen, López-Garcı́a and Morales 25

c pathc(p(x),q(x′))← φ .,where clause p(x)← φ ,q(x′) ∈ P has identifier c
ε pathε(p(x), p(x))← true.

/0 no clause
e1e2 pathe1e2

(p(x),z)← pathe1
(p(x),q(x′)),pathe2

(q(x′),z)., for each q ∈ firstpred(e2)

e1 + e2 pathe1+e2
(p(x),z)← pathe1

(p(x),z).
pathe1+e2

(p(x),z)← pathe2
(p(x),z).

e∗ pathe∗(p(x), p(x))← true.
pathe∗(p(x), p(x′′))← pathe∗(p(x), p(x′)),pathe(p(x′), p(x′′)).

Figure 2: Formation of path clauses corresponding to a regular expression e, starting from node p.

• N is a set of nodes consisting of functions of S,

• E is a set of edges. There is an edge from f to f1 labelled by eq if there is an equation (f(x) =
e(x)+a1 ∗ f1(x1),φ) ∈ S having identifier eq.

• entry and exit respectively represent the entry and the exit node of GS.

3 Regular path clauses

In this section we introduce path predicates and clauses; given a set of linear CHCs P, the meaning of
the predicate pathe(p(x),q(x′)), where e is a regular expression describing paths in the CFG for P, is that
(i) there is a feasible path in the CFG for P starting from the node p and ending at the node q, such that
the path is contained in the set described by e and (ii) p(x) and q(x′) are the atoms at the start and end
of the derivation corresponding to the path. (We abuse notation and overload p and q as both function
and predicate symbols). A well known algorithm by Tarjan [33] computes a regular path expression
describing all paths in the CFG from a designated entry node to an exit node. We previously developed
an interpreter that is guided by a regular path expression [12], and partially evaluated it with respect to
a set of linear CHCs P. Here, we outline the idea behind the interpreter, which is that given a regular
expression e, each subexpression of e defines a set of subpaths, which are composed to give the overall
paths. These path predicates are defined by non-linear CHCs even though the CFG is defined from a set
of linear CHCs.

Regular expressions e over some alphabet Σ are expressions of the form e ::= c | ε | /0 | e1e2 | e1 +
e2 | e∗, where c ∈ Σ. Σ in this case is the set of clause identifiers in P. Given a set of linear CHCs P,
construct its CFG. Compute a regular path expression from the entry node to the exit node of the CFG.
Recall that for any regular expression e, we can compute the set first(e), which is the set of elements of Σ

that can start a path described by e. An element of first(e) is thus an edge in the CFG, corresponding to a
clause in P. The function firstpred(e) returns the set of predicates in the head of some element of first(e).
Figure 2 shows how path clauses are constructed based on the structure of the regular expressions. Note
that we choose to define the clauses for an expression e∗ using left recursion, that is, corresponding to the
expansion e∗ = ε + e∗e, rather than the equivalent e∗ = ε + ee∗, which might be expected. This enables
the generation of suitable recurrence equations, which will be discussed in Section 4.

Theorem 1 Let P be a set of linear CHCs, G be its CFG and let p and q be (possibly identical) predicates
in P (including false and true). Let e be a regular expression describing all paths from p to q in the
CFG. Then there is a feasible derivation← p(x), . . . ,← ϕn,q(x′) in P if and only if there is a successful
derivation← pathe(p(x),q(x′)), . . . ,← ϕn, true in the path clauses for P and e.

26 Regular Path Clauses and Their Application in Solving Loops

In other words, the path clauses capture all feasible derivations of the original set of clauses P. It should
be emphasised that the path clauses capture derivations in P, as stated by Theorem 1, but the path clauses
themselves are not intended as an executable program. Clearly the left-recursive form is not amenable
to execution with the standard computational strategy, and the epsilon steps after loops are likely to
introduce non-determinism. So is not the intention to analyse the computational cost of the path program
or its termination behaviour. The only property of the path clauses that we exploit in Section 4 is that path
predicates capture the relationship between the values of variables at the start and end of derivations in
P. The notion of path clauses is related to the big-step semantics [12] and path predicaes are sometimes
called summary predicates.

3.1 Eliminating multi-path loops

Theorem 1 holds for any expression e that describes all paths from p to q in the CFG, thus we can freely
transform e into an equivalent expression e′ and perform the generation of the path clauses with respect
to e′. A regular expression of the form (e1 + · · ·+ em)

∗ is called a multi-path-loop expression, where
e1, . . . ,em are the paths through the loop. Any regular expression can be transformed to an equivalent
regular expression not containing any multi-path-loop expression, by repeatedly replacing any subex-
pression of the form (e1 + e2)

∗ by an equivalent regular expression (e∗1e∗2)
∗, e∗1(e2e∗1)

∗, or e∗2(e1e∗2)
∗,

among others. We discuss the choice of replacement expression in Section 6.
An algorithm for removing multi-path loops using regular expression transformation is given in Alg.

1. Given a set of linear clauses with its CFG and distinguished entry and exit nodes, it first computes
regular expression describing all paths from entry to the exit node using using Tarjan’s algorithm [33].
The expression is then rewritten without the choice (+) operator which is then used to transform the
original program based on Figure 2. The resulting program does not contain multi-path loops.

Algorithm 1 Algorithm for removing multi-path loops
1: Input: CFG G of linear clauses P, entry node p and exit node q
2: Output: Program P′ without multi-path loops
3: e← reg path expr(G, p,q) . Compute regular path expression [33]
4: e← rewrite wo choice(e) . Rewrite e without choice operator within star
5: P′← construct path cls(P,e, p) . Figure 2
6: return P′

Theorem 2 The output of Algorithm 1 is a program that contains no multi-path loop.

path(wh(a,b), true)← wh2(a,b,a
′,b′),wh5(a

′,b′,a′′,b′′), a′′ ≤ 0.
wh2(a,b,a,b)← true.
wh2(a,b,a

′,b′−1)← wh2(a,b,a
′,b′), a′ > 0, b′ > 0.

wh5(a,b,a,b)← true.
wh5(a,b,a

′′,b′′)← wh5(a,b,a
′,b′), a′ > 0, b′ ≤ 0,wh2(a

′−1,b′+a′,a′′,b′′).

Figure 3: The path clauses for Fig. 1 (left) wrt c∗1(c2c∗1)
∗c3 (equivalent to (c1 + c2)

∗c3).

Example 1 Let P be the set of clauses in Figure 1 (left). A regular path expression for paths in its CFG
from wh to true is (c1 + c2)

∗c3. An equivalent path expression with no multi-path-loop expressions is
c∗1(c2c∗1)

∗c3. Figure 3 shows the path clauses for P derived using the latter expression, after some path
predicates have been unfolded and the following renamings applied: wh2(a,b,a′,b′) is a renaming of
pathc∗1

(wh(a,b),wh(a′,b′)) and wh5(a,b,a′,b′) is a renaming of path(c2c∗1)
∗(wh(a,b),wh(a′,b′)).

Kafle, Gallagher, Hermenegildo, Klemen, López-Garcı́a and Morales 27

Thus we can replace the original problem of analysing a multi-path loop by the problem of analysing
a program with nested single-path loops. In the example, the predicate wh2 is nested within wh5. Fur-
thermore, each loop predicate has multiple input and output values. In the next section, we investigate
how to analyse the relationship between the input and output values of each loop.

4 Regular path clauses with counters

In Section 3 it was shown that multi-path loops could be eliminated in path clauses, by transforming
the regular path expression for the loop. Thus, all loops after the transformation are represented by a
single directly recursive path clause of the form: pathe∗(x,x2)← pathe∗(x,x1),pathe(x1,x2). Here
pathe(x1,x2) is the path for the loop body, which may itself contain loops, but these do not depend
on the recursive predicate pathe∗ and can be solved separately; let us say that the solution is an ex-
pression φ(x1,x2). Then the loop to be solved is a single directly recursive clause pathe∗(x,x2)←
φ(x1,x2),pathe∗(x,x1). Due to the left-recursive form of the path, the input arguments x remain con-
stant from one recursive call to the next; this is an important property when forming recurrence equations,
as will be seen.

We now introduce a counter k to such clauses, representing the length of the loop path. This allows
us to capture the effect of the loop after k iterations. After adding the counter, we obtain the following
clauses for each single-path loop. k is considered to be an input and is decremented until it reaches 0.

pathe∗(k,x,x2)← k> 0,φ(x1,x2),pathe∗(k−1,x,x1).
pathe∗(k,x,x)← k= 0.

We also assume that there is a ranking function [32, 29, 3] for the loop, guaranteeing termination; that
is, there is an upper bound on the number of iterations k. A ranking function for the loop is a function
on the input values such that r(x) ∈ N and φ(x1,x2)→ r(x1)> r(x2). Thus the maximum value of k in
successful derivations starting from pathe∗(k,x,x2) is r(x).

Example 2 Consider a loop clause wh(x1,y1)← x1 > 0,y1 > 0,x2 = x1−1,y2 = y1+x1,wh(x2,y2).
Starting from the input, (x1,y1), we aim to find the values of these variables when the loop terminates, in
terms of the original ones when entering the loop. For this purpose, let us first define a path of length k
going from (x,y) to (x2,y2) as a relation path(k,x,y,x2,y2). The clauses for path are as follows.

path(k,x,y,x2,y2) ← k> 0,k1 = k−1,x2 = x1−1,y2 = y1+x1,
path(k1,x,y,x1,y1),x1 > 0,y1 > 0.

path(k,x,y,x,y) ← k= 0.
The recursive clause can be read as saying: if there is a path of length k−1 from (x,y) to (x1,y1), and

x1 > 0,y1 > 0, then the path can be extended on the right to a path of length k from (x,y) to (x2,y2), where
(x1,y1,x2,y2) satisfy the constraints from the loop clause above. In other words, path(k,x,y,x2,y2)
means that given x,y,k as inputs, x2 and y2 are the values of x and y after k iterations of the wh loop.

4.1 Deriving recurrences from path clauses with counters

Given such a loop clause with a counter, we formulate recurrence equations for each of the variables at
the end of the path (called the output variables of the loop). This can be done systematically using the
method described in [9, 26]; here we give an informal account of the construction. Given pathe∗(k,x,y)
representing a loop predicate p, where x,y are m-tuples of variables respectively representing the values
of variables at the start and end respectively of the path, each of the m variables in y is a function of k,x.

28 Regular Path Clauses and Their Application in Solving Loops

This is due to the fact that given k and x, the values of the output y are completely determined. Hence, we
can define m functions p1(k,x), . . . ,pm(k,x), giving the value of the respective elements of the m-tuple y.
That is pathe∗(k,x,y) is equivalent to p1(k,x) = y1∧ . . .∧pm(k,x) = ym. The recurrence equations are
then obtained by substituting this functional expression for the pathe∗ atoms in the loop clauses.

We say that function f depends on function g in a system of recurrences S if g is needed in order to
evaluate f . There is a cyclic dependency between f and g if they depend on each other. If S contains no
cyclic dependencies, then we can send the recurrences to a CAS to be solved in topological order.

Example 3 (Continued from Example 2) Define two functions whx(k,x,y) and why(k,x,y) defining the
values of x and y after k iterations of the wh loop. The functions are defined as follows.

whx(k,x,y) =

{
whx(k−1,x,y)−1, f or k > 0,
x, f or k = 0

(1)

why(k,x,y) =

{
why(k−1,x,y)+whx(k−1,x,y), f or k > 0,
y, f or k = 0

(2)

Since there are no cyclic dependencies between whx and why, they can be solved in reverse topological
order of the strongly connected components (SCCs); that is equations for whx are solved first and then
equations for why, reusing solutions from the lower to the higher SCC when necessary.

4.2 Removal of symbolic constant arguments

Since Equation 1 has multiple arguments, it is not a mathematical recurrence that can directly be solved
by the CASs. Note, however, that the arguments x,y remain constant and unconstrained throughout all
recursions of the equation. In other words, x and y play no role in the recursive case of Equation 1; x
appears in the base-case and will be present in the solution of the equation. But they can be removed
as arguments of whx and the occurrence of x in the base case can be replaced by a constant function
returning x. The resulting recurrence equation will have the same solution as the original. We call
this type of arguments symbolic constants, and propose a method for inferring which arguments can be
classified as such in Section 4.3.

Example 4 (Continued from Example 3) Making these transformations, we obtain the simplified Equa-
tion 3, where cx is a constant function representing the argument x. We abuse notation and overload whv

with different arities throughout the paper.

whx(k) =

{
whx(k−1)−1, f or k > 0,
cx, f or k = 0

(3)

Observe that this equation does satisfy the syntactic form required by the CASs and can be solved to
obtain whx(k) = cx − k as a solution. This is also the solution of Equation 1, as we shall see later
(Lemma 1). Thus, we have whx(k,x,y) = x− k. Replacing the solution of whx(k,x,y) in Equation 2 and
simplifying, we obtain Equation 4:

why(k,x,y) =

{
why(k−1,x,y)+ x− k+1, f or k > 0,
y, f or k = 0

(4)

Now, following similar reasoning, x and y are classified as symbolic constants. This allows further
simplification, generating Equation 5:

why(k) =

{
why(k−1)+ cx− (k−1), f or k > 0,
cy, f or k = 0

(5)

Kafle, Gallagher, Hermenegildo, Klemen, López-Garcı́a and Morales 29

which can be solved to yield why(k) = cy− 1
2 k(k−2x−1) and hence why(k,x,y) = y− 1

2 k2 + kx+ 1
2 k.

This approach has advantages and disadvantages: on the one hand (i) identifying symbolic constants
and simplifying equations can be done locally, for instance, at SCC level (where global analysis is not
required) and (ii) when solving equations corresponding to a higher SCC, all variables except the counter
k in lower SCCs become symbolic constants resulting in equations with an unary argument k.

On the other hand, the solution shifts the problem to estimating the value of the path counter variable
(k) in terms of the original arguments. Observe that k decreases precisely by 1 in each recursive call to
the function and always stays non-negative. Since k cannot always be computed precisely, it needs to
be approximated. As mentioned earlier, we assume that the loop has a ranking function that decreases
at least by 1 in each recursive call. Let r be the value of the ranking function in the initial state. Then,
k ∈ [0,r] is a safe bound for k.

Example 5 (Continued from Example 4) Going back to the original loop clause in Example 2, a rank-
ing function for wh(x,y) is x (or more precisely max(0,x), but we assume that x may not have negative
values). Let us say that wh(x1,y1) is the call at the start of the loop. Then the loop executes k times where
k is in the interval [0,x1]). Substituting this interval for k in the solutions of Equations 1 and 2 and using
interval arithmetic, we can infer that, when the loop terminates, the values of x1 and y1 lie in intervals
[0,x1] and [y1−1/2x2

1,y1 +1/2x1 + x2
1] respectively.

The use of interval arithmetic gives sound results but can lose precision, in particular since the value
substituted for k should be the same for both output variables x and y. This is a well known source of im-
precision in interval arithmetic; for instance, the interval approximation of x∗ x where x is in the interval
[−1,1] is [−1,1] since it includes the result −1∗1, whereas taking into account that the same value of x
is used for each occurrence would give the positive interval [0,1] since the sign of both multiplicands is
the same. However, for the inference of upper bounds, interval arithmetic is expected to give reasonable
results. Further experimentation will be needed.

Summary of the procedure. Based on the discussion above, we outline below the steps for inferring
relations between variables before and after the loop (also known as loop summaries). We assume that
the loop is defined by a single recursive linear path clause; that is, multi-path loops have been eliminated
by the technique presented in Section 3, and the loop body (defined by predicates in lower SCCs of the
path clauses) has been solved.

1. Given a loop clause expressed as a single recursive path clause, add a counter k to the clause, with
a base case where k = 0.

2. Then, given an input tuple x and k, set up equations for output tuple z using the path clause, using
methods such as as in [9].

3. Transform multi-argument equations to single-argument equations by detecting and removing
symbolic constants, as discussed in Section 4.3.

4. Solve the resulting equations using CASs and replace the path counter in the solution with the
value of the ranking function in the initial state of the original loop clause.

4.3 Inference of symbolic constants

In the procedure above, multi-argument functions were transformed to single-argument functions by
removing arguments that were symbolic constants. Symbolic constants can be detected using an adapted

30 Regular Path Clauses and Their Application in Solving Loops

data flow analysis technique based on reaching definitions [27], RD for short. RD provides information
about where variables have most recently obtained their values. We adapt it for a system of linear
recurrence equations.

The algorithm assigns to each node of an EG a set of pairs of the form (v,e) to express the fact that
the variable v may have been last defined (or constrained) in the equation e. We refer the readers to [27]
for details on the analysis. Next, we explain how the central concept of a “definition” of a variable is
adapted for linear equation systems.

Definition 4 (Defined and constrained variable) Given an EG 〈V,E,entry,exit〉 of a linear equation
system, a variable v is defined in the edge e, where e is the equation (p(x) = expr(x)+ a1 ∗q(x′),φ) if
φ |=T v 6= v′, where v′ ∈ x′ and v ∈ x are the corresponding occurrences of an argument in the right and
left sides of e. We denote it by (v,e)d . Similarly, v is constrained in that edge if v ∈ vars(projectx(φ)).
We denote it by (v,e)c.

Based on this definition we now define symbolic constants.

Definition 5 (Symbolic constant) Given an EG of a linear system of equations S, a variable of S is
called a symbolic constant if it is neither defined nor constrained in any edges of the EG.

That is, when adapting RD analysis to infer symbolic constants for a linear system of equations, we
consider a weaker notion of “defined variable” and say that a variable is defined (denoted as (v,e)) if
(v,e)d ∨ (v,e)c. With this definition, the standard analysis can be used as follows. Let GS be an EG of
some equation system S and let rd(n) denote the results of the analysis for node n.

• Compute RD assignment for GS, starting with rd(n) = /0 for all nodes n of GS. Let rd(exit) be the
result for the exit node.

• Let V be a set of variables of interest. v ∈ V is a symbolic constant if (v,) 6∈ rd(exit). In other
words, no definition of v reaches the exit node. Since it was not defined or constrained on entry,
we can conclude that it was never defined or constrained in S.

Example 6 (RD analysis and symbolic constants) Let GS = 〈N,E,entry,halt〉 below be the EG of Equa-
tion 1 with its cases labelled as edges e1 and e2, where N = {entry,whx,halt} and E = {e0,e1,e2}, where
e0 is the entry edge from entry to whx. The result of the analysis of GS is as follows.

rd(entry) = /0, rd(whx) = {(k,e1)}, rd(halt) = {(k,e2)}

It is easy to see that (i) (k,e1)
d ∧ (k,e1)

c: k is both defined and constrained in the recursive equation
e1; (ii) (k,e2)

c: k is only constrained in the base case e2; and (iii) variables are neither defined nor
constrained in e0. Since (x,) 6∈ rd(exit) and (y,) 6∈ rd(exit), both x and y are symbolic constants.

Lemma 1 (Soundness of removing symbolic constants from equations) Let S be a system of equa-
tions and V be a set of symbolic constants such that U ⊆V appear as arguments of a function f in S. Let
S′ be an another system obtained by removing the variables in U from arguments of f and replacing any
other occurrences of variables in U by constant functions that return the initial value they are assigned
when evaluating a call to f . Then S and S′ have the same solution.

4.4 Solving multi-argument recursive equations

In previous sections, we showed how to solve loops represented as clauses using recurrences. We can ap-
ply the same technique to solve some equations with multi-argument functions by first transforming them

Kafle, Gallagher, Hermenegildo, Klemen, López-Garcı́a and Morales 31

to tail-recursive clauses and solving them. It is not always possible to transform all the recursive calls to
tail recursive calls but we can rewrite some programs, for example, using accumulator(s), continuation-
passing style (introducing a stack) or the standard techniques based on unfold-fold transformations [4]
to achieve the required form. In this paper, we make use of the latter as it fits well with our approach.

Consider the simple case of recurrence equations of Definition 2, namely f(x) = e(x)+ f(xi),φ or
f(x) = e(x),φ . Functions of this form can be transformed by unfold-fold to a tail-recursive accumulating
form, which can then be written as CHCs of the required form. We illustrate this with an example below.

wh(x1,y1) =

{
x1+y1+1+wh(x1−1,y1+1) for x1 > 0

0 for x1 ≤ 0
(6)

Following a fold-unfold transformation, we can obtain the following equivalent system of equations.

wh(x1,y1) =

{
wh aux(x1−1,y1+1,x1+y1+1) for x1 > 0

0 for x1 ≤ 0
(7)

wh aux(x1,y1,z1) =

{
wh aux(x1−1,y1+1,x1+y1+1+z1) for x1 > 0

z1 for x1 ≤ 0
(8)

The recursive function wh aux can now be solved by transforming its first equation into the CHC.

wh aux(x1,y1,z1,w1)← x1 > 0,x2 = x1−1,y2 = y1+1,z2 = x1+y1+1+z1,w2 = w1
wh aux(x2,y2,z2,w2).

This loop clause has ranking function x1. The corresponding path clauses with counter k is given as:

path(x,y,z,w,k,x2,y2,z2,w2)← x1 > 0,k> 0,k1 = k−1,
x2 = x1−1,y2 = y1+1,z2 = x1+y1+1+z1,w2 = w1
path(x,y,z,w,k1,x1,y1,z1,w2).

path(x,y,z,w,k,x,y,z,w)← k= 0.
Given x,y,z,w,k as inputs, the value of z2 represented as wh auxz(x,y,z,w,k) is given by the following
equation, where we abbreviate wh aux by f.

fz(x,y,z,w,k) =

{
fx(x,y,z,w,k−1)+fy(x,y,z,w,k−1)+1+fz(x,y,z,w,k−1), for k > 0,
z, for k = 0

(9)

Assume that we have already computed the following: fx(x,y,z,w,k) = x−k and fz(x,y,z,w,k) = y+k.
Reusing them in Equation 9 and simplifying, we obtain Equation 10.

fz(x,y,z,w,k) =

{
x+ y+1+fz(x,y,z,w,k−1), f or k > 0,
z, f or k = 0

(10)

Noting that x, y, z and w are symbolic constants, this can be solved to yield whz(x,y,z,k) = z+ k ∗ (x+
y+1). Now, mapping the results back to the original clause, we will have k ∈ [0,x1] and the value of z1
after the termination of the loop in [z1,z1 + x1 ∗ (x1 + y1 +1)], which is the solution of Equation 8.

5 Solving the running example using interval arithmetic

We have now described all the necessary components for solving the running example in Fig. 1. We
proceed to solve it by solving the corresponding path clauses in Fig. 3 in the reverse topological or-
der of its SCC graph. That is, we first solve clauses corresponding to wh2, and then clauses for wh5

32 Regular Path Clauses and Their Application in Solving Loops

and finally path. Solving the clauses 2 and 3 following the procedure described above, we obtain
wh2(a,b,a

′,b′)← a′ = a,b′ = b−k1,0≤ k1 ≤ b where k1 is the counter of the loop which is bounded
from above by its ranking ranking function b. Now, clause 5, after reusing the solution of wh2(a,b,a′,b′),
becomes a linear clause

wh5(a,b,a
′′,b′′)← wh5(a,b,a

′,b′), a′ > 0, b′ ≤ 0,a′′ = a′−1,b′′ = b′+a′−k1,0≤ k1 ≤ b′+a′.

Note that the counter variable k1 is not eliminated but rather carried along. Further, note that, its upper
bound can be simplfied to 0≤ k1 ≤ a′ since b′ ≤ 0 yielding a simplified clause:

wh5(a,b,a
′′,b′′)← wh5(a,b,a

′,b′), a′ > 0, b′ ≤ 0,a′′ = a′−1,b′′ = b′+a′−k1,0≤ k1 ≤ a′.

Now solving this clause along with clause 4, we get

wh5(a,b,a
′,b′)← a′ = a−k2,b

′ = b+
1

2
∗k2(2∗a−k2−2∗k1+1),0≤ k1 ≤ a′+1,0≤ k2 ≤ a.

Finally, we reuse the solution of wh2(a,b,a′,b′) and wh5(a,b,a
′,b′) in the path clause obtaining

path(wh(a,b), true)← a′ = a,b′ = b−k3,0≤ k3 ≤ b,a′′ = a′−k2,
b′′ = b′+ 1

2
∗k2(2∗a′−k2−2∗k1+1),0≤ k1 ≤ a′′+1,0≤ k2 ≤ a′, a′′ ≤ 0.

Note that a′′ and b′′ represent the values of variables a and b after the loop in Fig. 1 terminates. Since we
are in the top-level, we simplify the final expression for a′′ and b′′ using interval arithmetics by replacing
the counter variables with their corresponding bounds. Let us first express b′′ in terms of input variables.

b′′ = b′− 1
2
∗k2(−2∗a′+k2+2∗k1−1)

= b′− 1
2
∗a(−a+2∗k1−1) (a′ = a,a′′ = a′−k2,a

′′ ≤ 0,k2 ≤ a′→ k2 = a)
= b′+ 1

2
∗a(a−2∗k1+1)

= b′+ 1
2
∗a(a−2∗ [0,1]+1) (k1 ∈ [0,a′′+1],a′′ = a−k2,k2 = a→ k1 ∈ [0,1])

= b′+ 1
2
∗a([a−1,a+1])

= [0,b]+ [1
2
∗a(a−1), 1

2
∗a(a+1)] (b′ = b−k3,k3 ∈ [0,b]→ b′ ∈ [0,b])

= [1
2
∗a(a−1),b+ 1

2
∗a(a+1)]

Thus, we have 1
2
∗a(a−1)≤ b′′ ≤ b+ 1

2
∗a(a+1) when the program terminates. Similarly, we obtain

a′′ = 0 as we have a′ = a,k2 = a, a′′ = a′−k2.

6 Discussion and future work

We presented an approach to solving numerical linear loops with linear or polynomial assignments, in
which a central concept is that of a path program, to transform (i) recurrences with multiple recursive
cases into recurrences with only single recursive case, and (ii) recurrences with multiple arguments into
a set of recurrences for functions having only a single argument. Our approach, besides dealing with
these, ensures that all loops in the resulting program are directly recursive (no mutual recursion) and
recurrences are expressed in terms of an induction variable k (the path counter) allowing the recurrences
to be solved and focussing the analysis problem on finding bounds for k. We suggested that it can be
bounded from above by the value of a ranking function of the corresponding loop. These transformations
help to overcome typical limitations of CASs, since recurrences for multi-case, multi-argument functions
are usually not syntactically supported by these tools. But the success of our method depends on external

Kafle, Gallagher, Hermenegildo, Klemen, López-Garcı́a and Morales 33

tools such as ranking function synthesisers and CASs. As another limitation, our approach takes a multi-
path loop and turns it into nested single-path loops. The result of such a transformation using regular
expressions is linear in the number of paths, since our approach produces one path predicate for each
distinct subexpression of the regular path expression [12], and the number of distinct subexpressions in
the transformed expressions is linear in the number of paths. However, transforming a given program
into a multi-path loop expression of form (e1 + . . .+ en)

∗ could cause an exponential blow-up in size;
for example, the number of paths through a loop consisting of a sequence of conditionals is exponential
in the number of conditionals. This may prove to be a bottleneck in real applications. Finally, the
transformations are limited to linear clauses since they rely on specific properties of regular expressions,
but techniques for linearisation of clauses can sometimes be applied.

The approach seems promising though much work remains, both theoretical and experimental. Our
immediate task is experimentation with a first implementation of the transformations, and integration
into an existing resource analysis tool [18]. Embedding this approach inside a recurrence solver such as
Mathematica [1] could also provide several advantages: additional simplification and pre-solving, early
detection of patterns, extrapolation and their propagation, and access to an efficient implementation.

With regard to the removal of multi-path loops through transformations based on a regular path
expression, we have made some preliminary investigations on choosing good regular expression trans-
formations. There are several (if not an infinite number) of valid equivalent transformations that induce
different path programs. The choice of such expression can affect precision of the analysis (though
not its soundness). The role of lexicographical ranking functions for multi-path loops seems to be a
promising aspect to investigate. For instance, for a loop whose regular expression is (a + b)∗, rep-
resenting a loop with two paths a and b, suppose there is a lexicographical ranking function 〈ra,rb〉,
where ra and rb are the ranking functions for paths a and b respectively. That is, the sequence of pairs
〈ra(x1),rb(x1)〉,〈ra(x2),rb(x2)〉, . . . is lexicographically ordered, where x1,x2, . . . is the sequence of val-
ues of loop variables in successive loop iterations. In this case, the replacement expression b∗(ab∗)∗

seems better than the equivalent a∗(ba∗)∗. We might also compute a refined expression (possibly not
equivalent to the original) that produces sound results (preserving the feasible paths) but is more precise
than the original. The latter has been studied in [5], and we believe that it is closely related to control-
flow refinement for resource and termination analysis [10] or program specialisation, as performed in
polyvariant analyzers [25, 30].

With regard to elimination of multi-argument functions in recurrences, replacing them by single-
argument functions of a loop counter, the key issue to investigate is how to improve the bounds on the
counter’s value. We are using a ranking function, but this could be combined with other techniques, such
as deriving invariants from the whole program, to improve the bounds. Interval arithmetic, which we
used here, in general also loses precision, but could be combined with other analyses. The form of the
chosen regular path expression can also play a role in the analysis of the bounds. For example, the path
expression for a loop contains an ε expression (an empty path) as the “base case”. Thus the encoding
loses the connection between the loop and its original base case, which is moved to another path. Other
regular expressions for loops could address this issue.

Extending our approach to extract and solve recurrence inequations as in [11] is another avenue for
future work. We are also interested in extending the current work to handle non-linear recursions either
natively (possibly transforming context free grammars) or through iterative linearisation of the source
clauses as in [20].

Acknowledgements. We thank the anonymous reviewers for their constructive comments and for
bringing related work to our attention. Research partially funded by MICINN PID2019-108528RB-C21
ProCode project, the Madrid P2018/TCS-4339 BLOQUES-CM program and the Tezos foundation.

34 Regular Path Clauses and Their Application in Solving Loops

References

[1] Mathematica: the Way the World Calculates.
http://www.wolfram.com/products/mathematica/index.html.

[2] Elvira Albert, Samir Genaim & Abu Naser Masud (2013): On the Inference of Resource Usage Upper and
Lower Bounds. ACM Trans. Comput. Log. 14(3), pp. 22:1–22:35. Available at https://doi.org/10.
1145/2499937.2499943.

[3] R. Bagnara, F. Mesnard, A. Pescetti & E. Zaffanella (2010): The Automatic Synthesis of Linear Ranking
Functions: The Complete Unabridged Version. Quaderno 498, Dipartimento di Matematica, Università di
Parma, Italy. Available at http://www.cs.unipr.it/Publications/.

[4] Rod M. Burstall & John Darlington (1977): A transformation system for developing recursive programs.
Journal of the ACM 24(1), pp. 44–67. Available at https://doi.org/10.1145/356635.356640.

[5] John Cyphert, Jason Breck, Zachary Kincaid & Thomas W. Reps (2019): Refinement of path expressions for
static analysis. POPL, pp. 45:1–45:29. Available at https://doi.org/10.1145/3290358.

[6] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2015): Semantics-based
generation of verification conditions by program specialization. In: PPDP, ACM, pp. 91–102. Available at
https://doi.org/10.1145/2790449.2790529.

[7] S. K. Debray & N. W. Lin (1993): Cost Analysis of Logic Programs. ACM Transactions on Programming
Languages and Systems 15(5), pp. 826–875. Available at https://doi.org/10.1145/361002.361016.

[8] S. K. Debray, N.-W. Lin & M. V. Hermenegildo (1990): Task Granularity Analysis in Logic Programs. In:
PLDI, ACM Press, pp. 174–188. Available at https://doi.org/10.1145/93548.93564.

[9] Saumya K. Debray & Nai-Wei Lin (1993): Cost Analysis of Logic Programs. ACM Trans. Program. Lang.
Syst. 15(5), pp. 826–875. Available at https://doi.org/10.1145/161468.161472.

[10] Jesús J. Doménech, John P. Gallagher & Samir Genaim (2019): Control-Flow Refinement by Partial Eval-
uation, and its Application to Termination and Cost Analysis. TPLP 19(5-6), pp. 990–1005. Available at
https://doi.org/10.1017/S1471068419000310.

[11] Azadeh Farzan & Zachary Kincaid (2015): Compositional Recurrence Analysis. In Roope Kaivola & Thomas
Wahl, editors: FMCAD, IEEE, pp. 57–64. Available at https://doi.org/10.5555/2893529.2893544.

[12] J. Gallagher, M. V. Hermenegildo, B. Kafle, M. Klemen, P. Lopez-Garcia & J.F. Morales (2020): From big-
step to small-step semantics and back with interpreter specialization (invited paper). In: VPT, EPTCS, Open
Publishing Association, pp. 50–65. Available at https://doi.org/10.4204/EPTCS.320.4.

[13] M. Gómez-Zamalloa, E. Albert & G. Puebla (2009): Decompilation of Java Bytecode to Prolog by Partial
Evaluation. JIST 51, pp. 1409–1427. Available at https://doi.org/10.1016/j.infsof.2009.04.010.

[14] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012): Synthesizing soft-
ware verifiers from proof rules. In Jan Vitek, Haibo Lin & Frank Tip, editors: PLDI, ACM, pp. 405–416.
Available at https://doi.org/10.1145/2254064.2254112.

[15] Sumit Gulwani, Sagar Jain & Eric Koskinen (2009): Control-flow refinement and progress invariants for
bound analysis. In Michael Hind & Amer Diwan, editors: PLDI, ACM, pp. 375–385. Available at https:
//doi.org/10.1145/1543135.1542518.

[16] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli & Jorge A. Navas (2015): The SeaHorn Verification
Framework. In: CAV, LNCS 9206, Springer, pp. 343–361. Available at https://doi.org/10.1007/
978-3-319-21690-4_20.

[17] Kim S. Henriksen & John P. Gallagher (2006): Abstract Interpretation of PIC Programs through Logic
Programming. In: SCAM ’06, IEEE Computer Society, pp. 184–196. Available at https://doi.org/10.
1109/SCAM.2006.1.

[18] M. Hermenegildo, G. Puebla, F. Bueno & P. Lopez Garcia (2005): Integrated Program Debugging, Veri-
fication, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor). Science of

https://doi.org/10.1145/2499937.2499943
https://doi.org/10.1145/2499937.2499943
http://www.cs.unipr.it/Publications/
https://doi.org/10.1145/356635.356640
https://doi.org/10.1145/3290358
https://doi.org/10.1145/2790449.2790529
https://doi.org/10.1145/361002.361016
https://doi.org/10.1145/93548.93564
https://doi.org/10.1145/161468.161472
https://doi.org/10.1017/S1471068419000310
https://doi.org/10.5555/2893529.2893544
https://doi.org/10.4204/EPTCS.320.4
https://doi.org/10.1016/j.infsof.2009.04.010
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/1543135.1542518
https://doi.org/10.1145/1543135.1542518
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1109/SCAM.2006.1
https://doi.org/10.1109/SCAM.2006.1

Kafle, Gallagher, Hermenegildo, Klemen, López-Garcı́a and Morales 35

Computer Programming 58(1–2), pp. 115–140. Available at https://doi.org/10.1016/j.scico.2005.
02.006.

[19] Andreas Humenberger, Maximilian Jaroschek & Laura Kovács (2018): Invariant Generation for Multi-Path
Loops with Polynomial Assignments. In Isil Dillig & Jens Palsberg, editors: VMCAI, LNCS 10747, Springer,
pp. 226–246. Available at https://doi.org/10.1007/978-3-319-73721-8_11.

[20] Bishoksan Kafle, John P. Gallagher & Pierre Ganty (2016): Solving non-linear Horn clauses using a linear
Horn clause solver. In John P. Gallagher & Philipp Rümmer, editors: HCVS, EPTCS 219, pp. 33–48.
Available at https://doi.org/10.4204/EPTCS.219.4.

[21] Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez & Martin Schäf (2016): JayHorn: A Framework for
Verifying Java Programs. In Swarat Chaudhuri & Azadeh Farzan, editors: CAV, LNCS 9779, Springer, pp.
352–358. Available at https://doi.org/10.1007/978-3-319-41528-4_19.

[22] Zachary Kincaid, Jason Breck, John Cyphert & Thomas W. Reps (2019): Closed forms for numerical loops.
Proc. ACM Program. Lang. 3(POPL), pp. 55:1–55:29. Available at https://doi.org/10.1145/3290368.

[23] Zachary Kincaid, John Cyphert, Jason Breck & Thomas W. Reps (2018): Non-linear reasoning for invariant
synthesis. Proc. ACM Program. Lang. 2(POPL), pp. 54:1–54:33. Available at https://doi.org/10.1145/
3158142.

[24] M. Méndez-Lojo, J. Navas & M. Hermenegildo (2007): A Flexible (C)LP-Based Approach to the Analysis of
Object-Oriented Programs. In: LOPSTR, LNCS 4915, Springer-Verlag, pp. 154–168. Available at https:
//doi.org/10.1007/978-3-540-78769-3_11.

[25] K. Muthukumar & M. Hermenegildo (1990): Deriving A Fixpoint Computation Algorithm for Top-down
Abstract Interpretation of Logic Programs. Technical Report ACT-DC-153-90, Microelectronics and Com-
puter Technology Corporation (MCC), Austin, TX 78759. Available at ftp://cliplab.org/pub/papers/
tr153-90.mcc.ps.Z.

[26] J. Navas, E. Mera, P. Lopez-Garcia & M. Hermenegildo (2007): User-Definable Resource Bounds Analysis
for Logic Programs. In: ICLP, LNCS 4670, Springer, pp. 348–363. Available at https://doi.org/10.
1007/978-3-540-74610-2_24. 10-year Test of Time Award.

[27] Flemming Nielson, Hanne Riis Nielson & Chris Hankin (1999): Principles of program analysis. Springer.
Available at https://doi.org/10.1007/978-3-662-03811-6.

[28] J.C. Peralta, J. Gallagher & H. Sağlam (1998): Analysis of Imperative Programs through Analysis of
Constraint Logic Programs. In G. Levi, editor: SAS, LNCS 1503, pp. 246–261. Available at https:
//doi.org/10.1007/3-540-49727-7_15.

[29] A. Podelski & A. Rybalchenko (2004): A Complete Method for the Synthesis of Linear Ranking Functions. In:
VMCAI, LNCS, Springer, pp. 239–251. Available at https://doi.org/10.1007/978-3-540-24622-0_
20.

[30] G. Puebla & M. V. Hermenegildo (1999): Abstract Multiple Specialization and its Application to Program
Parallelization. J. of Logic Programming. Special Issue on Synthesis, Transformation and Analysis of Logic
Programs 41(2&3), pp. 279–316. Available at https://doi.org/10.1016/S0743-1066(99)00031-X.

[31] Rahul Sharma, Isil Dillig, Thomas Dillig & Alex Aiken (2011): Simplifying Loop Invariant Generation
Using Splitter Predicates. In Ganesh Gopalakrishnan & Shaz Qadeer, editors: CAV, LNCS 6806, Springer,
pp. 703–719. Available at https://doi.org/10.1007/978-3-642-22110-1_57.

[32] Kirack Sohn & Allen Van Gelder (1991): Termination detection in logic programs using argument sizes
(extended abstract). In: PODS, ACM Press, New York, NY, USA, pp. 216–226. Available at https:
//doi.org/10.1145/113413.113433.

[33] Robert E. Tarjan (1981): Fast Algorithms for Solving Path Problems. J. ACM 28(3), pp. 594–614. Available
at https://doi.org/10.1145/322261.322273.

[34] B. Wegbreit (1974): The Treatment of Data Types in EL1. Comm. of the ACM 17(5), pp. 251–264. Available
at https://doi.org/10.1145/364063.364092.

https://doi.org/10.1016/j.scico.2005.02.006
https://doi.org/10.1016/j.scico.2005.02.006
https://doi.org/10.1007/978-3-319-73721-8_11
https://doi.org/10.4204/EPTCS.219.4
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1145/3290368
https://doi.org/10.1145/3158142
https://doi.org/10.1145/3158142
https://doi.org/10.1007/978-3-540-78769-3_11
https://doi.org/10.1007/978-3-540-78769-3_11
ftp://cliplab.org/pub/papers/tr153-90.mcc.ps.Z
ftp://cliplab.org/pub/papers/tr153-90.mcc.ps.Z
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1007/978-3-540-74610-2_24
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/3-540-49727-7_15
https://doi.org/10.1007/3-540-49727-7_15
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1016/S0743-1066(99)00031-X
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1145/113413.113433
https://doi.org/10.1145/113413.113433
https://doi.org/10.1145/322261.322273
https://doi.org/10.1145/364063.364092

	1 Introduction
	2 Preliminaries
	3 Regular path clauses
	3.1 Eliminating multi-path loops

	4 Regular path clauses with counters
	4.1 Deriving recurrences from path clauses with counters
	4.2 Removal of symbolic constant arguments
	4.3 Inference of symbolic constants
	4.4 Solving multi-argument recursive equations

	5 Solving the running example using interval arithmetic
	6 Discussion and future work

