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String matching is a fundamental problem in algorithm. This study examines the development and
construction of two reversible string-matching algorithms: a naive string-matching algorithm and
the Rabin–Karp algorithm. The algorithms are used to introduce reversible computing concepts,
beginning from basic reversible programming techniques to more advanced considerations about
the injectivization of the polynomial hash-update function employed by the Rabin–Karp algorithm.
The results are two clean input-preserving reversible algorithms that require no additional space and
have the same asymptotic time complexity as their classic irreversible originals. This study aims to
contribute to the body of reversible algorithms and to the discipline of reversible programming.

1 Introduction

Reversible computing is an unconventional computing paradigm in which all computations are forward
and backward deterministic. It complements existing mainstream programming paradigms that are for-
ward deterministic, but usually backward nondeterministic, such as imperative and functional program-
ming languages [9]. Reversible computing is required when the deletion of information is considered
harmful as in quantum-based computing and to overcome Landauer’s physical limit (for a summary
see [6, 11]). Additionally, reversible computing is a sweet spot for studying non-standard semantics and
program inversion, which concern fundamental questions regarding program transformation [7].

The contribution of this study is threefold:

• Introduce reversible computing concepts by a program development in this unconventional paradigm.

• Explain a new, efficient reversible version of the Rabin–Karp algorithm for string matching.

• Contribute to the advancement of a reversible programming discipline.

String matching is a fundamental algorithmic problem with a wide range of practical applications. The
problem is stated in a few lines (we follow established terminology [4]):

Let T [0..n− 1] be a text of length n and P[0..m− 1] be a pattern of length m (≤ n) where
the elements of arrays T and P are characters drawn from a finite alphabet Σ of size d. The
arrays are also called strings of characters. A pattern P occurs with a valid shift s in text T
if T [s..s+m−1] = P[0..m−1]. The string-matching problem is to find all valid shifts of P
in T .

Today there are various string-matching algorithms all of which are defined in conventional lan-
guages. In this study, we develop efficient reversible string-matching algorithms, namely, a naive algo-
rithm and the more efficient Rabin–Karp algorithm [10]. Although the worst-case matching time of the
latter is no better than that of the naive method, the Rabin–Karp algorithm is faster on average because
it uses hash values for fast, approximate matches, and only in the case of a possible match, performs
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an exact comparison of the pattern and text at the current shift. The use of a hash-update function that
computes the next hash value from the current hash value (rolling hash) makes the creation of an efficient
and reversible Rabin–Karp algorithm more challenging than that of the naive algorithm.

We develop the reversible string-matching algorithms to explain reversible-computing concepts and
how to solve the challenge posed by Rabin–Karp’s hash-based method. Specifically, we use the stan-
dard reversible programming language, Janus, with syntactic sugar to define the algorithms. Once the
algorithms are written in a reversible language, they are guaranteed to be reversible.

More details about reversible computing can be found in the literature, e.g., [22]. This study con-
tributes to the existing literature on clean reversible algorithms that do not rely on tracing (e.g., [2, 8]),
including a reversible FFT [21], Dijkstra’s permutation encoder [22], and language processors [23, 1].

2 A Reversible Naive String Matcher

We begin with the naive matcher to demonstrate how to proceed with reversible programming. The
naive matcher developed in this section will later be employed in the reversible Rabin–Karp algorithm.
Advanced considerations, such as the injectivization of the hash-update function, are discussed in the
next section about the Rabin–Karp algorithm.

Algorithms written in a reversible language cannot delete information, but can reversibly update in-
formation. No deletion of information means that programs written in a reversible imperative language
cannot contain assignments that overwrite values, such as x := y + z, only reversibly update values,
such as x += y (shorthand for x := x + y).1 Consequently, reversible languages can only be as com-
putationally powerful as reversible Turing machines (RTMs) [3], which exactly compute the computable
injective functions. This injectiveness constraint makes reversible Turing machines strictly less powerful
compared to their traditional counterparts that are universal. This is a significant limitation of reversible
computing; however, all non-injective functions can be embedded in injective functions.

There are two approaches for implementing a function in reversible language. The first approach is
to begin from an implementation written in a conventional (irreversible) language and reversibilize it into
a program written in a reversible programming language, e.g., by recording the information otherwise
lost (often called garbage). The second and the preferred approach is to change (injectivize) the prob-
lem specification into an injective function, which can be directly implemented in a reversible language
without functional changes.

The string-matching problem has an injective specification although it is usually considered a non-
injective problem that, given text T and pattern P, computes all valid shifts:

match(T,P) = valid-shifts . (1)

This function specifies that T and P are consumed (deleted) by match and are replaced by valid-shifts.
Considering the problem from a reversible-computing perspective, we notice that we usually do not
delete T and P, but preserve them. This means that the string-matching problem has an injective specifi-
cation:

match(T,P) = (T,P,valid-shifts) . (2)

Because of the injective specification, a faithful reversible implementation of the string-matching prob-
lem exists. This specification is an input-preserving injectivization (T and P are preserved).

1Any expression e can be used in x += e. Generally, to be reversible, x must not occur in e (e.g., x += -x is not reversible).
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A naive string-matching algorithm compares P to T at all shifts in T from left to right. When a
mismatch is found at a shift s, the matching continues at the next shift s+ 1. The worst-case matching
time for this (irreversible) naive matching method is Θ((n−m+1)m).

First, we consider certain standard technical details. We consider characters as integers such that
alphabet Σ of size d is set {0, . . . ,d − 1}. Let T and P be integer arrays of length n+ 1 and m+ 1,
respectively, with terminating values T [n] 6= P[m], where P[m] 6∈ Σ. Thus, the end of p is always signaled
by a mismatch. All valid shifts si found during the search are pushed on a result stack. Thus, valid-shifts
in Eqs. (1, 2) is a stack, which consists of zero or more unique indices of T .

At first glance, the reversible naive string matcher in Fig. 1 looks like a C-like program. At the second
look, we notice that the program uses no destructive assignments, such as :=, only the reversible updates
+= and -= that add to resp. subtract from a variable the value of an expression, and the conditional at
lines 9 to 15 not only has an entry test at if, but also an exit test at fi, which is the point where the
control flow joins after executing one of the two branches.

Reversible languages comprise elementary steps that perform injective transformations of the com-
putation state, that is each step performs a forward and backward deterministic transition. Because the
operations are reversible on the microscopic level, the macroscopic operation of a program written in
a reversible language is perfectly reversible. The composition of injective functions is also an injective
function, thus reversible programs implement computable injective functions. This principle is the same
for all reversible languages including the transition function of a reversible Turing machine [3], a time-
symmetric machine [15], and extensions that operate on quantum data (for quantum circuits, e.g. [16]).

A Reversible Matcher The reversible naive string matcher, shown in Fig. 1 consists of three proce-
dures. The main procedure naivesearch is called with a text T, a pattern P, and an initially empty stack
R as input. When it returns, all valid shifts are stored in R, and T and P are unchanged (all three arguments
are pass-by-reference). The procedure tries all the possible shifts from left to right by incrementing s

from 0 to n-m and calling procedure match in the for-loop iterate in lines 19 to 21. As a shorthand,
we write m and n for the size of the pattern and text, respectively.

Procedure match begins with calling procedure compare to match P to T beginning at shift s with
the initial index i = 0. If compare returns with i = m (end of P is reached), the match succeeds, and s

is a valid shift; otherwise, the match fails (end of P is not reached). The then-branch pushes the valid
shift s to R and resets i to zero. Line 11 is required to restore the last value of s from the top of R
because the last push moved that value to R and thereby zero-cleared s. (This point is explained below.)
In the else-branch, after the match fails at i < m, the computation of compare is undone by uncalling
compare to reset i to its initial value 0. (This is also explained below.) A local scope for i is opened and
closed at the beginning and end of match using a local–delocal declaration. Furthermore, this scope
declaration asserts the initial and final values of local variable i (in both cases i = 0).

Procedure compare compares P with T at s, beginning with index i = 0. The loop begins with an
entry test at line 2, which asserts that initially i = 0, and ends at line 4 when T[s+i] 6= P[i]. This loop
always terminates because by convention the terminating value P[m] is not in T.

Reversible Programming Similar to the other language paradigms, reversible computing has its own
programming methodology. We summarize the programming techniques relevant to the programs in this
study and exemplify them with examples from the programs. This is related to three important reversible
programming themes: control flow, reversible updates, and data structures.
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1 procedure compare(int T[], P[], s, i)
2 from i = 0 loop // index assertion
3 i += 1 // character-by-character comparison
4 until T[s+i] != P[i] // loop terminates when a mismatch occurs
5

6 procedure match(int T[], P[], s, stack R)
7 local int i = 0
8 call compare(T, P, s, i)
9 if i = m then // match succeeded

10 push(s, R) // push s to stack R of valid shifts w/ clearing s
11 s += top(R) // restore the value of s
12 i -= m // clear i
13 else // match failed
14 uncall compare(T, P, s, i) // clear i
15 fi s = top(R) // current shift s is valid
16 delocal int i = 0
17

18 procedure naivesearch(int T[], P[], stack R)
19 iterate int s = 0 to n-m // slide over text
20 call match(T, P, s, R) // match at current shift s
21 end

Figure 1: Reversible naive string-matching algorithm.

Control flow: Join points in the control flow of a program require assertions to make them backward
deterministic. In reversible languages, each join point is associated with a predicate that provides
an assertion regarding the incoming computational states. This suggests that we must identify a
predicate that is true when coming from a then-branch and false when coming from an else-branch.
For a loop, we must identify a predicate that is initially true and false after each iteration. These
assertions regarding the incoming control flow (‘come from’) are evaluated at runtime, similar to
the tests that dispatch the outgoing control flow (‘go to’). If a predicate does not have the expected
truth value, the control-flow operator is undefined, and therefore the entire program.
Examples are fi-predicates in reversible conditional (if-fi) and from-predicates in a reversible
while-loop (from-until). Sometimes, these assertions are easy to find, such as the entry test in
line 2 of the increment loop in Fig. 1, which checks that the loop begins from i = 0 and i 6= 0

after the first iteration. The exit test s = top(R) in line 15 of the conditional uses the fact that the
shifts in stack R are unique. Thus, whenever a match fails, indicating that s is not pushed to R, the
current shift s and the last shift top(R) differ. An excerpt from the program highlights these two
cases:

from i = 0 loop if i = m then push(s,R) ...
i += 1 else ... no push ...

until T[s+i] != P[i] fi s = top(R)

However, these assertions are not always easy to find and may require a restructuring of the pro-
gram. Only a few conventional control-flow operators are reversible and do not require additional
assertions, such as for-loops that iterate for a fixed number of times, e.g., iterate in lines 19–21.

Reversible updates: Data can only be reversibly updated. The usual computational resources for delet-
ing data in one way or another are not available (e.g., forgetting local variables upon procedure re-
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turn). We present several update techniques used in our programs starting from a straightforward
initialization of a zero-cleared variable to the uncalling of a procedure to reset values. Readers
interested in reversible updates defined in a more general form should refer to [21].
(i) Copying & zero-clearing. If variable i is known to be zero, it can be set to a value, e.g., by
addition. For example, i += m has the effect of reversibly copying the value of m to i. Similarly, if
we know that i has the same value as m, that is i = m, we can zero-clear i using i -= m. However,
the relationship between two variable values is not always known. Additionally, when it becomes
known owing to an equality test in a conditional, we can exploit this knowledge in the then-branch
to zero-clear the variable. This is used in line 12 to reversibly reset i to zero:

if i = m then ...
i -= m

else ...
fi ...

These techniques are indirectly used in a local–delocal declaration, where the local variable is
initialized and cleared at the beginning and end of its scope using an equality test (here, however,
just a simple x = 0 in lines 7 and 16). In general, the declaration of a local variable, i, has the
following form, where i is initially set to the value of e and in the end must have a value equal to
the value of e′:

local int i = e ... delocal int i = e′

(ii) Compute-uncompute. Reversible programs are forward and backward deterministic; thus, they
can run efficiently in both directions. Many reversible languages not only provide access to their
standard semantics, e.g., using a procedure call, but also to their inverse (backward) semantics,
e.g., using a procedure uncall. An uncall of a procedure is as efficient as a call because a pro-
cedure is forward and backward deterministic. We employ this property to reset index i after an
unsuccessful match, which can occur at any position i < m in a pattern. We cannot determine
the subtrahend to zero-clear i (and we cannot use the irreversible i -= i). Instead we undo the
computation of i by an uncall in the else-branch. This resets i to its initial value 0. By combining
the techniques seen so far, we ensure that i is zero-cleared after the if-fi. In the then-branch, we
use the equality i = m; in the else-branch we undo the computation:

local int i = 0

call compare(...,i)
if i = m then ...
i -= m

else uncall compare(...,i)
fi ...

delocal int i = 0

The compute-uncompute method goes back to the first RTMs [3], where a machine is textually
composed with its inverse machine to restore the original computation state (which doubles the
size of the entire machine). The call–uncall method above shares the text of a procedure (here,
compare). It just invokes the standard resp. inverse computation of the procedure. We could have
used an uncall in the then-branch. Instead, we exploit the knowledge about i = m from the entry
test of the if-fi to zero-clear i using i -= m, which takes constant time, whereas the uncall
requires time proportional to the length of P. The conditional takes advantage of both techniques.
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Bennett used program inversion to obtain an inverse RTM, whereas the aforementioned method
uses inverse computation. We could have used program inversion to invert the procedure compare
into the inverse procedure compare−1 and invoked the latter using call compare−1 to reset i.
Both methods, calling the inverse procedure compare−1 and inverse computation of compare,

call compare−1(...,i) and uncall compare(...,i),

are functionally equivalent. Because RTMs cannot access their inverse semantics, e.g., by an un-
call, program inversion is the only choice to build RTMs that restore the input from their output,
whereas in a reversible language typically both choices are available. We refer to them collectively
as the compute–uncompute programming method. It is used in many forms at all levels of a re-
versible computing system from reversible circuits (e.g., [20]) to high-level languages (e.g., [14]).

Data structures: The data structures in reversible languages are the same as in conventional languages,
such as arrays, stacks and lists, only the update operations on the data structures must be reversible.
In the case of a stack, the operations push and pop can be defined as inverse to each other by letting
them swap in and out the value on top of the stack, which means that pop = push−1 [23]:

(v,vn ...v1)
push−→
←−
pop

(0,v vn ...v1) (3)

This definition of a push has the unfamiliar property that push(s,R) in line 10 moves the value v
of s to the top of the stack R and zero-clears s. Because we need the value that we have pushed to
continue the search, the value is copied back to s from the top of R using s += top(R) in line 11.

We can now complete the body of procedure match in lines 7–16 by adding the two statements to
the then-branch and the exit test that we discussed above to fi:

local int i = 0

call compare(...,i)
if i = m then

push(s,R)

s += top(R)

i -= m

else uncall compare(...,i)
fi s = top(R)

delocal int i = 0

We remark that abstract data types and object-oriented features can be used in reversible languages
provided that their update operations and methods are reversible. Ideally, they are designed such
that call and uncall can be used. When operators are inverse to each other, only one of them needs
to be implemented. The idea of code sharing by running code backward can be traced back to the
60s [18].

We have presented all reversible-programming techniques used in the procedures naivesearch, match,
and compare. This completes the review of the reversible naive string-matching algorithm shown in
Fig. 1.
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3 A Reversible Rabin–Karp Algorithm

The Rabin–Karp algorithm [10] replaces exact matches with approximate matches, which are inexact
but fast, and performs exact matches only if a successful match is possible. This makes the algorithm
conceptually easy and fast in practice. This study refers to the version presented by Cormen et al. [4].

The algorithm extends the naive string-matching algorithm by performing at each shift s, an approx-
imate match by comparing the hash values of P and T at s. An exact match (by procedure match) can
only succeed if the two hash values are identical; otherwise, an exact match is impossible. In either case,
the next hash value at s+ 1 can be computed in constant time from the current hash value at s (rolling
hash) using a hash-update function φs. Hash values typically fit into single words that can be compared
in constant time. The initial hash values of P and T at shift 0 are computed at the beginning of the
algorithm using a hash function (pre-processing). The subsequent hash values are then computed using
the hash-update function.

The key to an efficient clean reversible Rabin–Karp matcher is a reversible constant-time calculation
of the rolling hash values. We have explained the reversible naive string-matching algorithm in the
previous section, and we can reuse procedures match and compare from Fig. 1 for the reversible Rabin–
Karp algorithm. In this section, we focus on the injectivization and implementation of the hash functions
that show the considerations for the development of a more advanced reversible algorithm.

A preliminary version of the reversible Rabin–Karp program has appeared as a technical report [19].
The reversible Rabin–Karp program in this study becomes more concise and modular because of the use
of macros and iterate loops.

Hash Function The Rabin–Karp algorithm requires a pre-process that calculates the hash values of
the given pattern, P[0..m− 1], and of the initial substring, T [0..m− 1], of the given text T . The initial
substring has the same length m as P. Recall that P and T are two integer arrays over the non-empty
alphabet of d integers {0, . . . ,d−1}.

Let p denote the hash value of P obtained using a polynomial hash function with modulus q:

p = (P[0]dm−1 +P[1]dm−2 + · · ·+P[m−1]) mod q . (4)

Similarly, let ts denote the hash value of the substring T [s..s+m−1] of length m at shift s:

ts = (T [s]dm−1 +T [s+1]dm−2 + · · ·+T [s+m−1]) mod q . (5)

The polynomials can be computed in Θ(m) using Horner’s rule. Preferably, modulus q should be as large
a prime as possible such that dq fits into a single word: thus, all modulo operations are single-precision
arithmetic.

The following properties of the two hash values are important. If ts 6= p, T [s..s+m−1] 6=P[0..m−1]:
thus, shift s cannot be valid. If ts = p, it is possible that T [s..s+m− 1] = P[0..m− 1]: thus, an exact
match is required to determine if shift s is valid.

Whereas hash value p of P is the same during the matching, hash value ts of T must be calculated
for each shift s. In order to efficiently calculate hash values ts for s > 0, we calculate the hash value ts+1
at the subsequent shift s+1 from the hash value ts at the current shift s, using a recurrence function. We
use this function to reversibly update the hash values in constant time. For a reversible implementation,
conditions are first determined under which the function is injective. Then the function is rewritten into
a composition of modular arithmetic operators, each of which is embedded in a reversible update.
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Hash-Update Function We can compute ts+1 from ts for 0≤ s≤ n−m because

ts+1 = φs(ts) (6)

where the recurrence function φs is defined as

φs(x) = (d(x−T [s]dm−1)+T [s+m]) mod q . (7)

The recurrence function calculates the subsequent hash value from the current hash value x by canceling
the old highest-order radix-d digit T [s] via subtraction, shifting the value via multiplication with d,
adding the new lowest-order radix-d digit T [s+m], and obtaining its remainder when divided by q.
We can compute φs(ts) in constant time if factor dm−1 is precomputed. For reversible computing it is
problematic that φs is generally not injective because the modulo operation is not injective in its first
argument for arbitrary integers. Determining the conditions under which a function becomes injective
by exploiting its properties and specific application context is an important step in the development of a
clean reversible algorithm.

We exploit certain properties in the domain of arithmetic operations in φs. The congruence of two
integers x and y modulo q, x ≡ y (mod q), is compatible with addition, subtraction, and multiplication.
But unlike these operations, division cannot always be performed. To show the injectiveness of φs in the
following lemma requires that d and q be coprime integers, which means their greatest common divisor
is 1. For example, when d and q are not coprime, e.g., d = 2 and q = 6 then 2 · 1 ≡ 2 · 4 (mod 6), we
cannot divide this congruence by 2 because 1 6≡ 4 (mod 6). Whereas if they are coprime, e.g., d = 2 and
q = 3, then 2 ·1≡ 2 ·4 (mod 3) and we can divide this by 2 to deduce 1≡ 4 (mod 3).

We employ this constraint on the operands in Lemma 3, which establishes that φs is injective. For the
cancelation of common terms in congruences modulo q, we use the following two lemmas in the proof.
Lemma 1 (e.g. [13, Prop. 13.3]). Suppose x,y ∈ Z and x≡ y (mod q). If c ∈ Z then

x+ c≡ y+ c (mod q) =⇒ x≡ y (mod q) . (8)

Lemma 2 (e.g. [13, Prop. 13.5]). Suppose d and q are coprime integers. If x,y ∈ Z then

dx≡ dy (mod q) =⇒ x≡ y (mod q) . (9)

Proof. We assume that dx ≡ dy (mod q). Therefore, d(x− y) is a multiple of q. Because d and q are
coprime, (x− y) is a multiple of q, i.e. x≡ y (mod q).

Lemma 3. Provided that 0 ≤ x < q, 0 < d < q, and d and q are coprime, recurrence function φs is
injective, where

φs(x) = (d(x−T [s]dm−1)+T [s+m]) mod q . (10)

Proof. We show that for any x1 and x2, whenever φs(x1) = φs(x2), we have x1 = x2.

φs(x1) = φs(x2)

=⇒ d(x1−T [s]dm−1)+T [s+m] ≡ d(x2−T [s]dm−1)+T [s+m] (mod q)

=⇒ d(x1−T [s]dm−1) ≡ d(x2−T [s]dm−1) (mod q) ∵ Lemma 1

=⇒ x1−T [s]dm−1 ≡ x2−T [s]dm−1 (mod q) ∵ Lemma 2 and d and q are coprime integers

=⇒ x1 ≡ x2 (mod q) ∵ Lemma 1

=⇒ x1 = x2 ∵ 0≤ x1,x2 < q
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The condition that d and q are coprime is not a restriction in practice because q is usually selected to
be a large prime number. Thus, if q is prime, any alphabet size 0 < d < q can be used.

Injective Modular Arithmetic For efficient calculation of a hash value, it is preferable to perform
modular arithmetic at each elementary arithmetic operation instead of first calculating a large value that
may exceed the largest representable integer. Therefore, we define the injective recurrence function φs

using elementary modular arithmetic operators, each of which is sufficiently simple to be easily imple-
mented in a reversible language (e.g., supported as built-in operators or by reversible hardware). We
rewrite φs(x) in Eq. (10) into a composition of modular arithmetic operators +q, −q, and ·q using the
distributivity of the modulo operation as shown in Eq. (11). Similarly, the hash functions in Eqs. (4) and
(5) can be rewritten as Eqs. (13) and (14). The same transformation is required for implementation in
conventional languages. Additionally, we inspect the injectivity of each operator such that a reversible
implementation can be provided.

The injective function, φs, comprises the following operators:

φs(x) = d ·q (x−q T [s] ·q h)+q T [s+m] (11)

where factor h = dm−1 (mod q) is precomputed by

h = d ·q · · · ·q d︸ ︷︷ ︸
m−1

. (12)

Hash value p of a given pattern P and initial hash value t0 of a given text T can be obtained using
Horner’s rule defined in ψ:

p = ψ(P[0..m−1]) (13)

t0 = ψ(T [0..m−1]) (14)

where

ψ(X [i.. j]) = X [ j]+q d ·q (X [ j−1]+q d ·q (· · ·+q d ·q (X [i+1]+q d ·q X [i]) · · ·)) . (15)

The identity between ψ applied to the final substring, T [n−m..n− 1], at shift n−m and the hash
update φn−m−1 is used to zero-clear the final hash value, tn−m, in the reversible program:

tn−m = ψ(T [n−m..n−1]) ∵ Eq. (15) (16)

= φn−m−1(tn−m−1) ∵ Eq. (6) . (17)

The problem is that modular arithmetic operations are generally non-injective. However, under cer-
tain conditions, they are injective in one of their arguments. For example, they are injective in their first
arguments:2

• Addition x+q y and subtraction x−q y are injective in their first arguments if 0≤ x,y < q.

• Multiplication x ·q d is injective in its first argument if 0 ≤ x < q, 1 ≤ d < q, and d and q are
coprime.

Note that x ·q d is not injective in its first argument, unless d and q are coprime. Thus, the relationship
between d and q is a necessary condition. Analogously, the same holds for the second arguments of +q,
−q, and ·q. Recall that the composition of injective functions is an injective function. Thus, the injec-
tiveness of operators x+q y, x−q y, and x ·q y under the stated conditions demonstrates the injectiveness
of Eq. (11) under corresponding conditions.

2A partial function, f : X×Y×·· ·×Y ⇀ Z, is injective in its first argument iff ∀x1,x2 ∈X , ∀y1, . . . ,yn ∈Y : if f (x1,y1, . . . ,yn)
and f (x2,y1, . . . ,yn) are defined, f (x1,y1, . . . ,yn) = f (x2,y1, . . . ,yn) =⇒ x1 = x2. Similarly, for other arguments [21].
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Implementation of Modular Arithmetic A ternary function that is injective in its first argument
f (x,y,z) can be embedded in the reversible update g(x,y,z) = ( f (x,y,z),y,z). Arguments y and z are
part of the result of g. Thus, g is injective. Such reversible updates for x+q y and x ·q y can be imple-
mented in Janus. We write

• x +=q y for g1(x,y,q) = (x+q y,y,q), and

• x *=q y for g2(x,y,q) = (x ·q y,y,q).

In the implementation of these operators in a reversible language, x, y, and q are integers that cannot
be larger than the largest representable integer in that language. Otherwise, the same restrictions as
those for mathematical modular arithmetic apply. Thus, we assume that x and y range over 0 to q−1,
except that y ranges from 1 in multiplication. It is the programmer’s responsibility to ensure y and q are
coprime integers in x *=q y. In practice, it is sufficient that q is prime, so that y and q are coprime. The
subtraction, x−q y, can be realized using an uncall to x +=q y, and is written as x -=q y. The variable
on the left-hand side must not occur on the right-hand side of any of these operators. We assume that
these operators perform in constant time.

The nth power of b can be stored in a zero-cleared variable, z, written z +=q bn, by initializing z

with 1 and repeating n-times z *=q b:

z += 1

iterate int i = 0 to n-1

z *=q b

end

For notational simplicity, we write z -=q bn as the inverse of z +=q bn to zero-clear z. In an imple-
mentation the arguments of modular arithmetic operators cannot be larger than the largest representable
integer in a particular reversible programming language.

A Reversible Rabin–Karp Matcher Figure 2 shows the program for the reversible Rabin–Karp algo-
rithm. The program consists of three procedures and uses procedure match in Fig. 1.

The main procedure rabinkarp is called with text T, pattern P, alphabet size d (including the dummy
character terminating P), modulus q, and an initially empty stack R as the input. When it returns, all
valid shifts are stored in R, and all other variables T, P, d, and q remain unchanged. Therefore, it is an
implementation of an input-preserving injectivization of the string-matching problem shown in Eq. 2.

The main iteration in lines 18–23 corresponds to that in the main procedure of the naive string-
matching algorithm, except that the hash value p of P and the hash value t of T at shift s are com-
pared. Only if a match is possible, that is p = t is true in line 19, an exact match of P[0..m-1] and
T[s..s+m-1] is performed in the then-branch by calling match in line 20. This exact match can update
R with a valid shift depending on the outcome of the comparison. After the conditional, t at shift s is
updated to the hash value at shift s+1 through a call to update. Subsequently, the iteration continues at
the next shift.

The pre- and post-processing before and after the main iteration are performed in lines 14–16 and
lines 25–27, respectively. In pre-processing, the hash values p and t are initialized by the calls to
init_h as defined in Eqs. (13, 14), and h is precomputed using h +=q dm-1 as defined in Eq. (12).
Post-processing, a typical idiom of reversible programming to zero-clear variables, uncomputes the val-
ues of h, t and p. Notably, the call of init_h in line 15 and the uncall of init_h in line 26 have different
indices. The uncall uses the fact that the last value of t is the hash value of T in the last shift n-m (cf.,
Eq. (17)), whereas the initial value of t is the hash value of T in the first shift 0.
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1 procedure init_h(int x, i, j, X[], d, q)
2 iterate int k = i to j-1 // compute hash value by Horner ’s rule
3 x *=q d // shift by one radix -d digit
4 x +=q X[k] // add the low -order radix -d digit
5 end
6

7 procedure update(int t, T[], s, h, m, q)
8 t -=q T[s]*h // remove the high -order radix -d digit
9 t *=q d // shift by one radix -d digit

10 t +=q T[s+m] // add the low -order radix -d digit
11

12 procedure rabinkarp(int T[], P[], d, q, stack R)
13 local int t=0, int p=0, int h=0
14 call init_h(p, 0, m, P, d, q) // store hash of P[0..m-1] in p
15 call init_h(t, 0, m, T, d, q) // store hash of T[0..m-1] in t

16 h +=q dm-1 // precompute factor h
17

18 iterate int s = 0 to n-m // slide over text
19 if p = t then // compare hash values
20 call match(T, P, s, R) // match at current shift s
21 fi p = t
22 call update(t, T, s, h, m, q) // update hash value
23 end
24

25 h -=q dm-1 // clear h
26 uncall init_h(t, n-m, n, T, d, q) // clear t
27 uncall init_h(p, 0, m, P, d, q) // clear p
28 delocal int t=0, int p=0, int h=0

Figure 2: Reversible Rabin–Karp algorithm.

Procedure update computes the subsequent hash value, ts+1 from ts, in constant time using Eq. (11).
Line 8 removes the high-order radix-d digit from t, line 9 multiplies d, which shifts the radix-d number
left by a one-digit position, and line 10 adds the low-order radix-d digit. All the operations are modulo q.

Procedure init_h computes in an initially zero-cleared variable x, the hash value ψ(X [i.. j−1]) of
a substring X [i.. j− 1], using Horner’s rule as shown in Eq. (15). In addition to x, the indices i and j,
array X, alphabet size d, and modulus q are used as inputs. The hash values p = ψ(P[0..m− 1]) and
t0 = ψ(T [0..m−1]) are computed in Θ(m).

Space, Time, and Reversibilization Regarding the space consumption of the program, no extra argu-
ments are passed to procedure rabinkarp to maintain garbage values. All local variables are allocated
and deallocated in the body of the procedures, and neither stacks nor arrays are allocated. Therefore, no
additional space is required compared with the irreversible original of the program [4].

The pre- and post-processing times are bounded by the running time of init_h, which is Θ(m). The
worst-case running time of matching is Θ((n−m+ 1)m), which is the same as that of the irreversible
Rabin–Karp algorithm. In the worst case, the iteration repeats the Θ(m) steps of the exact match n−m+1
times. The shift s increases monotonically in the main iteration of procedure rabinkarp and a limited
number of elements T [s..s+m−1] of the text is accessed at each iteration. Thus, just like the irreversible
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original, the proposed Rabin–Karp algorithm computes over bounded space.
Notably, no extra space is required by the two reversible string-matching programs. The speedup

gained by allowing deletion as a computational resource (at the expense of additional heat dissipation
owing to entropy increase [6, 11]) is a constant factor of approximately two (the uncall in procedure
match in case of an unsuccessful comparison). Thus, if reversibility were removed and the two programs
were turned back into C-like imperative programs, speed, but no space would be obtained. The reversible
programs, developed in this study, are in contrast to what one obtains from mechanically reversibilizing
the string-matching algorithms using Bennett’s method [3]. Bennett’s method has the advantage that
it can be applied to any irreversible program; however, it requires additional space proportional to the
length of the computation because of the recording of a trace (for reversible simulations with improved
space efficiency, see e.g., [17]). Therefore, the entire run of a reversibilized string matcher, including
all hash calculations and mismatches, is recorded in the computation history. Moreover, because of
the uncompute phase added by Bennett’s method to clean up the trace after finding all valid shifts, the
reversible string-matching program produced by this reversibilization method is no longer computing
over bound space.

4 Conclusion

In this study, we have designed and implemented the reversible versions of a naive string-matching
algorithm and the Rabin–Karp algorithm. We have shown that the hash-update function with a reasonable
restriction in the reversible Rabin–Karp algorithm is injective. The reversible versions of a naive string
matching algorithm and the Rabin–Karp algorithm have the same asymptotic running time O((n−m+
1)m) and space usage O(n + m), as the irreversible versions. Because the original inputs preserved
over the runs are not regarded as garbage, both reversible algorithms are clean, i.e. they produce no
garbage as output. The main iteration monotonically increases the shift s from 0 to n-m+1. Thus,
the proposed Rabin–Karp algorithm is a streaming algorithm. This property cannot be automatically
obtained by the reversibilization of Bennett [3] and Lange–McKenzie–Tapp [12]. It is expected that the
reversible algorithms developed in this study can be a part of other algorithms, and the insights gained
from constructing the reversible algorithms can be applied in future program developments. Verifying
conventional programs is not always an easy task (e.g., [5]), and exploring the reversibilization and
mechanical verification of reversible programs will be a challenge in future work.

Acknowledgments The authors would like to thank Geoff Hamilton, Temesghen Kahsai, and Maurizio
Proietti for their kind invitation to contribute to the workshop HCVS/VPT at ETAPS week 2022 in
Munich and the anonymous reviewers for the useful feedback. The idea for the reversible algorithms
in this study was brewed in joint work with Kaira Tanizaki and Masaki Hiraku. The second author was
supported by JSPS KAKENHI Grant Number 22K11983.

References

[1] Holger Bock Axelsen & Robert Glück (2011): A simple and efficient universal reversible Turing machine. In
Adrian-Horia Dediu, Shunsuke Inenaga & Carlos Martı́n-Vide, editors: Language and Automata Theory and
Applications. Proceedings, LNCS 6638, Springer-Verlag, pp. 117–128, doi:10.1007/978-3-642-21254-3 8.

http://dx.doi.org/10.1007/978-3-642-21254-3_8


R. Glück & T. Yokoyama 13

[2] Holger Bock Axelsen & Tetsuo Yokoyama (2015): Programming techniques for reversible comparison
sorts. In Xinyu Feng & Sungwoo Park, editors: APLAS, LNCS 9458, Springer-Verlag, pp. 407–426,
doi:10.1007/978-3-319-26529-2 22.

[3] Charles H. Bennett (1973): Logical reversibility of computation. IBM J. Res. Dev. 17(6), pp. 525–532,
doi:10.1147/rd.176.0525.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein (2009): Introduction to Algo-
rithms, 3rd edition. MIT Press, Cambridge, MA.

[5] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2022): Contract strength-
ening through constrained Horn clause verification. In: HCVS/VPT’22, pp. 23–34. EPTCS (to appear).

[6] Alexis De Vos (2020): Endoreversible models for the thermodynamics of computing. Entropy 22(6), p.
Article 660, doi:10.3390/e22060660.

[7] Robert Glück & Andrei V. Klimov (1994): Metacomputation as a tool for formal linguistic modeling. In
Robert Trappl, editor: Cybernetics and Systems ’94, 2, World Scientific, pp. 1563–1570.

[8] Robert Glück & Tetsuo Yokoyama (2019): Constructing a binary tree from its traversals by reversible recur-
sion and iteration. IPL 147, pp. 32–37, doi:10.1016/j.ipl.2019.03.002.

[9] Robert Glück & Tetsuo Yokoyama (2022): Reversible computing from a programming language perspective.
Theor. Comput. Sci. In Press.

[10] Richard M. Karp & Michael O. Rabin (1987): Efficient randomized pattern-matching algorithms. IBM J.
Res. Dev. 31(2), pp. 249–260, doi:10.1147/rd.312.0249.

[11] Marina Krakovsky (2021): Taking the heat. Commun. ACM 64(6), pp. 18–20, doi:10.1145/3460214.
[12] Klaus-Jörn Lange, Pierre McKenzie & Alain Tapp (2000): Reversible space equals deterministic space. J.

Comput. Syst. Sci. 60(2), pp. 354–367, doi:10.1006/jcss.1999.1672.
[13] Martin Liebeck (2015): A Concise Introduction to Pure Mathematics, 4th edition. Chapman and Hall/CRC.
[14] Torben Æ. Mogensen (2022): Hermes: A reversible language for lightweight encryption. Science of Com-

puter Programming 215, p. Article 102746, doi:10.1016/j.scico.2021.102746.
[15] Keisuke Nakano (2022): Time-symmetric Turing machines for computable involutions. Science of Computer

Programming 215, p. Article 102748, doi:10.1016/j.scico.2021.102748.
[16] Francisco Orts, Gloria Ortega, Elı́as F. Combarro & Ester M. Garzón (2020): A review on reversible quantum

adders. J. Netw. Comput. Appl. 170, p. 102810, doi:10.1016/j.jnca.2020.102810.
[17] Tommi Pesu & Iain Phillips (2015): Real-time methods in reversible computation. In Jean Krivine & Jean-

Bernard Stefani, editors: RC, LNCS 9138, Springer, pp. 45–59, doi:10.1007/978-3-319-20860-2 3.
[18] Edwin D. Reilly, Jr. & Francis D. Federighi (1965): On reversible subroutines and computers that run back-

wards. Commun. ACM 8(9), pp. 557–558, 578, doi:10.1145/365559.365593.
[19] Kaira Tanizaki, Masaki Hiraku & Tetsuo Yokoyama (2022): Reversibilization of the naive string-match

algorithm and the Rabin–Karp algorithm. Academia. Sciences and Engineering: Journal of the Nanzan
Academic Society 22(3), pp. 124–132, doi:10.15119/00003946. In Japanese.

[20] Michael Kirkedal Thomsen, Holger Bock Axelsen & Robert Glück (2012): A reversible processor architec-
ture and its reversible logic design. In Alexis De Vos & Robert Wille, editors: RC, LNCS 7165, Springer-
Verlag, pp. 30–42, doi:10.1007/978-3-642-29517-1 3.

[21] Tetsuo Yokoyama, Holger Bock Axelsen & Robert Glück (2008): Principles of a reversible programming
language. In: Computing Frontiers. Proceedings, ACM Press, pp. 43–54, doi:10.1145/1366230.1366239.

[22] Tetsuo Yokoyama, Holger Bock Axelsen & Robert Glück (2016): Fundamentals of reversible flowchart
languages. Theor. Comput. Sci. 611, pp. 87–115, doi:10.1016/j.tcs.2015.07.046.

[23] Tetsuo Yokoyama & Robert Glück (2007): A reversible programming language and its invertible self-
interpreter. In: PEPM, ACM Press, pp. 144–153, doi:10.1145/1244381.1244404.

http://dx.doi.org/10.1007/978-3-319-26529-2_22
http://dx.doi.org/10.1147/rd.176.0525
http://dx.doi.org/10.3390/e22060660
http://dx.doi.org/10.1016/j.ipl.2019.03.002
http://dx.doi.org/10.1147/rd.312.0249
http://dx.doi.org/10.1145/3460214
http://dx.doi.org/10.1006/jcss.1999.1672
http://dx.doi.org/10.1016/j.scico.2021.102746
http://dx.doi.org/10.1016/j.scico.2021.102748
http://dx.doi.org/10.1016/j.jnca.2020.102810
http://dx.doi.org/10.1007/978-3-319-20860-2_3
http://dx.doi.org/10.1145/365559.365593
http://dx.doi.org/10.15119/00003946
http://dx.doi.org/10.1007/978-3-642-29517-1_3
http://dx.doi.org/10.1145/1366230.1366239
http://dx.doi.org/10.1016/j.tcs.2015.07.046
http://dx.doi.org/10.1145/1244381.1244404

	1 Introduction
	2 A Reversible Naive String Matcher
	3 A Reversible Rabin–Karp Algorithm
	4 Conclusion

