
E. De Angelis, G. Fedyukovich, N. Tzevelekos and M. Ulbrich (Eds.):

Sixth Workshop on Horn Clauses for Verification and Synthesis and

Third Workshop on Program Equivalence and Relational Reasoning.

EPTCS 296, 2019, pp. 28–41, doi:10.4204/EPTCS.296.6

Relational Verification via

Invariant-Guided Synchronization

Qi Zhou

Georgia Institute of Technology

qzhou80@gatech.edu

David Heath

Georgia Institute of Technology

heath.davidanthony@gatech.edu

William Harris

Galois Inc.

wrharris@galois.com

Relational properties describe relationships that hold over multiple executions of one or more pro-

grams, such as functional equivalence. Conventional approaches for automatically verifying such

properties typically rely on syntax-based, heuristic strategies for finding synchronization points among

the input programs. These synchronization points are then annotated with appropriate relational in-

variants to complete the proof. However, when suboptimal synchronization points are chosen the

required invariants can be complicated or even inexpressible in the target theory.

In this work, we propose a novel approach to verifying relational properties. This approach

searches for synchronization points and synthesizes relational invariants simultaneously. Specifically,

the approach uses synthesized invariants as a guide for finding proper synchronization points that lead

to a complete proof. We implemented our approach as a tool named PEQUOD, which targets Java

Virtual Machine (JVM) bytecode. We evaluated PEQUOD by using it to solve verification challenges

drawn from the from the research literature and by verifying properties of student-submitted solutions

to online challenge problems. The results show that PEQUOD solve verification problems that cannot

be addressed by current techniques.

1 Introduction

Relational properties characterize multiple executions of one or more programs [21]. One example of

such a property is that a particular program f over integers is monotonic; i.e.,

∀x,y. x > y⇒ f (x)> f (y)

This property is relational because it is defined over two arbitrary inputs of f (named x and y, respec-

tively). Relational properties can express important problems, such as the equivalence of two programs

or the information-flow security of a single program. Therefore, a tool that could automatically verify

relational properties would be highly valuable both to program developers and users.

Substantial effort has been directed toward constructing relational verifiers, which attempt to prove

that given programs satisfy a given relational property. One effective approach attempts to synthesize

proofs in Cartesian Hoare Logic [19,21], which extends Hoare Logic from individual programs to tuples

of programs. Such approaches consider the execution of input programs simultaneously, which enables

the construction of relational invariants that describe relationships across the programs. By examining the

programs together, a verifier can potentially find simpler invariants than if it had attempted to summarize

each program and then compared the summaries.

However, synthesizing proofs in such a system adds a critical new dimension to a verifier’s design.

In particular, a verifier must choose pairs of control locations to relate, in addition to synthesizing suffi-

ciently strong invariants that relate the programs’ data when they reach related locations. Such pairs of

locations are referred to as synchronization points [19]. Intuitively, certain synchronization points can

http://dx.doi.org/10.4204/EPTCS.296.6

Q. Zhou, D. Heath, & W. Harris 29

be annotated with simple relational invariants to form proofs because the variables at the related points

maintain similar data. Conversely, non-ideal synchronization points may relate locations for which suf-

ficient invariants can be expressed using only complex formulas, or even formulas expressible only in

complex theories and logics.

Selecting synchronization points is particularly difficult when a verifier must prove a relational prop-

erty over programs with loops or recursive procedures. Specifically, finding an ideal set of synchroniza-

tion points may require the verifier to consider different numbers of iterations for different loops. As an

example, a suitable synchronization strategy might be to model two iterations of a loop in one program

for every one iteration of a loop in a second program. This highlights that no straightforward solution,

such as modeling each loop exactly once, is effective in general.

For the reasons given above, it is clear that finding effective strategies for selecting synchronization

points is an important and difficult problem. The effectiveness of a selecting synchronization points

depends on the data relationships in the programs and the property. However, existing approaches [19,21]

have relied on syntax-driven, heuristic strategies that first find synchronization points and then attempt to

annotate the points with relational invariants to complete the proof. The effectiveness of these strategies

usually heavily depends on the programs to which they are applied.

In this paper, we propose a general, automatic technique for synthesizing proofs of relational proper-

ties. The key feature of our approach is that it searches the spaces of potential synchronization points and

their relational invariants simultaneously. Our approach iteratively operates on a sequence of bounded

under-approximations of input programs; in each bounded under-approximation, each recursive proce-

dure call is only allowed to execute a bounded number of times. In each iteration, our approach attempts

to generate a set of proofs that the bounded programs satisfy the given relational property under all pos-

sible relevant choices of synchronization points. Our approach synthesizes this set of proofs by solving

a single system of Constrained Horn Clauses. Then, our approach attempts to find some proof of the

correctness of the bounded under-approximations that can be generalized to form a proof for the origi-

nal, unbounded programs. If a valid proof is found, then the verifier has validated the given relational

property. Otherwise, our approach continues by considering larger under-approximations of the input

programs.

We have implemented our approach as an executable tool, named PEQUOD. PEQUOD targets Java

Virtual Machine (JVM) bytecode and has been evaluated on 33 benchmarks, consisting of verification

challenge problems and student solutions submitted to online coding platforms. Our evaluation indicates

that, in a significant set of practical cases, PEQUOD can efficiently verify relational properties beyond the

scope of existing techniques.

The rest of this paper is organized as follows. §2 provides an informal overview of our proof system

and of PEQUOD, by example. §3 reviews the technical foundations for our work, and §4 presents the

proof system and PEQUOD in detail. §5 presents an empirical evaluation of PEQUOD. §6 concludes by

comparing our contribution to related work.

2 Overview

In this section, we illustrate our approach by example. We first introduce a pair of programs that compute

the same function. We formalize a relational property that these two programs are equivalent as an

extended Hoare Logic Triple. Next, we describe how PEQUOD finds a proof of this triple in §2.1.

Fig. 1 contains two programs, named tri0 and tri1, that each compute the nth triangle number: i.e.,

the sum of all natural numbers up to and including n. tri0 computes this value by direct recursion while

30 Relational Verification via Invariant-Guided Synchronization

1 public static int tri0 (int n) {

2 if (n <= 0) return 0;

3 else return n + tri0(n - 1); }

1 public static int tri1Aux(int x, int acc) {

2 if (x <= 0) return acc;

3 else return tri1Aux(x - 1, acc + x); }

4 public static int tri1(int n) {

5 return tri1Aux(n, 0); }

Figure 1: tri0 and tri1: equivalent programs that, given integer n, compute the nth triangle number.

1 public static int tri0_0 (int n) {

2 if (n <= 0) return 0;

3 else return n + tri0_1(n - 1); }

4 public static int tri0_1 (int n) {

5 if (n <= 0) return 0;

6 else return n + tri0_2(n - 1); }

7 public static int tri0_2 (int n) {

8 if (n <= 0) return 0;}

1 public static int tri1_0(int n) {

2 return tri1Aux_0(n, 0); }

3 public static int tri1Aux_0(int x, int acc) {

4 if (x <= 0) return acc;

5 else return tri1Aux_1(x - 1, acc + x); }

6 public static int tri1Aux_1(int x, int acc) {

7 if (x <= 0) return acc;

8 else return tri1Aux_2(x - 1, acc + x); }

9 public static int tri1Aux_2(int x, int acc) {

10 if (x <= 0) return acc;

Figure 2: tri00 and tri10 are under-approximations of the input programs.

tri1 makes use of an auxilliary procedure, tri1Aux, which maintains an accumulator. Despite these

differences, these two programs compute the same function.

To verify this equivalence, we can construct a relational property that shows that given equal parame-

ters n, tri0 and tri1 compute the same output. This property can be represented as a Hoare Logic Triple

over a product command:

{n0 = n1} tri0× tri1 {ret0 = ret1}

The product command tri0× tri1 can be understood as the command that executes tri0 and tri1

simultaneously. A detailed explanation of product commands is given in §4.1. We annotate variables

with subscripts 0 or 1 to indicate which program they model. Variables ret0 and ret1 are used to model

the output of the respective programs. We refer to the proposition n0 = n1 as the pre-condition, and the

proposition ret0 = ret1 as the post-condition. The triple above states that if n0 = n1 and both tri0 and

tri1 are executed, then both programs will return the same value. A proof of this triple would prove the

equivalence of the two programs.

2.1 Proving Equivalence Automatically

PEQUOD proves this example Hoare Triple in three steps. First, PEQUOD constructs bounded versions

of tri0 and tri1 that respect an upper bound on the allowed number of recursive procedure calls. In this

example, we set this upper bound to three. Fig. 2 lists the bounded programs tri00 and tri10. These

two program are bounded because each has finitely many execution paths. These two programs under-

approximate tri0 and tri1 respectively, because their execution paths are a subset of the execution paths

in the original programs. tri02 and tri1Aux2 are incomplete because they do not have else branches

in their conditional statement. These branches are assumed to be unreachable in the current under-

approximation.

Second, PEQUOD tries to synthesize a set of proofs for a corresponding Hoare Triple over these

bounded programs: {n0 = n1} tri00×tri10 {ret0 = ret1}. The key idea is that PEQUOD will find proofs

for all possible orders of modeling the execution of tri00 and tri10. The resulting proofs represent all

possible choices of synchronization points of the bounded programs. For example, in a subset of the

bounded proofs, PEQUOD arrives at the following intermediate goal:

{n0 = x1} tri00× tri1Aux0 {ret0 + acc1 = ret1}

Q. Zhou, D. Heath, & W. Harris 31

tri0

t
r
i
1

tri00× tri1Aux0

n0 = x1⇒
ret0 + acc1 = ret1

tri01× tri1Aux0

n0 +1 = x1⇒
ret0 + acc1 + x1 = ret1

tri02× tri1Aux0

x1 = 0∧ n1 = 2⇒
acc1 = ret1∧ ret0 = 3

tri00× tri1Aux1

n0 = x1 +1⇒
ret0 + acc1 = ret1 + n0

tri01× tri1Aux1

n0 = x1⇒
ret0 + acc1 = ret1

tri02× tri1Aux1

x1 = 0∧ n1 = 1⇒
acc1 = ret1∧ ret0 = 1

tri00× tri1Aux2

n1 = 0∧ x1 = 2⇒
ret0 = 0∧ acc1 = ret1 +3

tri01× tri1Aux2

n1 = 0∧ x1 = 1⇒
ret0 = 0∧ acc1 = ret1 +1

tri02× tri1Aux2

x1 ≤ 0∧ n1 ≤ 0⇒
acc1 = ret1∧ ret0 = 0

Figure 3: Intermediate products that appear when proving the bounded example program. Each product

is depicted with a pre and post invariant that leads to a proof.

PEQUOD continues the proof by either stepping in tri00 or by stepping in tri10. ‘Stepping’ through

the product program corresponds to applying particular proof rules that result in new Hoare Triple goals.

In other words, PEQUOD proves the triple over tri00× tri1Aux0 by proving a series of Hoare Triples,

which we refer to as a proof path, with proper invariants.

The fact that tri00 and tri10 are bounded commands implies that there are finitely many possi-

ble proof paths that can be used to prove this bounded goal. Fig. 3 depicts all possible proof paths

for a partial proof of this Hoare Triple. The depicted proof is partial because we omit proof goals cor-

responding to the programs’ false branches, for clarity. The upper-leftmost node is the Hoare Triple

that PEQUOD must prove. Every proof path over the true branches eventually reaches the the product

command tri02× tri1Aux2 (since tri02 and tri1Aux2 are under-approximations that allow no further

recursion). PEQUOD encodes all possible proof paths into a single set of Constrained Horn Clauses

(CHCs), and uses known techniques for solving this system to synthesize proper invariants. In short,

PEQUOD uses CHCs to synthesize a set of proofs for all possible proof paths of the bounded program.

The method for converting an input Hoare Triple into a CHC system is described in §4.2.2.

Third, PEQUOD attempts to prove the original, unbounded problem by searching for a bounded proof

that can be generalized. A suitable approach for solving this example is to consider the synchronization

point tri0× tri1Aux, since the data at these two points is highly related. PEQUOD finds this synchro-

nization point automatically and annotates it with appropriate invariants by searching the set of proofs

for the bounded programs, as depicted in Fig. 3. PEQUOD begins its search from the top-left node:

tri00× tri1Aux0. In order to find a generalizable proof path, PEQUOD must choose a proof path that

passes through the node tri01× tri1Aux1. Note that the pre-condition and post-condition of two Hoare

Triples over these two product commands are the same. Furthermore, the two product commands rep-

resent the same unbounded command, tri0× tri1Aux, from the original program. Thus, PEQUOD can

use the Hoare Triple over the first command as a hypothesis to prove the second. The details of the proof

rule that allows this reasoning is given in §4.1. By choosing this proof path, PEQUOD has also decided to

synchronize the two procedures by executing each recursive procedure once. Therefore, PEQUOD finds

the proof and synchronization points simultaneously.

Not all proof paths can be generalized to form proofs for the original programs. In fact, any proof path

that does not pass through the node tri01× tri1Aux1 will fail to generalize because (1) the relational

invariants along the path are inappropriate for use as a hypothesis further down the path and (2) the node

tri02× tri1Aux2 cannot be used in the proof because it incompletely models the original programs.

32 Relational Verification via Invariant-Guided Synchronization

E-SKIP
〈skip,σ〉 ⇓ σ

E-ASSIGN
〈x := e,σ〉 ⇓ σ [x 7→ e]

E-IFTRUE
eval(e) = true 〈c0,σ〉 ⇓ σ

′

〈if e then c0 else c1 fi,σ〉 ⇓ σ
′

E-IFFALSE
eval(e) = false 〈c1,σ〉 ⇓ σ

′

〈if e then c0 else c1 fi,σ〉 ⇓ σ
′

E-CALL
〈B,σ ′[~i 7→~x]〉 ⇓ σ

′′

〈~x := N(~r),σ〉 ⇓ σ [~r 7→ σ
′′(~o)]

E-SEQ
〈c0,σ〉 ⇓ σ

′ 〈c1,σ
′〉 ⇓ σ

′′

〈c0 ; c1,σ〉 ⇓ σ
′′

Figure 4: Operational semantics of programs in Com.

When PEQUOD cannot find a valid proof for the original programs, PEQUOD increases the bounding

number and starts over. The algorithm that generalizes bounded proofs is described in §4.2.3.

3 Background

In this section, we present the technical background for our approach. In §3.1, we formalize the im-

perative target language. In §3.2, we introduce Constrained Horn Clause (CHC) systems as a class of

logic-programming problems.

3.1 Target Language

In this section, we give the formal definition of the target language: an imperative language with condi-

tionals and (possibly recursive) procedures. In order to define a program, we first give the definition of

a command. In the following, we use the metavariable x to represent program variables, e to represent

program expressions, and N to represent procedure names. The space of commands Com is defined

inductively, as follows:

Com ::= skip | x := e | if e then Com else Com fi |~x := N(~x) | Com ; Com

That is, a command is either a skip command, an assignment, a conditional, a procedure call, or a

sequence of other commands.

The semantics of this language is defined in terms of program states that the commands manipulate.

A program state, σ , is a map from variables to values: σ : x→ v. Fig. 4 formalizes the semantics of

commands by relating states before and after executing the command. A skip command leaves the state

unchanged (E-SKIP). An assignment updates a program variable x to an given value e (E-ASSIGN). A

conditional first evaluates the condition expression e, and if the result of evaluation result is the symbol

True, then its evaluation is based on the first command (E-IFTRUE); otherwise, the evaluation is based

on the second command (E-IFFALSE).

In order to support procedures, we also define a space of lookup tables LTable. A lookup table maps

the names of procedures to a tuple: the parameters ~p, the body of the procedure Com, and the output

variables ~o.

LTable : N→ (~p,Com,~o)

A procedure call applies a lookup table T ∈ LTable to a procedure name N, constructs a program state

σ
′ by substituting the parameters~i by the arguments ~x, evaluates the body over σ

′ to get σ
′′, and finally

substitutes the return variables~r by the value of the output variables ~o in σ
′′.

Q. Zhou, D. Heath, & W. Harris 33

A program is a command paired with a lookup table.

3.2 Constrained Horn Clauses

PEQUOD finds valid program invariants using an external Constrained Horn Clause (CHC) solver. CHCs

are a class of constraint programming problems [10]. Each CHC has the following form: chc := head⇐
body. The clause head is an uninterpreted predicate applied to a set of variables. The clause body is

the conjunction of a logical formula together with any number of uninterpreted predicates applied to

variables. A CHC system is a set of CHCs together with a distinguished uninterpreted predicate, called

the query.

A solution of a CHC system is a map from uninterpreted predicates to interpretations. A valid solu-

tion is one where (1) the interpretation of the query is the constant function that returns the proposition

False and (2) replacing each uninterpreted predicate by its interpretation (instantiated with the applied

variables) results in a set of valid implications.

4 Technical Approach

In this section, we describe our technical approach in detail. In §4.1, we define the proof system that

PEQUOD uses to prove relational properties In §4.2, we describe a procedure for automatically finding

proofs in this system.

4.1 Proof System

We define a proof system that extends standard Hoare Logic with new rules that can verify relational

properties. To present this system, we first define the concept of a product command: PCom ::= Com×
Com. Informally, product commands are used to represent pairs of independent program fragments

whose execution we wish to consider simultaneously. This intuition can be formalized by the following

semantic rule:

E-PROD

〈c0,σ〉 ⇓ σ
′

σ ∩ τ =∅

〈c1,τ〉 ⇓ τ
′

σ
′∩ τ

′ =∅

〈c0× c1,σ ∪ τ〉 ⇓ σ
′∪ τ

′

Because members of a product command share no vocabulary, we can reorder the members at will

without changing the semantic meaning: The product of two commands is commutative with respect

to the program semantics. Additionally, we enrich the vocabulary of commands with one additional

constructor: JComK. This command essentially adds a wrapper around the inner command. The semantic

meaning of the wrapped command is the same as the inner command; we merely add this construction

for the purposes of the proof rules.

Given these additional constructions, our proof system extends the standard Hoare Logic naturally

such that it respects products. A relational invariant, P, is a first-order logical proposition that contains

the vocabulary of each program. Judgments in the proof system take the following form:

T,Γ ⊢ {P} PCom {Q}

P and Q are relational invariants, where P is the precondition and Q is the postcondition. T is a lookup

table that contains mappings from procedure names to procedure bodies (implemented as commands). Γ

34 Relational Verification via Invariant-Guided Synchronization

SKIP
T,Γ ⊢ {P} skip× skip {P}

ASSIGN
T,Γ ⊢ {P} skip× c {Q}

T,Γ ⊢ {P[x 7→ e]} x := e× c {Q}

IF

T,Γ ⊢ {P∧ e} c0× c2 {Q}
T,Γ ⊢ {P∧¬e} c1× c2 {Q}

T,Γ ⊢ {P} if e then c0 else c1 fi× c2 {Q}
ASSUME

{P} c0× c1 {Q} ∈ Γ

T,Γ ⊢ {P} c0× c1 {Q}

STEP
T,Γ∪{{P} Jc0K× c1 {Q}} ⊢ {P} c0× c1 {Q}

T,Γ ⊢ {P} Jc0K× c1 {Q}

CALL
T [N] = (~p,c0,~o) T,Γ ⊢ {P} Jc0K× c {R}

T,Γ ⊢ {P[~p 7→~e]∧∀X ′.(R[X 7→ X ′] =⇒ Q[~x 7→~o]}~x := N(~e)× c {Q}

PART

(c′0,c
′′
0) = part(c0) (c′1,c

′′
1) = part(c1)

T,Γ ⊢ {P} c′0× c′1 {Q} T,Γ ⊢ {Q} c′′0× c′′1 {R}

T,Γ ⊢ {P} c0× c1 {R}

CONS

T,Γ ⊢ {P′} c0× c1 {Q
′}

P⇒ P′ Q′⇒ Q

T,Γ ⊢ {P} c0× c1 {Q}
COMM

T,Γ ⊢ {P} c1× c0 {Q}

T,Γ ⊢ {P} c0× c1 {Q}

Figure 5: Proof judgments for determining the validity of invariants over product command.

is a context, which is a set of Hoare Triples of the form {P} PCom {Q}. Γ is used as a set of hypotheses

which can be used to complete proofs of programs with recursion.

Fig. 5 presents the proof rules. Rules SKIP and ASSIGN simply model the semantics associated with

the respective command in the context of a product. IF models the semantics of a conditional command.

A critical difference between this rule and the rule from standard constructions is that the conditional

is part of a product command. This allows the prover to reason about both branches of a conditional

simultaneously with another program.

CALL models the semantics of a procedure call. Suppose that the prover wishes to prove an assertion

over a pair of two commands: a call command x := N(e) with an arbitrary command c. We use N

for the name of the called procedure, c0 for the body of the procedure, ~p for the vector of parameters,

and ~o for the vector of return variables. If the prover demonstrates that the wrapped command Jc0K
paired with c satisfies pre-condition P and post-condition R, then the call to N paired with c satisfies Q,

given that the pre-condition P[~p 7→~e] holds under an additional assumption. In Fig. 5, the assumption

∀X ′.(R[X 7→ X ′] =⇒ Q[~x 7→~o] means that R, which holds at the end of the called procedure, entails the

post-condition Q in callee procedure, after substituting the output variables ~x by the return variables ~o.

X ′ a copy of variables in callee that are different from the output variables.

STEP is used to step into the body of a procedure. It allows the prover to add the current goal as a

hypothesis. The rule unwraps the command while adding the goal to the hypothesis. Later, the prover

can use ASSUME, which states that a proof goal can be satisfied if the goal is a hypothesis in the context

Γ.

CONS is a typical component of a Hoare Logic system. It states that we can weaken the pre-condition

Q. Zhou, D. Heath, & W. Harris 35

and strengthen the post-condition. As stated earlier, the semantics of commands are commutative with

respect to products. COMM allows the prover to continue the proof by applying ASSIGN, IF, and CALL

on either member of the product. This rule is critical for relational reasoning. In practice, the prover

uses COMM to select the order in which to model the subcommands. The example in §2.1 shows that

choosing the right order to apply COMM results in simple invariants that satisfy the proof.

Recall that a focus of our approach is finding appropriate synchronization points of the program

in conjunction with relational invariants. PART is responsible for this reasoning. PART makes use of

a procedure part. Informally, part allows the prover to partition a sequence of commands into two

subsequences by cutting a sequence at an arbitrary point. PART decomposes a product command into

two product commands, and proves them sequentially. The formal definition of part is given in the

extended paper.

One key observation of this proof system is that this system is non-deterministic. In particular, PART

allows the prover to subdivide the input programs at will: By choosing different partitionings, the prover

is selecting synchronization points. COMM rule is also non-deterministic, and can be applied anywhere

in the proof. Once a suitable ordering has been chosen by applying COMM and PART, the prover can

potentially construct simple invariants that lead to a valid proof. Hence, the difficulty of designing the

automatic proof system is determining how to use COMM and PART.

4.2 Verifying Relational Properties Automatically

Verifying a relational property of a product command, pcd, is reducible to deriving a relational Hoare

Triple {P} pcd {Q} under a given the lookup table T and an empty context Γ. The relational property

is modeled by the pre-condition P and the post-condition Q. For example, the Hoare Triple given in §2

describes a property that specifies tri0 and tri1 are equivalent.

PEQUOD attempts to construct a proof of a relational Hoare Triple by iteratively executing three steps:

First, PEQUOD constructs a bounded product command pcd′ from the original product command pcd

that respects a given bounding number n. pcd′ is an under-approximation of pcd where each recursive

procedure executes at most n times. In §4.2.1, we describe how to construct pcd′ from pcd and n.

Second, PEQUOD generates a set of proofs for pcd′ in a corresponding Hoare Triple. Because pcd′ is

bounded, PEQUOD can attempt all proof paths by exhaustively applying COMM and PART. PEQUOD pop-

ulates these proofs with appropriate intermediate invariants using a system of Constrained Horn Clauses.

In §4.2.2, we describe how to generate a set of proofs for a bounded Hoare Triple. In the third step,

PEQUOD attempts to generalize the work done in the second step by finding a proof for the unbounded

commands among the proofs for the bounded commands. By searching through the set of bounded

proofs, PEQUOD is searching for synchronization points of the input programs that lead to a proof. In

§4.2.3, we describe this generalization step in detail.

If PEQUOD cannot find a generalizable proof, then it increases n and starts again from the first step.

4.2.1 Constructing Bounded Programs

In order to represent bounded versions of programs, we extend our imperative command inductive def-

inition with one additional constructor, ⊥. ⊥ should be understood as a command that immediately

terminates. We use this construction to replace recursive calls to procedures outside the bound that we

currently consider.

Bound is a procedure that constructs a bounded command c′ and corresponding lookup table T ′

from an input command c with lookup table T and a bounding number n. The output command c′ is

36 Relational Verification via Invariant-Guided Synchronization

input :A Hoare Triple {P} pcd′ {Q} where pcd′ ∈ PCom is bounded product command and its

lookup table T .

output :A CHC system whose solution is a set of proofs for the given Hoare Triple.

1 Procedure ConstructCHC({P} pcd′ {Q},T)
2 CHC←∅

3 Procedure ConstructAux({P} pcd′ {Q})
4 switch pcd’ do

5 case skip× skip do

6 return

7 otherwise do

8 foreach c0× c1 ∈ Permute(pcd′) do

9 switch c0 do

10 case ⊥ do

11 CHC←CHC∪{Q⇐ False}
12 case c′0;c′′0 do

13 foreach (pcd0, pcd1) ∈ Partition(pcd′) do

14 R← freshRel

15 ConstructAux({P} pcd0 {R})
16 ConstructAux({R} pcd1 {Q})

17 case x := e do

18 R← freshRel

19 CHC←CHC∪{[x 7→ e]R⇐ P}
20 ConstructAux({R} pcd′ {Q})

21 · · ·

22 ConstructAux({P} pcd′ {Q})
23 return CHC

Algorithm 1: Given a Hoare Triple over a product command pcd′ and a corresponding lookup table

T , generate a CHC system that represents all possible proof paths for this triple.

an under-approximation of the input command c that respects n. The result of calling Bound is a new,

bounded program where each recursive procedure is “copied” at most n times. Further calls to recursive

procedures are modeled by ⊥. In §2, Fig. 2 shows a bounded command tri00 with its lookup table that

constructs from original command tri0 in Fig. 1 with the bounded number three. The missing ‘else’

clauses in these examples correspond to the command ⊥. An implementation of Bound is described in

the extended paper.

4.2.2 Verifying Bounded Programs via Constrained Horn Clauses

PEQUOD constructs invariants for all possible proofs of a bounded Hoare Triple using a system of Con-

strained Horn Clauses (CHCs). Alg. 1 describes ConstructCHC, a procedure that constructs a CHC

system representing all possible proofs for a given Hoare Triple. The solution of a CHC system is a set

of relational invariants that support the set of proofs. If PEQUOD cannot find a solution of the constructed

CHC system, then either (1) PEQUOD will find a counter-example of the relational property or (2) the

underlying theorem prover does not support expressive enough logic to construct valid invariants.

ConstructCHC defines an auxiliary procedure ConstructAux. ConstructAux is a recursive descent

Q. Zhou, D. Heath, & W. Harris 37

over the structure of the product command that accumulates a CHC system in the variable CHC. If

pcd′ is exactly the product command skip× skip, then the recursion is finished and CHC contains a

complete system. Otherwise, ConstructAux applies the procedure Permute on the product command

pcd′. Permute(pcd′) returns two product commands by applying the proof rule COMM. For each c0×c1

in set Permute(pcd′), ConstructAux examines the first product c0.

If c is a sequence of commands, then ConstructAux applies Partition to c× c1. Partition is a pro-

cedure that generates a set of all possible partitions of pcd′. Partition(c0) and Partition(c1) are the

sets containing all valid partitions that respect the partition rule without duplicating skip. For each pair

(pcd0, pcd1) in the set of partitions, ConstructAux constructs a fresh relational predicate R as an inter-

mediate proposition. It then recurses on both parts. If c0 is neither a sequence of commands nor ⊥, then

ConstructAux updates the CHC system based on the semantics of c0 and recurses on pcd′. For example,

if c0 is an assignment then a clause is added which indicates the precondition implies the intermediate

proposition with the appropriate substitution.

The key intuition behind ConstructCHC is that it constructs CHC system that contains all possible

proofs for the bounded command pcd′ by exhaustively applying the COMM and PART rules. When the

constructed CHC system is solved, the solution contains invariants for all possible proofs of {P} pcd′ {Q}.
In practice, ConstructCHC includes optimizations that avoid redundant work.

PEQUOD solves CHC systems generated by ConstructCHC using an external solver. The solution

σ is map from each relational predicate to its interpretation. Replacing each relational predicate by the

corresponding invariant in the proof leads to valid Hoare Triples for the bounded program.

4.2.3 Generalizing Bounded Proofs

PEQUOD defines a procedure Syn that searches the set of proofs for the bounded commands to find

one proof that can be generalized for the unbounded original commands. Syn operates over a bounded

product command pcd′ and corresponding looks up table T ′, as well as a solution σ of the constructed

CHC system, which contains proper invariants for all proof paths. Syn decides if one generalizable proof

path can be found for the original, unbounded command pcd, within the current set of bounded proof

paths and its invariants.

The key intuition behind this algorithm is that Syn only needs to find one generalizable proof path

among the set of bounded proof paths with current synthesized invariants. Syn has a similar structure to

ConstructCHC with two key differences.

First, Syn attempts to use ASSUME to generalize the current proofs for the unbounded, original

programs. ASSUME can only be applied when the context contains an appropriate Hoare Triple as

hypothesis. Syn builds up context at each call site. When it revisits an identical command a second

time (called procedure names can be different copies of the same original procedure), Syn checks if the

pre-condition of the hypothesis is implied by the goal pre-condition and if the post-condition of the hy-

pothesis implies the goal post-condition. If so, the hypothesis can be used to apply ASSUME to find a

generalized proof for the current goal. For example, in §2.1, Fig. 3 depicts two bounded product com-

mands tri00×tri1Aux0 and tri01×tri1Aux1. Both of these commands represent the same unbounded

product command, tri0× tri1Aux. Since the relational invariants for these two Hoare Triples are the

same, Syn can use the first triple as an assumption to prove the second.

Second, Syn only needs to find one valid proof for the goal. Thus Syn can choose between all

permutations/partitions of the bounded command pcd′ to find one generalized proof for the original

command pcd. Fig. 3 shows all possible proof paths for one sub-proof goal, and Syn only needs to find

one proof path that passes through the node tri01× tri1Aux1 to finish the proof. Other proof paths can

38 Relational Verification via Invariant-Guided Synchronization

be discarded. The algorithm is presented more carefully in the extended paper.

5 Evaluation

We performed an empirical evaluation of PEQUOD to answer the following questions: How effective is

PEQUOD compared to other automated relational verifiers?

To answer the above experimental questions, we implemented PEQUOD as a verifier of relational

properties of programs represented in JVM bytecode. The only requirement imposed by PEQUOD on the

logic for expressing program semantics is that the logic (1) has an effective decision procedure, which

PEQUOD uses to check possible entailments (§4.2.2), and (2) can be encoded in the logic of constraints

supported by its CHC solver. A subset of the JVM semantics can be encoded in the logic of linear

arithmetic with arrays. This logic is supported both by the Z3 decision procedure and the DUALITY

CHC solver implemented in Z3 [24].

We applied PEQUOD to benchmarks introduced in previous work on relational verification by auto-

matic induction [23], programs and properties corresponding to theorems over recursive functions posed

as theorem-proving exercises [20], and solutions to coding problems on the Leetcode platform [16]. We

also slightly modified two benchmarks (plusNSm0 and sumSumAcc0) that required a verifier to prove a

corollary that is strictly weaker than key inductive mutual summary of the programs. Such modified

benchmarks can present distinct challenges to a verifier because they require the verifier to synthesize

non-trivial inductive summaries. The benchmarks require proofs of properties including equivalence,

distributivity, monotonicity, commutativity, associativity, injectivity, transitivity, and symmetry.

We compared PEQUOD to implementations of techniques that perform automatic induction [23],

that transform CHC systems encoding relational properties (VeriMapRel) [12], that use Cartesian Hoare

Logic (CHL) [21], and that use self-composition. The current implementation of CHL does not support

recursive procedures and self-composition cannot solve any but the simplest problem, addDigits. Ver-

iMapRel does not support the negation of equality statements in its property specification, so we have to

manually transformed the benchmarks with equality statements to a set of relational properties that use in-

equalities. Without this manual work, VeriMapRel can only solve two benchmarks. As a result, we have

reported comparisons with automatic induction, and with VeriMapRel using this manual transformation.

Fig. 6 contains the results of our evaluation. In short, our experiments indicate that PEQUOD can

efficiently verify properties beyond the scope of existing techniques. In particular, PEQUOD successfully

verifies all but four of the benchmarks on which it was evaluated. Automatic induction fails to prove

15 cases within time that PEQUOD can. These cases require synthesizing non-trivial inductive relational

invariants other than the given relational properteis to finish the proof. VeriMapRel fails to prove 8

cases within time that PEQUOD can. These cases requires sophisticated synchronization between two

programs.

PEQUOD failed to converge on four cases because DUALITY did not generate relational invariants of

bounded programs that can be generalized. This is a known challenge for CHC solvers that use an in-

terpolating theorem prover [2]. For example, to prove that multiplication is commutative (multComm),

PEQUOD requires the CHC solver to generate summaries that establish equalities over program variables,

such as x0 = y1. Instead, the solver sometimes generates invariants specific to the structure of the hierar-

chical programs, such as x0 = 1∧y1 = 1. However, because PEQUOD uses a CHC solver as a black box,

it is well positioned to benefit directly from improvements to CHC solvers. Furthermore, in a significant

number of cases, PEQUOD synthesize proper synchronization points with relational invariants from DU-

ALITY’s solutions that could not be found by existing techniques. The current implementation of Pequod

Q. Zhou, D. Heath, & W. Harris 39

Source Name Property Time(s) Mem(MB) [23] [12]

Automating

Induction

For Solving

Horn Clauses

[23]

multMultAcc equiv 5.6 183.0 ✓ ✓

multMultAcc0 equiv 5.5 182.8 ✓! ✓

multL1 equiv 4.7 185.8 ✓ ✗

multR1 equiv 2.7 121.8 ✓ ✓

multDistL distr 12.6 381.3 ✗ ✗

multDistR distr 23.9 433.6 ✓ ✗

sumSimple equiv 2.8 121.2 ✓ ✓

sumDown equiv 5.2 197.1 ✓ ✓

sumUp equiv 5.0 177.3 ✓ ✓

sumUpDown equiv 6.1 179.2 ✗ ✗

sumSumAcc equiv 5.5 179.7 ✓ ✓

sumSumAcc0‡ equiv 11.7 253.6 ✗ ✓

multAssoc assoc 33.3 599.4 ✗ ✗

sumMono mono TO 1530.6 ✓ ✓

multMono mono TO 1368.3 ✓! ✓

multComm comm TO 2028.8 ✓ ✓

Software

Foundations

plusComm comm 6.0 254.2 ✗ ✓

plusAssoc assoc 38.9 618.0 ✗ ✗

plusNSm equiv 21.0 430.6 ✓ ✓

plusNSm0‡ equiv 22.9 434.7 ✗ ✓

plusRearrange equiv 138.5 658.6 ✗ ✓

doublePlus equiv 4.3 118.2 ✗ ✓

doubleInjective inj 4.8 237.5 ✗ ✓

evenbS equiv 26.6 642.2 ✗ ✗

beqNatSym sym 5.4 202.3 ✓ ✓

beqNatTrans tran 7.2 242.4 ✓ ✓

mult0plus equiv TO 786.1 ✗ ✗

LeetCode

addDigits† equiv 2.5 67.2 ✗ ✓

trailingZeroes equiv 5.1 200.7 ✗ ✓

climbStairs† equiv 6.3 258.0 ✗ ✗

Figure 6: The results of our evaluation of PEQUOD. Each benchmark is labeled with its source, name,

the class of relational property that PEQUOD attempted to verify, time spent by PEQUOD to synthe-

size a proof, the peak amount of memory that PEQUOD used, and whether automated induction [23]

or VeriMapRel [12] verified the benchmark. A time of TO denotes that PEQUOD was unable to con-

verge within 300 seconds. The superscript ‘!’ denotes that automated induction only converged with a

manually-provided lemma. Each benchmark with the superscript ‘‡’ is a minor modification of the origi-

nal benchmark immediately above it. The superscript ‘†’ denotes that the benchmarks obtained from the

source were not equivalent. In such cases, the data reports the performance of PEQUOD when applied to

a version of the benchmark that we manually patched to be correct.

40 Relational Verification via Invariant-Guided Synchronization

and executable benchmarks are available online.1

6 Related Work

Previous work [12, 18, 23] has established that problems in relational verification can be reduced to

solving systems of Constrained Horn Clauses, and has proposed novel proof systems for solving such

systems. Such systems are expressive, and can be partially automated. However, they require a prover to

manually provide lemmas that the system establishes by induction when a lemma stronger than the goal

invariant must be proved [23] (analogous to suggesting inductive invariants when they must differ from

the goal invariant of a program) or direct how relational predicates in a given system should be paired in

order to generate a solvable system [12, 18]. PEQUOD performs such reasoning automatically.

Previous work has proposed frameworks that allow a prover to verify that recursive programs satisfy

a mutual summary [3, 4, 11, 14, 15], but require the user to direct how procedures must be paired, and

in some cases provide mutual summaries. Other approaches for verifying relational properties of single-

procedure programs have been significantly automated [21], but the developed automation tactics are

carefully tuned to syntactic forms of the programs and would be non-trivial to generalize to programs

that contain multiple procedures.

Verifying relational properties can also be reduced to synthesizing a suitable product program [5, 7].

Some approaches synthesize product programs in the class of sequential compositions automatically, but

such product compositions either cannot easily be constructed manually [9] or can only prove relational

properties in a heavily restricted class [5, 8, 13, 17, 22]. Other approaches construct product programs

depending partly on matching control structures between the pairs of programs and establishing the logi-

cal equivalence of program conditions included in matched structures. Previous work has also explored

constructing asymmetric product programs [6] which can express proofs of relational properties not prov-

able in the system used by PEQUOD. However, such work does not address the problem of automatically

inferring loop invariants of the synthesized product program, which may be viewed alternatively as the

mutual summary between loops of the original programs.

Recent work has introduced logics for reasoning about relational properties of higher-order pro-

grams [1]. However, these systems have not yet been used to automatically synthesize proofs of pro-

gram equivalence. PEQUOD can only synthesize proofs for first-order recursive programs, but can do so

automatically.

References

[1] Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg & Pierre-Yves Strub (2017): A Relational

Logic for Higher-Order Programs. In: ICFP, doi:10.1145/3110265.

[2] Aws Albarghouthi & Kenneth L. McMillan (2013): Beautiful Interpolants. In: CAV,

doi:10.1007/978-3-642-39799-8_22.

[3] David A. Naumann Anindya Banerjee & Mohammad Nikouei (2016): Relational Logic with Framing and

Hypotheses. In: FSTTCS, doi:10.4230/LIPIcs.FSTTCS.2016.11.

[4] John D. Backes, Suzette Person, Neha Rungta & Oksana Tkachuk (2013): Regression Verification Using

Impact Summaries. In: SPIN, doi:10.1007/978-3-642-39176-7_7.

[5] Gilles Barthe, Juan Manuel Crespo & César Kunz (2011): Relational Verification Using Product Programs.

In: FM, doi:10.1007/978-3-642-21437-0_17.

1https://www.dropbox.com/s/yks0eyic8dsf69e/pequod.zip?dl=0

http://dx.doi.org/10.1145/3110265
http://dx.doi.org/10.1007/978-3-642-39799-8_22
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.11
http://dx.doi.org/10.1007/978-3-642-39176-7_7
http://dx.doi.org/10.1007/978-3-642-21437-0_17

Q. Zhou, D. Heath, & W. Harris 41

[6] Gilles Barthe, Juan Manuel Crespo & César Kunz (2013): Beyond 2-Safety: Asymmetric Product Programs

for Relational Program Verification. In: LNCS, doi:10.1007/978-3-642-35722-0_3.

[7] Gilles Barthe, Juan Manuel Crespo & César Kunz (2016): Product Programs and Relational Program Logics.

In: JLAMP, doi:10.1016/j.jlamp.2016.05.004.

[8] Gilles Barthe, Pedro R. D’Argenio & Tamara Rezk (2004): Secure Information Flow by Self-Composition.

In: CSFW-17, doi:10.1017/S0960129511000193.

[9] Lennart Beringer (2011): Relational Decomposition. In: ITP, doi:10.1007/978-3-642-22863-6_6.

[10] Nikolaj Bjørner, Kenneth L. McMillan & Andrey Rybalchenko (2013): On Solving Universally Quantified

Horn Clauses. In: SAS, doi:10.1007/978-3-642-38856-9_8.

[11] Marcel Böhme, Bruno C. d. S. Oliveira & Abhik Roychoudhury (2013): Partition-based regression verifica-

tion. In: ICSE, doi:10.1109/ICSE.2013.6606576.

[12] Alberto Pettorossi Emanuele De Angelis, Fabio Fioravanti & Maurizio Proietti (2016): Verifying Relational

Program Properties by Transforming Constrained Horn Clauses. In: CILC.

[13] Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer & Mattias Ulbrich (2014): Automating

regression verification. In: ASE, doi:10.1145/2642937.2642987.

[14] Benny Godlin & Ofer Strichman (2009): Regression verification. In: DAC, doi:10.1145/1629911.1630034.

[15] Chris Hawblitzel, Ming Kawaguchi, Shuvendu K. Lahiri & Henrique Rebêlo (2013): To-

wards Modularly Comparing Programs Using Automated Theorem Provers. In: CADE-24,

doi:10.1007/978-3-642-38574-2_20.

[16] (2016): LeetCode Online Judge. https://leetcode.com/. Accessed: 2015 Nov 16.

[17] Nuno P. Lopes & José Monteiro (2016): Automatic equivalence checking of programs with uninterpreted

functions and integer arithmetic. STTT 18(4), doi:10.1007/s10009-015-0366-1.

[18] Mattias Ulbrich Moritz Kiefer, Vladimir Klevanov (2016): Relational Program Reasoning Using Compiler

IR. In: VSTTE, doi:10.1007/s10817-017-9433-5.

[19] Lauren Pick, Grigory Fedyukovich & Aartic Gupta (2018): Exploiting Synchrony and Symmetry in Relational

Verification. In: CAV, doi:10.1007/978-3-319-96145-3_9.

[20] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg,

Cǎtǎlin Hriţcu, Vilhelm Sjöberg & Brent Yorgey (2018): Logical Foundations. Software Foundations series,

volume 1, Electronic textbook. Version 5.5. http://www.cis.upenn.edu/~bcpierce/sf.

[21] Marcelo Sousa & Isil Dillig (2016): Cartesian Hoare logic for verifying k-safety properties. In: PLDI,

doi:10.1145/2980983.2908092.

[22] Tachio Terauchi & Alexander Aiken (2005): Secure Information Flow as a Safety Problem. In: SAS,

doi:10.1007/11547662_24.

[23] Hiroshi Unno & Sho Torii (2017): Automating Induction for Solving Horn Clauses. In: CAV,

doi:10.1007/978-3-319-63390-9_30.

[24] (2017): Z3Prover/z3 - GitHub. https://github.com/Z3Prover/z3. Accessed: 2017 July 1.

http://dx.doi.org/10.1007/978-3-642-35722-0_3
http://dx.doi.org/10.1016/j.jlamp.2016.05.004
http://dx.doi.org/10.1017/S0960129511000193
http://dx.doi.org/10.1007/978-3-642-22863-6_6
http://dx.doi.org/10.1007/978-3-642-38856-9_8
http://dx.doi.org/10.1109/ICSE.2013.6606576
http://dx.doi.org/10.1145/2642937.2642987
http://dx.doi.org/10.1145/1629911.1630034
http://dx.doi.org/10.1007/978-3-642-38574-2_20
https://leetcode.com/
http://dx.doi.org/10.1007/s10009-015-0366-1
http://dx.doi.org/10.1007/s10817-017-9433-5
http://dx.doi.org/10.1007/978-3-319-96145-3_9
http://www.cis.upenn.edu/~bcpierce/sf
http://dx.doi.org/10.1145/2980983.2908092
http://dx.doi.org/10.1007/11547662_24
http://dx.doi.org/10.1007/978-3-319-63390-9_30
https://github.com/Z3Prover/z3

	1 Introduction
	2 Overview
	2.1 Proving Equivalence Automatically

	3 Background
	3.1 Target Language
	3.2 Constrained Horn Clauses

	4 Technical Approach
	4.1 Proof System
	4.2 Verifying Relational Properties Automatically
	4.2.1 Constructing Bounded Programs
	4.2.2 Verifying Bounded Programs via Constrained Horn Clauses
	4.2.3 Generalizing Bounded Proofs

	5 Evaluation
	6 Related Work

