
J.C. Blanchette and C. Kaliszyk:
Hammers for Type Theories (HaTT’16)
EPTCS 210, 2016, pp. 30–35, doi:10.4204/EPTCS.210.6

c© Fabian Kunze

Towards the Integration of an
Intuitionistic First-Order Prover into Coq

Fabian Kunze
Saarland University

s9fakunz@stud.uni-saarland.de

An efficient intuitionistic first-order prover integrated into Coq is useful to replay proofs found by
external automated theorem provers. We propose a two-phaseapproach: An intuitionistic prover
generates a certificate based on the matrix characterization of intuitionistic first-order logic; the cer-
tificate is then translated into a sequent-style proof.

1 Introduction

Sledgehammer [11] and HOLyHammer [5] drastically improvedthe productivity for users of proof assis-
tants. They make the capabilities of automated theorem provers (ATPs) available from within interactive
proof assistants.

The large, monolithic design of state-of-the-art theorem provers can not be easily trusted to be free of
bugs. Thus invoking theorem provers as an oracle is unacceptable for most users. Proof assistants are
more trustworthy because all reasoning is checked by a kernel intentionally kept small.

To integrate external provers, small yet efficient,certifiedproversintegratedinto the proof assistant are
used: Although it is often possible to mechanically translate the proof to a format accepted by the proof
assistant, the integrated prover allows for the reconstruction without the full knowledge of all axioms and
rules used by the external prover. Thus an integrated proversimplifies the integration of not only one but
different external provers.

There has been effort to integrate classical provers into Coq, e.g. SMTCoq [1], Satallax [3] and why3
[2], but they produce proofs that assume classical axioms. As a fair amount of proof developments avoids
assuming additional axioms, the acceptance of a future ‘CoqHammer’ benefits from the integration of
an efficient,intuitionistic prover.

2 Existing Intuitionistic Provers in Coq

The existing intuitionistic first-order provers integrated into Coq are not very strong. We evaluated
firstorder [4], a built-in tactic based on a sequent calculus, and JProver [14], a plugin available for
Coq. Using Coq version8.6pl1, we considered first-order problems that are likely to emerge in a future
‘Coq Hammer’.

For example, we tested formulas where the instantiate of quantifiers is not immediately determined
using a goal-driven approach:

(∀x,x= x)∧ (∀x,Px∨Qx)

∧ (∀xy,x= y∧Px⇒ Ry)∧ (∀xy,x= y∧Qx⇒ Ry)⇒ (∀x,Rx).

http://dx.doi.org/10.4204/EPTCS.210.6


Fabian Kunze 31

On this formula,firstorder was unable to find a proof during the several minutes we run it.JProver
succeeded in less than one second.

We also invoked both provers on several set-theoretical problems from the ILTP (Intuitionistic Logic
Theorem Proving) library [12]. Similar to the intended use case, we only supplied the axioms needed for
the proofs, resulting in problems like

(∀ABX,X ∈ A∪B⇔ X ∈ A∨X ∈ B)

∧ (∀AB,A= B⇔ A⊆ B∧B⊆ A)

∧ (∀AB,A⊆ B⇔∀X,X ∈ A⇒ X ∈ B)⇒ (∀A,A∪A= A).

On this and similar problems, bothfirstorder and JProver failed to find proofs before we aborted
them after running several minutes.

Therefore, faster intuitionistic provers integrated intoCoq are necessary for a ‘Coq Hammer’ used in
practice.

3 Proposed Architecture

We propose to employ the recent improvements on automated, intuitionistic first-order theorem proving
by Otten: ileanCoP [7, 8] and the forthcoming intuitionistic version of nanoCoP [10, 9]. The existing
implementations of both provers verified that the formulas in Section 2 are valid in under a second. Both
provers are based on the existence of proof certificates for the matrix characterization of (intuitionistic)
validity [15], which can be translated to sequent-style proofs [13].

This architecture is similar to that of JProver (which uses the same characterization of validity), but
uses a more efficient proof search procedure, leading to a higher success rate.

3.1 Finding Proof Certificates

The performance of ileanCoP is well in identifying valid formulas, compared to other intuitionistic
provers [8]. But it does not keep track of the proof found. Furthermore, it is based on aclausalvariant
of the matrix characterization for intuitionistic logic. The necessary translation into a non-clausal matrix
proof has been sketched in the correctness proof of ileanCoP[7], but to our knowledge has not yet been
implemented.

The classical prover nanoCoP [10] solves both problems: It outputs the proof certificate found and
uses the non-clausal matrix characterization of classicalvalidity. Otten is currently extending nanoCoP
to an intuitionistic variant by integrating prefix unification [15], a method already employed to derive
ileanCoP from the classical prover leanCoP.

In our proposed architecture, the proof certificate for a first-order formulaF consists of amultiplicity
µ , a pair of substitutionsσ = (σQ,σJ) and a set of pairs ofσ -complementaryatoms in the formula
(connections) thatspans Fµ .

We will now give an very informal intuition about this certificate.
A Part of the certificate is already needed for the matrix characterization of classical logic: The mul-

tiplicity µ takes care of the multiple instances an all-quantified subformula ofF may be needed in the
proof. One part of ‘σ -complementary’ ensures that that two atoms in a connectionare identical under
the (non-circular) term substitutionσQ, but have different polarity.

The set of connectionsspansthe formula if everypath through the formula contains at least one
connections. In the quantifier-free case, each path correspond to a disjunction in the conjunctive normal



32 Towards the Integration of an Intuitionistic First-Order Prover into Coq

form. In the case of formulas with quantifiers, each path correspond a branch of a (classical) analytic
tableaux, where quantifiers are instantiated according toσQ.

The main difference in the intuitionistic characterization is the use ofσJ to ensure that the positions of
the pair of complementary atoms in the formula are ‘compatible’. The position of an atom is defined by
structural recursion on the formula and represented by a string, consisting of fresh constants and fresh
variables.

An example of this for an intuitionistic valid formula isP ⇒ P, where the two atoms can be made
complementary: The position of the firstP is described by the stringz with a fresh variablez, while the
position of the secondP is the stringa consisting of a fresh constanta. DefiningσJ(z) = a unifies those
strings.

For the formula¬P∨P, a theorem of classical, but not intuitionistic logic, the two atoms can not be
made complementary: The position of the firstP is described byxa, while the one for the secondP is b.
As the second position contains no variable and noa, we can never unify those strings.

This concept generalizes to quantified formulas, but for themain idea, it suffices to study the cases for
non-quantified formulas.

For a more formal definition and a few more examples, we recommend the first two Sections of [7],
and Chapter 8, §4 of [15].

It should be noted that one of the main improvements of nanoCoP compared to JProver is the handling
of the multiplicities: nanoCoP adds instances of subformulas during the proof search as needed, while
JProver fixes the multiplicity before searching for an proof; on failure, an additional instance of the
whole formula gets added and the proof is retried. Although both are complete, the first approach is
more goal-driven and thus expected to be more efficient.

3.2 Generating Sequence Proofs

The high-level idea is that the proof certificate guaranteesthat on each branch of the sequent-style proof,
eventually complementary atoms are found. The difficulty isto traverse the formulas in the right order,
which depends onσJ.

The translation of a matrix characterisation proof certificate into a sequent-style proof has already
been investigated and implemented for JProver[13]. We intend to adopt this translation, as we expect it
to be reasonable fast: In the examples we tried and where JProver succeeded, the sequence-style proof
produced was rather short. In the cases where JProver did notsucceed in an acceptable time, it did not
even reach the sequence-proof generation. Thus we concludethat the bottleneck of JProver, at least in
the examples we tried, is the proof certificate search.

4 Discussion

Modular vs Monolithic

We explicitly want to use a modular implementation for the two phases, possibly written in multiple
languages. The Prolog version of the intuitionistic variant of nanoCoP is expected to materialize soon
and there is already an implementation of the sequence proofgenerating algorithm integrated into Coq.
Thus we expect no challenge in creating a prototype of the suggested architecture using the Prolog
program. This would allow us to test whether the proposed setup is suitable for the intended use case.

In the longer term, it would be desirable to have a native OCaml implementation of the proof search
procedure, allowing for a deployment within Coq, without additional binaries. The classical leanCoP



Fabian Kunze 33

has been ported to OCaml for the HOL light proof assistant, with performence comparable to the Prolog
version[6]. This port can serve as a starting point for a native OCaml version of the forthcoming intu-
itionistic nanoCoP. Then, the modular approach allows to optionally use external proof procedures. This
allows to evaluate improvements to the Prolog proof procedure before porting them.

Also, a modular design allows to more easily use parts an implementation this for other, intuitionistic
proof assistants. This additional usage should be kept in mind while developing this, and other, tools
towards Hammers in Type Theory.

Explicit Proofs vs Reflection

One approach in proof automation in Coq is ‘proof by reflection’: Some or all parts of the the proof
search procedure are written in Coq, including a correctness proof. The proof of a statement thenis the
call to this Coq procedure.

One argument for ‘proof by reflection’ in Coq is the efficiency. But this is just a benefit compared
to an implementation using Ltac, the tactic language in Coq:The evaluation of native Coq terms is
heavily optimized to the extend of native machine code compilation and execution. In contrast, Ltac is
just interpreted on top of several layers of abstraction. Aswe propose to use OCaml, not Ltac, for the
computationally intense parts, this argument does not apply here.

We assume that the search for the proof certificate could be more easily written, modified, or enriched
with heuristics, when using a language allowing side effect. This discourages the use of reflection in the
first part of our proposed architecture.

Reflection seems to be more reasonable for the second part, the translation to a sequence proof: There
is no need to explicitly generate the sequence proof when a certified procedure guarantees that the se-
quence proofdoesexist when the certificate satisfies the appropriate conditions.

The challenge here would be that the proof certificate must annotated with type information rich
enough to reduce to proofs for all formulas we intend to proof: This means that when the terms in
the formula are not single sorted, but have of more complex types, e.g. dependent types, this must be
incorporated in the proof certificate, the translation procedure itself and its correctness proof. At first,
it seems that a benefit would be that the translation is provento be sound by design. But to check the
conditions that a proof certificate is indeed valid is more orless computationally equivalent hard as to
generating a sequence-style proof.

Another aspect to consider is that some usage, a formula thatis not first-order can be transformed into
an first-order formula such that a proof of the later formula can be translated back to a proof of the former
formula. In a reflective proof reconstruction, this intermediate steps may can not type-check.

Intuitionistic vs Classical

Automated theorem proving in intuitionistic logic is computationally harder than in classical logic. For
developments assuming classical axioms, the intuitionistic part of both phases can be made optional,
resembling the classical proof search of nanoCoP without significant overhead.

Note that the proof search in this proposed architecture does neither need skolemization nor clausal
normal forms. Thus more structure of the different lemmas and parts of the formulas is preserved and in
some sense, this approach is closer to humans reasoning. Further investigation of this architecture could
lead to insights useful for automated reasoning in proof assistants of classical logic.



34 Towards the Integration of an Intuitionistic First-Order Prover into Coq

Acknowledgements

We thank Jens Otten for his helpful discussions and suggestions, and Jasmin Blanchette and the anony-
mous reviewers for their comments on this extended abstract.

References

[1] Michael Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry & Benjamin Werner
(2011): Certified Programs and Proofs: First International Conference, CPP 2011, Kenting, Tai-
wan, December 7-9, 2011. Proceedings, chapter A Modular Integration of SAT/SMT Solvers to Coq
through Proof Witnesses, pp. 135–150. Springer Berlin Heidelberg, Berlin, Heidelberg. Available at
http://dx.doi.org/10.1007/978-3-642-25379-9_12.

[2] François Bobot, Jean-Christophe Filliâtre, Claude Marché & Andrei Paskevich (2011):Why3: Shepherd Your
Herd of Provers. In K. Rustan M. Leino & Michał Moskal, editors:Boogie 2011, pp. 53–64.

[3] Chad E. Brown (2012):Satallax: An Automatic Higher-Order Prover. In Bernhard Gramlich, Dale Miller
& Uli Sattler, editors: Automated Reasoning—6th International Joint Conference,IJCAR 2012, Manch-
ester, UK, June 26-29, 2012. Proceedings, Lecture Notes in Computer Science7364, Springer, pp. 111–117.
Available athttp://dx.doi.org/10.1007/978-3-642-31365-3_11.

[4] Pierre Corbineau (2004): First-Order Reasoning in the Calculus of Inductive Construc-
tions, pp. 162–177. Springer Berlin Heidelberg, Berlin, Heidelberg. Available at
http://dx.doi.org/10.1007/978-3-540-24849-1_11.

[5] Cezary Kaliszyk & Josef Urban (2015):HOL(y)Hammer: Online ATP Service for HOL Light. Mathematics
in Computer Science9(1), pp. 5–22. Available athttp://dx.doi.org/10.1007/s11786-014-0182-0.

[6] Cezary Kaliszyk, Josef Urban & Jiři Vyskočil (2015): Certified Connection Tableaux Proofs for HOL Light
and TPTP. In: Proceedings of the 2015 Conference on Certified Programs andProofs, CPP ’15, ACM, New
York, NY, USA, pp. 59–66. Available athttp://doi.acm.org/10.1145/2676724.2693176.

[7] Jens Otten (2005):Clausal Connection-Based Theorem Proving in Intuitionistic First-Order Logic. In Bern-
hard Beckert, editor:Automated Reasoning with Analytic Tableaux and Related Methods: 14th International
Conference, TABLEAUX 2005, Koblenz, Germany, September 14-17, 2005. Proceedings, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 245–261. Available athttp://dx.doi.org/10.1007/11554554_19.

[8] Jens Otten (2008):leanCoP 2.0 and ileanCoP 1.2: High Performance Lean TheoremProving in Classi-
cal and Intuitionistic Logic (System Descriptions). In Alessandro Armando, Peter Baumgartner & Gilles
Dowek, editors:Automated Reasoning: 4th International Joint Conference,IJCAR 2008 Sydney, Australia,
August 12-15, 2008 Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 283–291. Available at
http://dx.doi.org/10.1007/978-3-540-71070-7_23.

[9] Jens Otten (2016): personal communication.

[10] Jens Otten (2016):nanoCoP: A Non-clausal Connection Prover. In: Automated Reasoning: 8th International
Joint Conference, IJCAR 2016 Coimbra, Portugal, June 27 -July 2, 2016 Proceedings. To appear.

[11] Lawrence C. Paulson & Jasmin Christian Blanchette (2010): Three years of experience with Sledgeham-
mer, a Practical Link Between Automatic and Interactive Theorem Provers. In Geoff Sutcliffe, Stephan
Schulz & Eugenia Ternovska, editors:The 8th International Workshop on the Implementation of Logics,
IWIL 2010, Yogyakarta, Indonesia, October 9, 2011, EPiC Series2, EasyChair, pp. 1–11. Available at
http://www.easychair.org/publications/?page=820355915.

[12] Thomas Raths, Jens Otten & Christoph Kreitz (2007):The ILTP Problem Library for Intuitionis-
tic Logic: Release v1.1. Journal of Automated Reasoning38(1-3), pp. 261–271. Available at
http://dx.doi.org/10.1007/s10817-006-9060-z.

http://dx.doi.org/10.1007/978-3-642-25379-9_12
http://dx.doi.org/10.1007/978-3-642-31365-3_11
http://dx.doi.org/10.1007/978-3-540-24849-1_11
http://dx.doi.org/10.1007/s11786-014-0182-0
http://doi.acm.org/10.1145/2676724.2693176
http://dx.doi.org/10.1007/11554554_19
http://dx.doi.org/10.1007/978-3-540-71070-7_23
http://www.easychair.org/publications/?page=820355915
http://dx.doi.org/10.1007/s10817-006-9060-z


Fabian Kunze 35

[13] Stephan Schmitt & Christoph Kreitz (1996):Converting non-classical matrix proofs into sequent-style sys-
tems. In: Automated Deduction — Cade-13: 13th International Conference on Automated Deduction New
Brunswick, NJ, USA, July 30 – August 3, 1996 Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 418–432. Available athttp://dx.doi.org/10.1007/3-540-61511-3_104.

[14] Stephan Schmitt, Lori Lorigo, Christoph Kreitz & Alexey Nogin (2001): JProver : Integrating Connection-
based Theorem Proving into Interactive Proof Assistants. In R. Gore, A. Leitsch & T. Nipkow, editors:Inter-
national Joint Conference on Automated Reasoning, Lecture Notes in Artificial Intelligence2083, Springer
Verlag, pp. 421–426, doi:10.1007/3-540-45744-5_34.

[15] Lincoln Wallen (1990):Automated Deduction in Nonclassical Logics. MIT Press, Cambridge, MA, USA.

http://dx.doi.org/10.1007/3-540-61511-3_104
http://dx.doi.org/10.1007/3-540-45744-5_34

	1 Introduction
	2 Existing Intuitionistic Provers in Coq
	3 Proposed Architecture
	3.1 Finding Proof Certificates
	3.2 Generating Sequence Proofs

	4 Discussion

