
I. Lanese, A. Lluch Lafuente, A. Sokolova, H. T. Vieira (Eds.):
7th Interaction and Concurrency Experience (ICE 2014)
EPTCS 166, 2014, pp. 86–93, doi:10.4204/EPTCS.166.9

A note on two notions of compliance

Massimo Bartoletti
Dipartimento di Matematica e Informatica

University of Cagliari, Italy
bart@unica.it

Tiziana Cimoli
Dipartimento di Matematica e Informatica

University of Cagliari, Italy
t.cimoli@unica.it

G. Michele Pinna
Dipartimento di Matematica e Informatica

University of Cagliari, Italy
gmpinna@unica.it

We establish a relation between two models of contracts: binary session types, and a model based on
event structures and game-theoretic notions. In particular, we show that compliance in session types
corresponds to the existence of certain winning strategies in game-based contracts.

1 Introduction

Several recent papers have been devoted to the study of contracts as a way to formally specify abstrac-
tions of the behaviour of software systems. A common aspect that gathers together some of these studies
is a notion of compliance. This is a relation between systems which want to interact. Before starting
the interaction, contracts are statically checked for compliance: when enjoyed, it guarantees that systems
respecting their contracts will interact correctly. Since distributed applications are often constructed by
dynamically discovering and composing services published by different (possibly distrusting) organiza-
tions, compliance becomes relevant to protect those services from each other’s misbehaviour. Indeed,
the larger an application is, the greater is the probability that some of its components deviates from the
expected behaviour (either because of unintentional bugs, or maliciousness).

To obtain protection, compliance can be modelled in many different ways. Typically, it is formalised
as a fairness property, which ensures progress (possibly, until reaching a success state [8, 2]), or which
ensures the possibility of always reaching success from any state [7, 1]. Weaker variants of compli-
ance allow services to discard some messages [3], or involve orchestrators which can suitably rearrange
them [11].

While all the above approaches express contracts as processes of some process algebra, in [4] con-
tracts are modelled as multi-player concurrent games, whose moves are transitions in an event struc-
ture [12], and where compliance is defined as the existence of winning strategies in these games. By
abstracting away from the concrete details of process calculi, this model may be used as a unifying
framework for reasoning about contracts, in the same spirit that event structures are used as an underly-
ing semantics for a variety of concrete models of concurrency.

As a first step towards unifying different views of contracts, in this paper we interpret binary session
types [9] as game-based contracts, by providing them with an event structure semantics (Definition 11).
Our main technical contribution is that compliance in the former model corresponds to the existence of a
certain kind of winning strategies in the latter (Theorem 16). The constructions used to obtain this result
suggest that also other notions of compliance (e.g., I/O compliance [5], Padovani’s weak compliance [11]
and Barbanera & de’ Liguoro’s skp-compliance [3]) might be expressed game-theoretically by suitably
adjusting the event structure semantics, and by restricting the class of admissible winning strategies.

http://dx.doi.org/10.4204/EPTCS.166.9

M. Bartoletti, T. Cimoli, G.M. Pinna 87

a .P ⊕ Q −→ a .P a .P a−→ P

a .P + Q a−→ P rec x. P−→ P{rec x. P/x}
P−→ P′

P‖Q−→ P′ ‖Q
P a−→ P′ Q a−→ Q′

P‖Q−→ P′ ‖Q′

Figure 1: Operational semantics of session types (symmetric rules omitted).

2 Session types

Let A be a set of actions, ranged over by a,b, . . ., and let A = {a | a ∈ A} be such that A∩A = /0. We let
α,β , . . . range over A∪A. In Definition 1 we introduce the syntax of binary session types, following the
notation used in [2].

Definition 1 (Session type). Session types are defined as follows:

P,Q ::= 1
∣∣ ⊕

i∈I ai .Pi
∣∣ ∑i∈I ai .Pi

∣∣ rec x. P
∣∣ x

where (i) the index set I is finite and non-empty, (ii) the actions in internal/external choices are pairwise
distinct, and (iii) recursion is guarded.

Session types are processes of a process algebra featuring 1 (success), internal choice
⊕

i∈I ai .Pi,
external choice ∑i∈I ai .Pi, and guarded recursion. If Q =

⊕
i∈I ai .Pi and 0 6∈ I, we write a0.P0⊕Q for⊕

i∈I∪{0} ai .Pi (same for external choice).

The semantics of session types is defined in Figure 1. The intuition is that a session type models
the intended behaviour of one of the two participants involved in a session, while the behaviour of two
interacting participants is modelled by the composition of two session types, denoted P‖Q. An internal
choice must first commit to one of the branches a.P, before advertising a. An external choice can always
advertise each of its actions. There, participants can run asynchronously only when committing to a
branch or unfolding recursion. Synchronisation requires that a participant has committed to a branch a
in an internal choice, and the other offers a in an external choice.

Following [10, 8, 2] we define a notion of compliance between session types. The intuition is that if
a client contract P is compliant with a server contract Q then, whenever a computation of P‖Q becomes
stuck, the client has reached the success state.

Definition 2 (Compliance). P is compliant with Q (written P aQ) iff P‖Q→∗ P′ ‖Q′ 6→ implies P′ = 1.

3 Contracts as games

We assume a denumerable universe of events e,e′, . . .∈E, uniquely associated to participants A,B, . . .∈P
by a function π : E→ P. For all A ∈ P, we write EA for the set {e ∈ E | π(e) = A}. For a sequence
σ = 〈e0 e1 · · ·〉 in E (possibly infinite), we write σ for the set of elements in σ ; we write σi for the
subsequence 〈e0 · · ·ei−1〉 containing exactly i events. If σ = 〈e0 · · ·en〉, we write σ e for the sequence
〈e0 · · ·en e〉. The empty sequence is denoted by ε . For a set S, we denote with S∗ the set of finite
sequences over S, and with S∞ the set of finite and infinite sequences over S.

A contract is modelled in [4] as a concurrent game featuring obligations (what I must do in a given
state) and objectives (what I wish to obtain). Obligations are modelled as an event structure (ES).

Definition 3 (Event structure [12]). An event structure E is a triple 〈E,#,`〉, where:

• E is a set of events,

88 A note on two notions of compliance

• # ⊆ E×E is an irreflexive and symmetric conflict relation. For a set of events X, the predicate
CF(X) is true iff X is conflict-free, i.e. CF(X), (∀e,e′ ∈ X : ¬(e#e′)).

• ` ⊆ {X ⊆fin E | CF(X)} × E is the enabling relation, which is saturated, i.e.:

∀X ⊆ Y ⊆fin E. X ` e ∧CF(Y) =⇒ Y ` e

Intuitively, an enabling X ` e models the fact that, if all the events in X have happened, then e is an
obligation for π(e). The conflict relation # is used to model non-deterministic choices: if e#e′ then e
and e′ cannot occur in the same computation. An obligation may be discharged only by performing the
required event, or any event in conflict with it. For instance, consider an internal choice between two
events ea and eb. This can be modelled by an ES with enablings /0 ` ea, /0 ` eb and conflict ea#eb. After
the choice (say, of ea), the obligation eb is discharged. The other component of a contract is a function Φ

which associates each participant A with a set of sequences in E∞ (the set of finite or infinite sequences
on E), which enumerates all the executions where A has a positive payoff.
Definition 4 (Contract). A contract C is a pair 〈E,Φ〉, where:
(a) E= 〈E,#,`, `〉 is a labelled event structure, with E ⊆ E and labelling function ` : E→ A∪A.

(b) Φ : P ⇀℘(E∞) associates each participant with a set of traces.
Note that Φ is a partial function (from P to sets of event traces), hence a contract is not supposed to

define payoffs for all the participants in P. Hereafter, we shall assume that if C prescribes for A some
obligations, then C must also declare A’s payoffs, i.e. we ask that Φ(π(e)) 6=⊥ whenever X ` e in E.

Given two contracts C,C′, we denote with C | C′ their composition. If C is A’s contract and C′ is the
contract of an adversary M of A, then a naı̈ve composition could easily lead to an attack, e.g. M’s contract
could say that A must pay her 1M euros. To avoid such kinds of attacks, contract composition is a partial
operation. We do not compose contracts which assign payoffs to the same participant.
Definition 5 (Contract composition). We say that two contracts C= 〈E,Φ〉 and C′ = 〈E′,Φ′〉 are com-
posable iff ∀A ∈ P. (Φ(A) = ⊥ ∨ Φ′(A) = ⊥). If C, C′ are composable, we define their composition as
C | C′ = 〈EtE′,ΦtΦ′〉, where EtE′ = 〈E ∪E ′,#∪#′,` ∪ `′, `∪ `′〉.

A crucial notion on contracts is that of agreement. Intuitively, when A agrees on a contract C, then
she can safely initiate an interaction with the other participants, and be guaranteed that the interaction
will not “go wrong” — even in the presence of attackers. This does not mean that A will always reach
her objectives: we intend that A agrees on a contract when, in all the interactions where she does not
succeed, then some other participant must be found dishonest. That is, we consider A satisfied if she
can blame another participant. In real-world applications, a judge may provide compensations to A, or
impose a punishment to the participant who has violated the contract.

We interpret a contract C = 〈E,Φ〉 as a multi-player game, where the players concurrently perform
events in order to reach the objectives in Φ. A play σ of C is a (finite or infinite) sequence of events
of E, such that each event e in σ is enabled by its predecessors. Formally, the plays of E are the traces
of the labelled transition system EvS(E) induced by the relation E

e−→ E[e], where /0 ` e, and E[e] is the
remainder of E after executing e.
Definition 6 (Remainder of an ES). For all ES E= 〈E,#,`, `〉 and for all e ∈ E, we define the ES E[e]
as 〈E ′,#′,`′, `′〉, where:

E ′ = E \ ({e}∪{e′ | e#e′})
#′ = #\ ({(e,e′) | e#e′}∪{(e′,e) | e#e′})
`′ = {(X \{e},e′) | (X ,e′) ∈ `′′} where `′′ = ` \{(X ,e′) | e′#e ∨ e′ = e ∨ ¬CF(X ∪{e})}
`′ = `\ ({(e′, `(e′)) | e′#e}∪{(e, `(e)})

M. Bartoletti, T. Cimoli, G.M. Pinna 89

J1KA
ρ = 〈{e}, /0,{(/0,e)},{(e,X)}〉 where e ∈ EA

JxKA
ρ = ρ(x) = 〈E,#,`, `〉 where E ⊆ EA

Jα.PKA
ρ = 〈E ∪{eα}, #, `′, `∪{(eα ,α)}〉 where JPKA

ρ = 〈E, #, `, `〉, eα ∈ EA \E, and
`′ = {(/0,eα)}∪{({eα}∪X ,e) | (X ,e) ∈ `}

J
⊙

i∈I PiKA
ρ = 〈

⋃
Ei, #,

⋃
`i,

⋃
`i〉 where JPiKA

ρ = 〈Ei, #i, `i, `i〉, Ei pairwise disjoint, and
=

⋃
#i ∪ {(e,e′) | (/0,e) ∈ `i ∧ (/0,e′) ∈ ` j ∧ i 6= j}, with

⊙
∈ {∑,

⊕
}

Jrec x. PKA
ρ = fix Γ where Γ(E) = JPKA

ρ{E/x}

JP1 ‖P2K
A1A2
ρ = 〈E, #1∪#2, `, `〉 where JPiK

Ai
ρ = 〈Ei, #i, `i, `i〉, E = E1∪E2 with E1∩E2 = /0, `= `1∪ `2,

` = {(X ∪Y,e) | `(e) ∈ A∧ (X ,e) ∈`i ∧∀e′ ∈ X .∃e′′ ∈ Y.e′′ ∈ E \Ei∧ `(e′) = `(e′′)}
∪ {(X ∪Y ∪{ê},e) | `(e) ∈ A ∧ (X ,e) ∈ `i ∧ ∀e′ ∈ X . ∃e′′ ∈ Y.

(
e′′ ∈ E \Ei∧ `(e′) = `(e′′) ∧ ê ∈ E \Ei ∧ `(ê) = `(e)

)
}

Figure 2: Denotational semantics of session types.

A strategy Σ for A is a function which associates to each finite play σ a set of events of A (possibly
empty), such that if e ∈ Σ(σ) then σe is still a play. A play σ = 〈e0 e1 · · ·〉 conforms to a strategy Σ for A
when, for all i≥ 0, ei ∈ EA implies ei ∈ Σ(σi). A play is fair w.r.t. a strategy Σ iff any event permanently
prescribed by Σ is eventually performed.

Definition 7 (Fair play). A play σ = 〈e0 e1 · · ·〉 is fair w.r.t. the strategy Σ iff:

∀i≤ |σ |.
(
∀ j : i≤ j ≤ |σ |. e ∈ Σ(σ j)

)
=⇒ ∃h≥ i. eh = e

A participant A is innocent in a play if A has no persistently enabled events, i.e. if all her enabled
events are either performed or conflicted.

Definition 8 (Innocence). We say A innocent in σ iff ∀i≥ 0. ∀e∈EA. (σi ` e =⇒ ∃ j≥ i. e j#e ∨ e j = e).
If A is not innocent in σ , then we say she is culpable.

We now define when a participant wins in a play. If A is culpable, then she loses. If A is innocent, but
some other participant is culpable, then A wins. Otherwise, if all participants are innocent, then A wins
if she has a positive payoff in the play. Formally, σ is a winning play of A iff σ ∈WA, defined below.

Definition 9 (Winning plays and strategies). We define the function W : P→℘(E∞) as follows:

WA = {σ ∈ΦA | ∀B : B innocent in σ} ∪{σ | A innocent in σ , and ∃B 6= A : B culpable in σ}

We say that Σ is winning for A in C iff A wins in every fair play of C which conforms to Σ.

Intuitively, A agrees with C when she has a strategy Σ which allows her to win in all fair plays
conform to Σ. Note that neglecting unfair plays is quite reasonable: indeed, an unfair scheduler could
easily prevent an honest participant (ready to fulfil all her obligations) from performing any action.

Definition 10 (Agreement). A participant A agrees on C whenever A has a winning strategy in C.

4 Compliance as agreement

We now relate session types with contracts. To do that, we start by introducing an event structure seman-
tics for session types. This denotational semantics is then related to a turn-based operational semantics

90 A note on two notions of compliance

of session types (Figure 3), which preserves the notion of compliance (Lemma 14). In Definition 15 we
transform session types into contracts. Theorem 16 establishes a correspondence between compliance of
session types and winning strategies in contracts.

Definition 11 (ES semantics of session types). The denotation of session types is defined by the rules
in Figure 2, where ρ is an environment mapping variables x to ESs.

The denotation of session types is almost straightforward. Note that the parameter A is used to
associate all the events of the constructed ES to that participant. The enabling relation of compositions
of session types takes into account the different flavour of the events (actions) involved. Intuitively, an
action b in a contract such as a.b must wait for its prefix a, and for a matching a-synchronized action.
On the other hand, an action in A such as c must also wait to be matched by a synchronizing action c.
This behaviour is simulated in the event structure of the contract: for an enabling X ` e with `(e) ∈ A,
we add to X the set Y of all the matching events of X . Instead, for an enabling X ` e with `(e) ∈ A, we
also add to X and Y the coaction of `(e).

As session types have recursion, the standard machinery on fixed points is needed. Henceforth,
following closely what is done in [12], we introduce a notion of partial ordering on event structures. The
intuition is that E is less or equal to E′ whenever each configuration of the former is a configuration of
the latter, and each configuration of E′ where the events are those of E is a configuration of E as well.

Definition 12 (Ordering of ESs). Let E= 〈E,#,`, `〉 and E′ = 〈E ′,#′,`′, `′〉 be two ESs. Then we write
E E E′ iff:

• E ⊆ E ′, #⊆ #′, ` ⊆ `′ and ∀e ∈ E. `′(e) = `(e),

• for all e1,e2 ∈ E, if (e1,e2) ∈ #′ then (e1,e2) ∈ #, and

• for all X ⊆ E, e ∈ E, if (X ,e) ∈ `′ then (X ,e) ∈ `.

The relation E is a partial order on event structures. An ω-chain of ESs E1 E E2 E · · ·E En E . . . has
a least upper bound defined as

⊔
Ei = (

⋃
i Ei,

⋃
i #i,

⋃
i `i,

⋃
i `i). The ES /0= 〈 /0, /0, /0, /0〉 is the least element

of the partial order. Given a unary operator F on event structures, we say that it is continuous on events
iff for every ω-chain of ESs E1 E E2 E · · · E En E . . . it holds that F(

⋃
i Ei) =

⋃
i F(Ei). If furthermore

the operator F is monotonic with respect to E then F is continuous. Given a continuous unary operator
F, we can then define its fixed point standardly using Tarski’s theorem, as event structures with E are a
complete partial order with bottom. The fixed point is denoted by fix Γ =

⊔
F(/0). It is standard to prove

that the operators defined by the denotational semantics in Figure 2 are continuous.

We shall now relate the denotational semantics in Definition 11 with an operational semantics of
binary session types where the two participants alternate in firing actions (Figure 3). To do that, we
extend the syntax of session types with the term [a]P, where [a] models a one-position buffer storing a.
Also, we tacitly assume unfolding of recursion. A participant with an internal choice a.P⊕Q can fire the
action a (if the buffer is empty), and write a to the buffer. The next turn is of the other participant, which
can empty the buffer by firing a in an external choice. To be coherent with the event structure semantics,
we also assume that the success state 1 fires an action X ∈ A before reaching the stuck state 0.

The following theorem relates the denotational and the turn-based operational semantics of session
types. Their (action-labelled) LTSs are strongly bisimilar. Below, we denote with ES(E) the transition
systems induced by the relation E

e−→ E′, by relabelling transitions with actions `(e), and we denote with
TS(P) the labelled transition system induced by the turn-based relation −→→.

Theorem 13. For all session types P,Q, we have TS(P‖Q)∼ ES(JP‖QK).

The turn-based semantics of session types preserves the compliance relation of Definition 2.

M. Bartoletti, T. Cimoli, G.M. Pinna 91

(a .P ⊕ Q) ‖ R a−→→ [a]P ‖ R (a .P + Q) ‖ [a]R a−→→ P‖R 1 ‖P X−→→ 0‖P

Figure 3: Turn-based operational semantics of session types (symmetric rules omitted).

Lemma 14. P a Q iff P‖Q−→→∗ P′ ‖Q′ 6−→→ implies P′ = 0.

We now define a transformation from session types P to contracts, denoted by CA(P). The parameter
A is used to properly assign the obligations and the objective to participant A.

Definition 15 (Contract of a session type). For all session types P and participants A, we define the
contract CA(P) as 〈JPKA

/0 ,Φ〉, where ΦA = {σ ∈ E∞ | σ ∈ E∗ =⇒ ∃e ∈ σ ∩EA : `(e) =X}.
We now establish a correspondence between compliance in session types and the existence of certain

winning strategies in contracts. To do that, we consider strategies which ensure A to be innocent in
every (fair) play. The greatest of such strategies is the eager strategy ΣA(σ) = {e ∈ EA | σ ` e } which
prescribes A to do all her enabled events. The session type P (say, of participant A) is compliant with Q
iff the eager strategy is winning for A in the contract CA(P) | CB(Q).

Theorem 16. P a Q iff the eager strategy is winning for A in CA(P) | CB(Q).

By the theorem above, it follows that compliance implies agreement.

Corollary 17. If P a Q, then A agrees on CA(P) | CB(Q).

Note that the converse implication does not hold: for instance, for P= a.c⊕b and Q= a+b, we have
that P 6a Q, but A agrees on CA(P) | CB(Q). Indeed, choosing the branch b leads to a winning strategy
for A. Note instead that P is not weakly compliant with Q according to [11], because no orchestrator can
prevent A from choosing the branch a. However, P′ = a.c+b is weakly compliant with Q, because the
orchestrator can resolve the external non-determinism by choosing the branch b̄. Weak compliance can
be formalised in game-based contracts by modelling the orchestrator as a third player of the game (who
can use any strategy to favour the interaction between A and B), and by adapting the construction of the
contracts to take into account for the moves of the orchestrator.

An example. We now illustrate with the help of an example the transformation from session types to
game-based contracts. Below, we use the following shorthands: a ` b for {a} ` b, and ` e for /0 ` e.

Consider two participants A and B, with session types P = a⊕b.a and Q = a.b+b.a+c, respectively
(trailing 1s are omitted). According to Definition 2, the session type of A is compliant with that of B,
while the converse does not hold. Below we construct the event structures associated to P and Q, and the
one associated to the their composition P‖Q. To ease the reading, we decorate actions in P and Q with
the events they will be associated with in the event structures; we stipulate that the events of A have odd
indexes, whereas those of B have even ones. Hence, we have:

P = ae1 .1e3⊕be5 .ae7 .1e9 and Q = ae2 .be4 .1e6 +be8 .ae10 .1e12 + ce14 .1e16

By the construction in Def. 11, we have:

JPKA
ρ = ({e1,e3,e5,e7,e9}, {e1#e5}, {` e1,` e5,e1 ` e3,e5 ` e7,e7 ` e9}, `P)

where `P(e1) = a, `P(e5) = b, `P(e7) = a, and the others are labelled with X. Furthermore:

JQKB
ρ =({e2,e4,e6,e8,e10,e12,e14,e16}, {e2#e8,e2#e14,e8#e14}, {

` e2,` e8,` e14,e2 ` e4,e4 ` e6
e8 ` e10,e10 ` e12,e14 ` e16

}, `Q)

92 A note on two notions of compliance

where `Q(e2) = a = `Q(e10), `Q(e4) = b = `Q(e8), `Q(e14) = c, and the other events are labelled with X.
The event structure associated to P‖Q is:

JP‖QKA,B
/0 = (EP∪EQ, #P∪#Q, `, `P∪ `Q) where:

` =
` e1,` e5,{e1,e2} ` e3,{e1,e10} ` e3,{e5,e8} ` e7,{e5,e4} ` e7,{e2,e7} ` e9,{e7,e10} ` e9,
e1 ` e2,e7 ` e2,{e1,e2,e5} ` e4,{e7,e2,e5} ` e4,{e4,e5} ` e6,e5 ` e8,{e8,e5,e1} ` e10,
{e8,e5,e7} ` e10,{e10,e1} ` e12,{e10,e7} ` e12

The event-labelled transition system of JP‖QK and the eager strategy ΣA of A are depicted below:

e1

e2 e3

e5
e8 e7 e10

e9

e6

e6
e9

ΣA(σ) =

{e1,e5} if σ = /0
{e3} if e2 ∈ σ

{e7} if e8 ∈ σ

{e9} if e10 ∈ σ

/0 otherwise

We can see that A wins in all the fair plays which conform to the eager strategy ΣA. Since ΣA is
winning, then A agrees on CA(P) | CB(Q). Then, by Theorem 16, P a Q.

On the contrary, we notice that B has no winning strategies: indeed, whenever A chooses to perform
event e1, then B is obliged to fire e2 to recover his innocence, and then he gets stuck (and non-successful)
when A fires e3. Then, by Theorem 16 it follows that Q 6a P.

5 Conclusions

We have related the notion of compliance in binary session types with the one of agreement in game-
based contracts. In particular, we have shown that two session types are compliant if and only if their
encodings in game-based contract admit an agreement via a winning eager strategy (Theorem 16).

A relevant question is whether non-eager strategies are meaningful to define weaker notions of com-
pliance for session types. This mostly depends on the interpretation of the internal choice operator ⊕.
The usual meaning of an internal choice a⊕ b of a participant A is that A is willing to opt between the
two choices, and both of them must be available as external choices of the other participant B.

Just to give a more realistic flavour to our scenario, assume that B is a bartender which only accepts
payments in cash, while A is a customer willing to pay either by cash or by credit card. Under the
standard notion of compliance, the two session types:

PA = payCash⊕payCC PB = payCash

are not compliant, and so (by Theorem 16) the eager strategy is not winning in CA(PA) | CB(PB).
A different interpretation of the internal choice of A would be the following: A is willing to choose

between payCash and payCC if both options are available, but she will also accept to pay cash (resp. to
pay by credit card) if this is the only option available. This interpretation is coherent with the fact that
the contract CA(PA) | CB(PB) admits an agreement, via a non-eager strategy which requires A to renounce
to the payCC alternative.

Similarly, we expect that other interpretations of compliance for session types (e.g. that in [8, 6],
where internal vs. internal choices and external vs. external choices may be compliant, in some cases)
can be related to game-based agreements, via suitable (sub)classes of strategies.

M. Bartoletti, T. Cimoli, G.M. Pinna 93

Acknowledgments. This work has been partially supported by Aut. Reg. of Sardinia grants L.R.7/2007 CRP-
17285 (TRICS) and P.I.A. 2010 (“Social Glue”), by MIUR PRIN 2010-11 project “Security Horizons”, and by EU
COST Action IC1201 “Behavioural Types for Reliable Large-Scale Software Systems” (BETTY).

References
[1] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian Stahl & Karsten Wolf (2010): Multi-

party Contracts: Agreeing and Implementing Interorganizational Processes. Comput. J. 53(1), pp. 90–106,
doi:10.1093/comjnl/bxn064.

[2] Franco Barbanera & Ugo de’Liguoro (2010): Two notions of sub-behaviour for session-based client/server
systems. In: PPDP, pp. 155–164, doi:10.1145/1836089.1836109.

[3] Franco Barbanera & Ugo de’Liguoro (2014): Loosening the notions of compliance and sub-behaviour in
client/server systems. In: Proc. ICE. Available at http://arxiv.org/abs/1311.5802.

[4] Massimo Bartoletti, Tiziana Cimoli & Roberto Zunino (2013): A theory of agreements and protection. In:
Proc. POST, LNCS 7796, Springer, pp. 186–205, doi:10.1007/978-3-642-36830-1 10.

[5] Massimo Bartoletti, Alceste Scalas & Roberto Zunino (2014): A semantic deconstruction of session types.
In: Proc. CONCUR, pp. 402–418.

[6] Massimo Bartoletti, Emilio Tuosto & Roberto Zunino (2012): On the Realizability of Contracts in Dishonest
Systems. In: Proc. COORDINATION, pp. 245–260, doi:10.1007/978-3-642-30829-1 17.

[7] Mario Bravetti & Gianluigi Zavattaro (2007): Contract Based Multi-party Service Composition. In: Proc.
FSEN, LNCS 4767, pp. 207–222, doi:10.1007/978-3-540-75698-9 14.

[8] Giuseppe Castagna, Nils Gesbert & Luca Padovani (2009): A theory of contracts for Web services. ACM
TOPLAS 31(5), pp. 19:1–19:61, doi:10.1145/1538917.1538920.

[9] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disciplines for
Structured Communication-based Programming. In: Proc. ESOP, pp. 122–138, doi:10.1007/BFb0053567.

[10] Cosimo Laneve & Luca Padovani (2007): The must Preorder Revisited. In: CONCUR, pp. 212–225,
doi:10.1007/978-3-540-74407-8 15.

[11] Luca Padovani (2010): Contract-based discovery of Web services modulo simple orchestrators. Theor. Com-
put. Sci. 411(37), pp. 3328–3347, doi:10.1016/j.tcs.2010.05.002.

[12] Glynn Winskel (1986): Event Structures. In: Advances in Petri Nets, doi:10.1007/3-540-17906-2 31.

http://dx.doi.org/10.1093/comjnl/bxn064
http://dx.doi.org/10.1145/1836089.1836109
http://arxiv.org/abs/1311.5802
http://dx.doi.org/10.1007/978-3-642-36830-1_10
http://dx.doi.org/10.1007/978-3-642-30829-1_17
http://dx.doi.org/10.1007/978-3-540-75698-9_14
http://dx.doi.org/10.1145/1538917.1538920
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-540-74407-8_15
http://dx.doi.org/10.1016/j.tcs.2010.05.002
http://dx.doi.org/10.1007/3-540-17906-2_31

	1 Introduction
	2 Session types
	3 Contracts as games
	4 Compliance as agreement
	5 Conclusions

