Analysis of Petri Nets and Transition Systems

Eike Best and Uli Schlachter

Department of Computing Science, Carl von Ossietzky Usitétr
D-26111 Oldenburg, Germany

{eike.best,uli.schlachter}@informatik.uni-oldenburg.de

This paper describes a stand-alone, no-frills tool supmpthe analysis of (labelled) place/transition
Petri nets and the synthesis of labelled transition systetosPetri nets. It is implemented as a
collection of independent, dedicated algorithms whichehbeen designed to operate modularly,
portably, extensibly, and efficiently.

Keywords: Analysis, Labelled Transition Systems, Petri Nets, Sysithe

1 Motivation

Labelled transition systems are frequently employed ireora display the state space of a given Petri net
and to analyse its behavioural properties. Converselyebipn theory([1], a Petri net may be synthesis-
able from a given labelled transition system. Such a netis tlorrect “by design”. However, a transition
system may be extremely (even infinitely) large, causingr®sis algorithms to be prohibitively time-
consuming. Moreover, synthesis suffers from nondetesminsince for a given transition system, many
different Petri net implementations may exist.

In such a context, it is interesting to discover relatiopstbetween special, albeit useful, classes of tran-
sition systems and classes of Petri nets (e.g., persistest[@5]), so that faster and more deterministic
analysis and synthesis methods can be devised. For thengomkathematician, this tends to involve
the error-prone examination of graphs which may be largeisinidate. Tools such asynet [9] and
petrify [12] are helpful, but there is also a need for multifuncticals with the following properties:

e Versatility. The user should be able to create, modify, armhage hundreds or thousands of
medium-sized graphs (both Petri nets and transition sygtevhich might only slightly be at
variance with each other. E.g., #ynet, the only way of inserting comments on data objects is
by choosing meaningful file names. For large collectionshpécts, a more flexible commenting
function becomes mandatory. No restrictions should be itepgdrom intended applications. E.g.,
petrify excludes non-safe Petri nets as output because they are iotemest in a hardware
context.

e Transparency. The tool's internal machinations should éteafable, if necessary by examining
the source code. E.g., it is not known whetBgnet always constructs a safe Petri net if there
exists one.

*The authors are supported by the German Research Foun@@#@) project ARS (Algorithms for Reengineering and
Synthesis), reference number Be 1267/15-1.

S. Knight, I. Lanese, A. Lluch Lafuente and H. T. Vieira (Bds. © Eike Best & Uli Schlachter
8th Interaction and Concurrency Experience (ICE 2015) This work is licensed under the
EPTCS 189, 2015, pp. 53367, d0i:10.4204/EPTCS.189.6 Creative Commoris Attribution License.


http://dx.doi.org/10.4204/EPTCS.189.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

54 Analysis of Petri Nets and Transition Systems

e Extensibility. It should be possible to program and add neslfast, in case the need arises for
any particular new problems. In particular, modules shdwalde properly defined, readable, and
descriptive input/output interfaces.

e Bare-bonedness. The tool should operate on place/tramsigts with arbitrary arc weights and
side-conditions, and on arbitrary labelled transitionteyss, as well as on many interesting sub-
(rather than super-) classes. Emphasis should be on algacibptimisation, rather than on textual
expressiveness. Communication between users, as welhasdretools, should be achieved via
human-readable text files.

e Efficiency and modularity. Analysis of medium-sized obge¢say, graphs with a few hundred
nodes) should be fast, even if the theoretical complexiB8BACE-hardness or worse. In the event
of bottlenecks, the tool should be sufficiently modular s the culprit(s) can be isolated quickly.
Memory should be organised in such a way that average-sigedte can be handled and overflow
does not occur, or can at least be localised cleanly.

e Portability and availability. It should be possible to sshitquickly between different platforms.
No frequent recompiling should occur, and any dependermiegsidual installations should be
minimised. The tool should be freely downloadable and @sabla single executable file on many
different platforms. No registration or other “paperwoifsuch as sending mails or waiting for
release links), and few system-dependent installatidrgjld be necessary in order to use it.

Since a tool of this kind was found to be lacking, a studentsjget was initiated at the University of
Oldenburg in 2012. The toolbox that resulted from it by Ma€ii3 has been calletPT for Analysis
of Petri nets andTransition systemand is available at [8]. Since thenPT has been optimised and
extended by the second author (and other persons). Thenppegger contains a brief summary of the
use and structure dfPT in sectiong R an]3, respectively. Some recent developmelhise described

in section 4. Formal definitions can be found in seclion A. Mahthem conform with[[6] 7] where a
more detailed exposition of some of the theory can be found.

2 Introduction to the use of APT, and some examples

APT is implemented in Java 7 and is released undeGre2 license. As one of the goals was portability,

it consists of a single file callegbt . jar which can be run by any Java 7 runtime environment. Currently
there is no graphical user interface, but instead a corisaded one. This decision was made to be able
to focus on the implementation of algorithms. Listldg 1 sedvow APT can be downloaded witgit

and built withant. As an alternative to usingnt, the fileapt . jar can simply be copied from another
machine. Presently, no pre-compiled versions are availfiisldownload. Listindll also illustrates the
use ofAPT’s help function.

Figurel shows a labelled transition systéis, and three Petri netbl;—Nz, serving as running examples.
All three Petri nets are solutions t6, that is, their reachability graphs are isomorphidt&o Listing[2
representdN; in APT’s file format. The file starts with a name and a descriptionhefiet. N; has five
places namegdo to p4, and four transitionsa to d. The flows of the net are specified in multiset notation.
For example, transitioa takes a token from plag® and puts it orp4. Weights can be specified either by
mentioning a place multiple times, e{p,p}, or by explicitly specifying a weight, as ixp. The initial
marking of the net is represented in a similar format. Commean be enclosed withifx . . */ or begin
with // and extend to the end of the linEPT’s transition-centred way of specifying place/transitioets



Eike Best & Uli Schlachter 55

$ git clone http://github.com/Cv&theory/apt. git

$ cd apt

$ ant jar

$ java —jar apt.jar help bounded

Usage: apt boundedpn> [<k>]
pn The Petri net that should be examined
k If given, k—boundedness is checked

Check if a Petri net is bounded or—bkounded.

Listing 1. Downloading and buildingPT. Some output is omitted for reasons of brevity.

Its

Figure 1: A persistent, reversiblis having the strong small cycle property with Parikh vector 1.
Three Petri netdl;, No, N3 solving it are also shown. THes has no marked graph solution.

allows multiset arc weights and markings to be represergadably. For switching quickly between
APT andsynet formats,APT contains two translation modulegnet2apt andapt2synet. Third-party
formats for Petri nets, such as theLA [16] andPNML (cf. http://www.pnml.org/) formats, are also
supported.

The APT toolbox provides a large number wfodules If the program is started without any arguments,
a full list of available modules is printed. A special modakdled help (already illustrated in list-
ing [ for the moduléounded) can be used for obtaining information about a module. Itlsarseen
that thebounded module requires a Petri net as input and optionally acceptdueek to check fork-
boundedness. In listiid 3 both features are exemplified.r@hdts show thatl; (of figure[1) is bounded,

.name "file name: net.apt; file content: a persistent and revelrls net”
.description "A Petri net N.1 having the small cycle property”
.type LPN /x stands for Labelled Petri Net */

.places

p0 pl p2 p3 p4/* five places */

.transitions

a b c d/x four transitions */

.flows

a: { p0} —>{ps}

b: { p4, p1} —> { p3}

c: { p4, p3}t —> { p0, p1, p2}

d: {1 *p2}—>{1=xpd} // 1 x is actually redundant
.initial _-marking { p0, 1 % pl, p4} // same here

Listing 2: Filenet . apt containingN;, as depicted in figurlg 1, iaPT text file format.


http://www.pnml.org/

56 Analysis of Petri Nets and Transition Systems

$ ./apt.sh bounded net.apt
bounded: Yes

$ ./apt.sh bounded net.apt 1
bounded: No

witness place: p4
witnessfiring.sequence: [a]

Listing 3: lllustration of how to use thigounded module.
On Unix-like platforms, the shell scripipt . sh serves as a shorthand for starti®fr.

.name "” /* file name: lts.apt (this comment was added manually) x*/
.type LTS /#* stands for Labelled Transition System (this comment was added manually) */
.States

sO[initial] /* [ [p0:1]1 [p1:1] [p2:0] [p3:0] [p4d:11 1 =/

sl /* [ [p0:0] [p1:1] [p2:0] [p3:0] [p4:2] 1 =/

s2 /* [ [p0:1]1 [p1:0] [p2:0] [p3:1] [p4:0] 1 =/

s3 /* [ [p0:0] [p1:0] [p2:0] [p3:1] [p4:1] 1 =*/

s4 /* [ [p0:1]1 [p1:1] [p2:1] [p3:0] [p4:0] 1 =/

s5 /* [ [p0:0] [p1l:1] [p2:1] [p3:0] [p4:1] 1 =*/

s6 /* [ [p0:0] [p1:0] [p2:1] [p3:1] [p4:0] 1 =*/

.labels

abcd

.arcs

sO a si sO b s2 sl b s3 s2 a s3 s3 ¢ s4

s4 a s5 s4 d sO s5 b s6 s5 d s1 s6 d s3

Listing 4: Reachability graph oN;, generated with. /apt.sh coverab net.apt lts.apt and
slightly edited, in order to minimise the number of linesisltsomorphic tdts shown in figuré I1.

but not 1-bounded. For 1-boundednesBT provides a witness for the negative result, stating that aft
firing transitiona, placep4 will have more than one token on it.

The coverability graph module ofAPT can be used to generate a coverability graph [7] of a Petri
net. For a bounded net, this will be the reachability graphgectiorA). Listind 4 shows the reachabil-
ity graph calculated byPT for our running example via/apt.sh coverability graph net.apt.
Module names can be shortened, as long as the resulting j@efitique. So we can also useverab

to call the coverability module. The initial state is alwagdleds0. The correspondence between states
and markings is given as a comment. Tdraw module can be used to translate the calculated graph
into the DOT format used by th@raphViz tool (cf. http://www.graphviz.org/) which can then
visualize the graph.

Note that, ifts, each small cycle contains every transition exactly onceh® property can be examined
with APT. The modulecompute _pvs can be used to compute the Parikh vectors of all small cydlaa o
Its, and the moduleycles_same pv checks whether all small cycles have the same Parikh vector.

3 Overview of APT

Four stages can be distinguished in the developmenP®df an implementation of the necessary data
structures, various analysis modules, and Petri net areadules, described in this section, as well as,
more recently, an implementation of Petri net synthesiscideed in sectionl4 below.


http://www.graphviz.org/

Eike Best & Uli Schlachter 57

Data structures of APT. At the heart of the\PT toolbox sits a module system that ensures a high level of
extensibility and modularity. Every module consist of apuhspecification, an output specification, and
an algorithm. After a module has been registered with theuteoslystem, it is automatically available
to be used from the command line. It is possible to create neduies by using th&odule interface.
The methods of this interface are responsible for the difinibf the algorithm and the specification
of parameters and return values, including their names;rig¢ions and types. This also includes a
free text description that can include, for example, forghefinitions and usage samples. Algorithms
are implemented by theun method. Within this method, an algorithm can access thenpetexs that
were entered by the user on the command-line. These paranaete automatically transformed into
Java objects with the expected types according to the imadifications. The transformations from the
textual representation to Java objects gitg versehappens automatically, and thus, a module can focus
on working with the actual objects such as Petri nets or labeéfansition systems, without needing to
worry about user input / output.

For the underlying data structures implementing the objeBfN and LTS, no existing library was used,
but instead, inspiration was drawn from the Petri Net ARltfp : //service-technology.org/pnapi/)

to design robust and versatile data structures. The mamigléthe central management of data. The
PetrilNet class, respectively theéransitionSystem class, is used as a factory to create or delete
nodes, arcs, etc. Every modification of the graph has to be &om the graph class itself, or is for-
warded to it. For data storage, a compromise between memmoryleaning time has been made. For
example, the pre- and postsets of all nodes are stored bysneédava’'sSoftReferences. Hence, as
long as enough memory is available, the pre- and postset$ mddes are saved to gain a fast access
to the sets. Otherwise the garbage collector of Java's dliMachine is allowed to delete as many pre-
and postsets as necessary to achieve free memory. In teisheapre- and postsets are re-calculated and
re-saved, once they are needed.

Some stand-alone analysis modulda. each case, a (negative) answer is accompanied by (ceunter
examples as appropriate. The list can be extended as thensesl

For a given finite Its (with initial statgp),

e Check determinism, total reachability, persistence,@biity, and the small cycle property;
e Compute weakly / strongly connected components and Pae&toss of small cycles;
e Check (distributed) Petri net generability by two extenmaigramssynet [9] andpetrify [12].

For a given Petri net (with initial markiniglp),

e Check the existence of isolated elements, plainness, gsserthe existence of non-plain side
conditions, weak / strong connectedness, coverednessiiaants / T-invariants, the marked
graph / T-net / ON / CF / other structural properties, the BBKJF properties, K-) boundedness,
(weak) liveness, persistence, reversibility, the smatleyproperties as with Its, and weak / strong
separability;

e Compute all connected components, the backward, forwadlirecidence matrices, all side con-
ditions, all (minimal, semipositive) S- and T-invarianédl minimal siphons / traps, the greatest
commolrj divisor of the initial marking, anfl boundedthen reachability graplelsecoverability
graphfi

1 Several of the other tasks require boundedness as a préoondb that the boundedness check is often used as a first
step.


http://service-technology.org/pnapi/

58 Analysis of Petri Nets and Transition Systems

For a given labelled Petri net with initial markimdg and labellingh: T — %,

e Check whether a given wosd € Z* is in the language of the net, check language equivalende, an
check isomorphism and bisimulation of reachability graphs

The tasks described in this list are obviously of very digadegrees of complexity. One amongst them
(Given a Petri net, is it separabl@has an unknown decidability status. Therefore, a resteieigorithm
was implemented in this module, allowing bounds to be spetffir the lengths of firing sequences.

Generator modules inAPT. These modules are useful, e.g., for benchmarking purposesettiori 4.R).

e Generate regular sample nets, for instanaénit marked graph nets, for some specification or
range ofn; n-philosopher nets [13]; all marked graphs with a limited tn@mof places, transitions,
and tokens.

Counterexample finding modules.These modules (understandably) suffer from runtime proble

e For a net, check whether the preconditions of the conjech@etioned at the end of sectibn A are
satisfied, and then check isomorphism against all markgzhgraf a limited size. Do the same for
a small number of randomly selected marked graphs of bigges.s

e Try to find intelligent extensions of an Its, such that thecpralitions of the same conjecture
remain satisfied. Find minimal extensions of an Its thasBatll required properties.

4 Petri net synthesis withAPT

The goal of net synthesis is to find an injectively labellettiPet whose reachability graph is isomorphic
to a given Its. APT’s synthesize module (a recent addition WwPT by the second author) accepts up
to three parameters. The second parameter is the transitgiam from which a Petri net should be
synthesised and the third parameter can optionally spedire the calculated Petri net could be saved.
The first parameter is a comma-separated list of propelttigsthe produced Petri net should satisfy.
Supported properties are, at presemine, which can be used if just a generic P/T net without special
properties is needeghure to synthesise a net without side-conditiopdain if a net without weights

is required;output-nonbranching when a place may not have more than one transition in its post-
set;t-net when each place may also not have more than one transitiés fing-setconflict-free
when each place is either output-nonbranching or its peisissa subset of its pre-sdt-bounded if
every place must never contain more thaiokens in any reachable markingsfe if the net should be
1-boundedlanguage if only a Petri net with the same prefix language is searchedafalverbose to
print additional information about the calculated solati@hese definitions conform to those of section
[Aland [5,[7]. Additionally, a distributed Petri net can beuegted (see below).

As an example, consider the reachability grétigtshown in figuré IL. Let us start by just requesting any
Petri net solution. This is done by runningapt.sh synth none lts.apt. One possible solution is
shown ad\; in the same figure. This net is similar i in the sense that both of them have reachability
graphlts, but some structural differences can be observed. Systiesnplemented by an algorithm
[1] involving the solution of several systems of linear inatities. These solutions give rise to a large
(possibly redundant) set of regions. From these regikiBselects a non-redundant but still sufficiently



Eike Best & Uli Schlachter 59

$ ./apt.sh synthesize safe,verbose Its.apt

success: No

solvedEventStateSeparationProblems:

Region { init=1, 0:a:0, 0:b:0, 1:c:0, 0:d:1}:
separates event c at states [s4, s5, s6]

Region { init=0, 0:a:0, O0:b:1, 1:c:0, 0:d:0}:
separates event c at states [sO, sl, s4, s5]

[---]

failedStateSeparationProblems: []

failedEventStateSeparationProblems{b=[s4]}

Listing 5: Failure when trying to synthesise a safe Petrifrogh Its (s4 refers to a node in figuid 1)

[...] .labels
a[location="A"] b[location="B"] c[location="A"] d[location="A"]

(-]

Listing 6: Adding locations to the reachability graph froistihg[4. Only the changes are shown.

large subset, so that the corresponding Petri net alsosshikjeprovided the latter is solvable at all.
Depending on the way these inequality systems are solviidratit non-redundant sets of regions may
be produced. In some releas#BT used (and incorporated)jAlgo (cf. http://ojalgo.org/). Later,
SMTInterpol [11] was usedN;s is created viajAlgo; in other releases, a different solutionlts can
and will be obtained. The implementation is exact in the sdhat if any solution exists, one will be
found. No further guarantees about the synthesised Pé¢tranebe made.

As mentioned aboveAPT supports the synthesis of Petri nets with special progertieor example,
suppose that we wish a synthesised net to be plain and puren Wk can run./apt.sh synth
plain,pure lts.apt. Inthis caseAPT modifies the set of inequalities handed to a solver; the solve
returns a different solution; amPT’s selection process constructs a set of non-redundardnggorre-
sponding to the netl; shown in figuré Il. The same net is calculated whebounded or justplain or
pure is specified, although none of this can be guaranteed by thiementation.

If we try to synthesise a safe Petri net fréts we get a failure. The corresponding argumentsPband

its output are shown in listirlg 5. This is also an examplelierterbose option. Each calculated region

of the Its corresponds to a place in the Petri net that is b&mthesised. For example, the first region in
the above output i$ init=1, 0:a:0, 0:b:0, 1:c:0, 0:d:1 }. This corresponds to a place with

initial marking one and from which transitiomconsumes a token whileé produces a token each time

it fires. Also, this place disables the transitiom statessy, S5 andsg, as indicated in the output shown

in listing[3. Five such regions are found, but synthesisiiibfails, because no region can be calculated
which disables everii in states, (cf. figure[1). In the jargon,lf cannot be separated safelysﬂt@

The synthesize module also supports the specification of locations forsitaoms. If two transitions
have different locations, they must have disjoint pre-f#tsin both Petri nets which were synthesised
so far, transition® andc always had a common place in their pre-sets. Next, we wik foo a Petri net

2Note thatAPT’s output is nevertheless correct. Every Petri net solutirst have some plagewhich prevents in the
marking that corresponds . Since the sequendbis fireable ins, transitiond must produce enough tokens pto enable
b. Also abis fireable, so transitioa produces tokens op as well. Finally, the firing sequeneal is also enabled igs. By the
above reasoning, bothandd produce at least one token @nso afterad that place must be marked with at least two token.
Thus, no safe Petri net solution exists.


http://ojalgo.org/

60 Analysis of Petri Nets and Transition Systems

$ ./apt.sh wordsynthesize none a,b,b,a,a,c
success: No
separationFailurePoints: a, b, [a] b, a, a, ¢

Listing 7: Example ofiord_synthesize in order to synthesise = abbaac

whereb’s preset is disjoint from the presets of all other transiioListingl6 shows how to specify this
in the APT file format. If an Its contains locations, tBgnthesize module will always honour them. No
special command line option to enable this is required. Wdyethesising a Petri net from the modified
input file, the netN, shown in figurd Il is generated. It can be seen that the presbelbtransitions
are disjoint in that net, even though the input file only reedithat transitiorb has no common place
in its pre-set with the other transitions. In general, dyewj different locations for all transitions is
tantamount to requiring an ON output net.

APT also provides word synthesis. For a given watah Petri net with injective labelling is produced such
thatw and its prefixes are the only enabled firing sequences. Givasrdw = a;a,. .. an, this module
internally creates an ItsS —,T,5) with n+ 1 statesS= {9, s1,... S}, transitionsT = {aj,ay,...an},

and transition relation»= {(s_1,a,s) | i € {1,2,...,n}}. Listing[d shows an application. In the first
line, APT is asked to synthesise the woathbaac(specified as a comma-separated list). The set of
transitions is implicitly assumed to be= {a,b,c}. No requirements are specified for the synthesised
Petri net, and still, a failure occurs. The output shows Hftdr the subwordab, the transitiona is
enabled, even though the input requires the transhitmbe the only enabled transitidn.

4.1 Some algorithmic background

By courtesy of the authors of[1], the authors were fortuniatbe able to use an advance draft[df [1]
when implementing theynthesize module. Nevertheless, for the purpose of creating solstieith
special properties, it was necessary to extend the theongwhat. Some of these amendments are
described (very briefly) in the followingAPT contains a generic implementation that can handle all of
the supported properties, and for some special cas&s;ontains faster algorithms.

Formally, a region of an It§S —, T, ) is a triple (R, B,F) € (S— N, T — N, T — N) such that for all
gt)s with se [s0), R(s) > B(t) andR(S) = R(s) — B(t) + F(t). EssentiallyB andF assignbackward
and forward weightgo transitiong of an Its, so that these weights can serve as connecting égbtwe
betweent and a place of a Petri net, afitlassigns a token count in each marking to that place. The
derived functionE: T — Z defined byE(t) = [F(t) — B(t) is called theeffectof a transitiont. Because
the effect is zero around cycles of the Its, the functiinandF necessarily satisfg.t W(t)-B(t) =
Stet W(t) - F(t) for every cyclic Parikh vectoW in the Its. A region is callegbure if it satisfiesVt €
T:B(t)=0VF(t)=0.

For synthesising a Petri net from an Its, regions sol@aparation problembave to be found. There are
two kinds of such problems. For each staia which transitiont is not enabled, there is avent/state
separation problenR(s) < B(t) that corresponds to a place preventing the transitioRor each pair

of states{s,s'} with s+# s there is astate separation probleriR(s) # R(s) so that these states are
represented by different markings. The task at hand is tofiimany given separation problem, a region

3This result is correct sinca cannot be separated at stage That is, any injectively labelled Petri net in which the wor
abbaacand all of its prefixes are fireable, must also have a firing secgaba



Eike Best & Uli Schlachter 61

that solves it. A seR of regions is feasible for synthesising a Petri net if eagtasgtion problem is
solved by at least one of its regions. In this case the Petrescribed byR solves the Its. However,
since special properties might be requested from the eatmliPetri net, only regions which do not
contradict these properties should be used. Some algaritiptimise the search for feasible regions but
do not allow special properties to be guaranteed. Otheresseefficient in general but more flexible in
terms of the resultAPT chooses an appropriate algorithm, which may depend on siuét specification,
as follows.

Petri net synthesis with additional properties. APT comes with a general algorithm supporting all
properties. For this, first a region basis is calculated ftbencycles of the transition system. This basis
has the property that all pure regions are a linear comloinaif its elements. An inequality system is
used for finding such a combination. For solving a specifiasgfon problem, the initial marking(sp)

and the backward and forward weigfii&) andF(t) for every transitiort are variables. With these, we
explicitly require for any statd € Sand enabled transitionc T that the region does not blotk This
can be expressed vidt) — R(S) =R(s) + E(Ws) > B(t), whereWy is the Parikh vector of the path
from 5o to §' in some fixed spanning tree. Then, any solution of the sys&suaribes a valid region of the
Its under consideration. For separating statesds, an additional inequalitR(s) # R(S) is required.
Since for each place of a bounded Petri net, a complemenirg pan be added so that the token sum of
the two places stays constant, this inequality can be saftésiR (s) < R(S). For separating transition
from states, eitherR(s) —B(t) < 0 orR(s) +E(t) < 0 is used, depending on whether the resulting Petri
net should be impure or pure.

Additional inequalities are added to guarantee the reqdegstoperties. When locations are specified,
only transitions on the same locationtasay haveB(t) > 0, i.e., may consume token from this place in
the final Petri net. For all other transitiotishe equatiorB(t’) = 0 makes sure that no conflict between
locations occurs. Calculating output-nonbranching smhst makes use of this by internally assigning
a unique location to each transition. If the user asks foramngolution, the algorithm add(t) < 1
andF(t) < 1 for every transitiort € T to the inequality system. T-nets are found by requiring @&pla
solution where additionally the sum of all forward weigrgsai most one,  ¥;.7 F(t), and the same
for backward weights. If a conflict-free net should be systbed, plainness is additionally required
and the implementation first searches an output-nonbragakgion and, if this fails, the corresponding
inequalities are replaced witf(t) > O for all transitionst. This ensures that the preset contains the
postset of the place that corresponds to the calculatedrreginally, calculating &-bounded Petri net
requires adding an inequality> R(s) for each states. Because this is, so far, the only property that
requires adding an inequality for each state, it is the mxqstesive one.

Speeding up general Petri net synthesidf the synthesize module is invoked just with result spec-
ification none, and no locations are specified, synthesis can be made nimmierdgf The approach for
event/state separation is to calculate a region wik€gp is smaller tharR(s') for any states' in which
transitiont is enabled. Then botl(t) andF(t) can be increased by the same amount (possibly in-
troducing side conditions) so that the transition beconegmisted. To find such a region, the system
Vs € S: Sty = E(Ws— Wy) < 0 has to be solved, where the weights of the region basis arerth
knowns (that is, a much smaller system has to be solved). t&tw separation, the regions from the
region basis can be tested and used. This is because if thasdgm the basis do not separatands,
then no linear combination of the basis elements will elfher

Pure and pureé&plain Petri net synthesis. Suppose that the result requesipisre, ofr pure,plain

4Note: This algorithm and the previous one (without addiiqoroperties beside pure) are described in detalllin [1].



62 Analysis of Petri Nets and Transition Systems

(read conjunctively), and that again, no locations are supd. For solving state separation, if only a
pure solution is requested, the previous approach can lok bseause all elements of the region basis
calculated there are pure regions. For separating transifiom states, by definition, a region satisfying
R(s) < B(t) is needed. Sinc® can be calculated based on the vaRigy) for the initial state and the
Parikh vecto¥s, this is equivalent t&R (sp) + E(Ws) — B(t) < 0. After more simplifications, we see that
we have to solve’s € S: E(Ws— Wy + 1) < 0 wherel; is thet-unit vector. As before, the resulting
region has to be a linear combination of the region basis. pfain Petri net should be calculated,
additional constraints are added that ensuretHaf E(t) < 1 for all transitiond i.e., that the forward
and backward weights are either one or zero.

Synthesising marked graph Petri nets.The reachability graphs of marked graphs are charactesised
a special synthesis algorithm is presented_in [5]. Thisr#tlgm calculates a Petri net solution directly,
based on structural properties of the Its, and is implenteim@PT. The details will not be repeated in
the current paper. Suffice it to say theT’s synthesize module automatically checks the required
structural preconditions on the Its and uses the improvgdrigthm if it is applicable. This algorithm
supports any combination of the propertiesre, plain, andt-net, and any location specification.

Synthesis up to language equivalencdf a Petri net with the same prefix language as the input Its is
needed, a so-called limited unfolding of the [is [1] is céded. This unfolding is synthesised as usual,
but without enforcing state separation.

Heuristically minimizing the number of places. A feasible set of regions could stay feasible if some
regions are removed from it. This can occur because regalnalated for a specific separation problem
could additionally solve other separation problems. THusakes sense to remove unnecessary regions
from the set of calculated regions. For this, all eventstaparation and state separation problems are
evaluated again in the regions found. If such a problem isesldby just a single region, that region cannot
be removed from the feasible set of regions. This region liecta@ required region. Any separation
problem which is solved by a required regions can be disdarBler the remaining problems which are
solved by multiple non-required regions, any of these megimould be picked arbitrarily. In practice this
heuristic produces Petri nets with an acceptably low numbpraceﬁ

4.2 Benchmarks

The performance ofPTH for Petri net synthesis was compared waffnet 2.0b [9], petrify 4.2 [12]

and GENET [10] on a system running Fedora 21 with an I®elCore’™ i7-4790 CPU clocked at 3.6
GHz and with 32 GiB of memory. Theynet tool can synthesise distributable bounded Petri nets.
For petrify, the user can choose between some properties, for exam@effge choice and unique
choice. Howeverpetrify only creates safe Petri nets and employs transition sgitth ensure that a
solution exists. This means that the resolution Petri neghimot be injectively labelled. WItRENET,

the result will only be bisimilar to the input. Also, this toequiresa priori knowledge about the
maximum number of token on any place, and it resorts to tianssplitting to produce solutions. Given
these differences, it can be expected ghatrify andGENET perform better on safe nets and worse on
transition systems which have no safe solution.

Three ofAPT’s Petri nets generators were used. Bhienet _generator module creates a net wheme

5This heuristic introduces nondeterminism. Alternatiyelyme total ordering could be imposed on regions to break tie
6The latest development version was used. It can be idenkifiefit commit id14651£7280db255d1539 in [8].



Eike Best & Uli Schlachter 63

bit net synthesis philosophers’ net synthesis
n APT APTp synet petrify GENET APT APTp synet petrify GENET
8 0.60 0.86 138.49 0.13 0.05 0.55 0.49 0.06 0.01 0.01
10 1.56 2.32 — 1.25 0.31 0.50 0.60 10.08 0.05 0.03
12 5.71 6.31 —  17.73 2.28 0.79 1.05 — 0.25 0.09
14| 24.69 30.48 — 403.67 16.10 1.72 2.42 — 0.91 0.33
16 | 183.76 212.23  crash — 132.13 4.49 5.21 — 4.11 1.31
18 — — crash OOM —| 9.17 13.13 — 2184 4.83
20 26.76  41.96 — 171.10 19.88
22 98.57 146.42 crash — 123.05

Table 1: Time in seconds for synthesising a Petri net. APTRMR&PT with the pure parameter.
Dashes indicate that the 10 minutes time limit was excee@@d.large inputssynet crashed with a
stack overflow angletrify exited with a memory allocation error.

bits can be flipped between two states, creatihgtdtes in total. Th@istate philnet_generator
model Dijkstra’s philosophers problern [13] farphilosophers such that each philosopher grabs both
forks in a single step and puts them back simultaneously sT#® cycle generator creates a cycle
consisting ofn transitions andh places wherd tokens are moved from one place to the next in a cyclic
way. All these generators produce plain and pure nets. Téietfio generators and cycles with= 1

are additionally safe. In this case, all contesting toofs @arectly synthesise nets from the reachability
graph of the generated nets, altho@giET might produce a net which only exhibits bisimilar behaviour
Fork > 1, transition splitting will be done byetrify andGENET.

petrify was used with argumenrtdead, so that it does not complain about deadlockBT was mea-
sured for general synthesis and for pure synthesis. Inastntopetrify, which produced similar run
times in these two cases, this makes a differenca®dr synet was only benchmarked with parameter
-r, since it performed consistently worse without this argnin@ENET was used without any arguments.
Measurements were made by generating the reachability @fhe net that the Petri net generator pro-
duced, converting the net into the input format of each tath wPT and then measuring the wall clock
time needed by each tool to synthesise a Petri net from thghgrThe time for synthesis was limited to
10 minutes via thelimit -t unix command. For each input, three measurements were, tabenf
which the minimal values are depicted in Tahbles fito 3.

The result for the class of bit nets are shown in the left patalole[1. It can be seen that with 18 bits,
none of the tools managed to find a solution within the 10 neistime limit. This table also shows that
APT has a relatively high start-up cost, causing it to requirgentione for small inputs. AISOAPT only
slows down moderately if a pure solution is requested. &ingly, synet crashes with a stack overflow
error if the input becomes too large apeltrify runs out of memory for the reachability graph of a 17
bit (not shown) or 18 bit net. Its peak memory usage is aboulsl € the system’s physical memory is
not exhausted. In this benchmadgNET is a bit faster thalPT.

Tablel1 also contains the results for the philosophers’inets right part. Here\PT outperformsGENET,

but only for the largest inputs. Up to= 20, GENET is consistently faster. When requesting a pure solu-
tion, APT becomes slower thakENET searching for any solution at all. When compared tpderify,
similar behaviour can be seen, although here the crossimg igaatn = 17. In this experimeniPT is

still faster tharGENET if a pure solution is requested.



64 Analysis of Petri Nets and Transition Systems

n| APT APTp synet petrify GENET
100| 0.44 0.45 1.12 0.02 0.28
180| 158 158 8.83 0.05 1.81
260| 5.44 545 35.99 0.10 6.34
340| 16.45 16.05 102.52 0.15 17.45
420 | 40.55 40.90 234.59 0.23 32.99
500| 83.15 83.53 475.50 0.32 62.39

Table 2: Cycle synthesis run times with cycles of sizndk = 1 token.

The times for the cycle nets with a single token are shownhitefd. Compared to the other examples,
these nets show no concurrent behaviour and are about asdartheir reachability graphs. In this
benchmark APT uses its implementation of the marked graph synthesis fijm $till, petrify, for
reasons not known to the authors, almost needs no time at all.

sizen varying,k = 5 tokens fixed sizen = 5 fixes,k tokens varying
n| APT APTp synet petrify GENET| k| APT APTp synet petrify GENET
51019 019 000 1008 136.52 5| 0.19 0.19 0.00 10.08 136.52

10| 0.49 0.51 — — 468.38 10| 0.37 0.30 0.16 — 292.74
15| 1.35 1.39 — — —|| 15| 0.61 0.72 3.19 — —
20| 4.83 4.58 — — —|| 20| 2.00 1.14 16.47 — —

25| 242 209 93.22 — —
30| 416 3.81 190.81 — —

Table 3: Cycle synthesis run times with cycles of sizndk tokens. Left part varies size of cycle, right
part varies number of token.

When synthesising cycles with= 5 tokens, the cycles have to be a lot smaller. The correspgndi
result are shown in the left part of talhle 3, and it can be skanthe tools that use transition splitting
need much longer. The debug output suggests that thergplitads to an exponential increase in the
state space. Alsgynet only manages to synthesise the smallest cycle size witlgirtitte limit. In
contrast to thisAPT produces results quickly, because in this case, the markgth gynthesis algorithm
performs optimally. The results for cycles of siae- 5 with increasing numbers of tokens are similar
and can be found in the right part of the same table. The méereince is thakynet performs a lot
better when the number of tokens is increased instead afgimigthe size of the cycle.

An experiment was done by hand for cycles of size 3 with k = 100 tokens. In this setupPT needed
0.65 seconds to find a solutioaynet finished in 0.98 seconds aM®T with parametepure in 1.03
seconds.GENET ran out of memory after allocating 4 GiB in 422 seconds. Afi@rminutes without
any result,petrify was aborted. In this special cas¥ENET was also measured with parameté&r
100, telling it to look for 100-bounded solutions, and found em&.67 seconds. When the search with
bounds 1 to 99 was skipped via paramet&ts100 -min 100, GENET needed only 2.20 seconds. This
confirms previous intuitions that transition splitting mlagd to bad run times (and, of course, to non-
injectively labelled nets), but it also shows t&ENET is sped up ifa priori knowledge is available. Still,
even for the safe cas&PT has comparable results and has been generalisecsfileet) to unsafe nets.



Eike Best & Uli Schlachter 65

5 Concluding remarks

APT’s algorithms are packaged in a single, portable archiiedabt . jar. The idea is that a user can
copy this file and run it smoothly, using his or her favourégtteditors, in a local Java 7 environment, or
alternatively, grab the entirgpt directory from the repository at[[8] and build a local copyagf: . jar
using ANT. APT'’s performance in its other modules (for exampteyerability) was tested against
other tools (for examplé,oLA 2.0 [16]) and seems to perform worse, but not hopeless@lsncgeneral,
the authors hope that all @aPT’'s modules can be used sensibly in a classroom environmentos a
course on place/transition Petri nets and finite transiigstems. They also believe th&RT’s more
sophisticated algorithms can, in addition, be helpful seechers in the corresponding areas.

In future, we wish to explore whether code written, sayc#t could be incorporated intaPT more
tightly than just by means of exchanging text files for nets @mansition systems. Also, graphical exten-
sions will be explored cautiously (cf._[L4]). However, befomposing a more powerful user interface
onto APT, we would like to explore intelligent — possibly interagti+ extensions. For instance, consider
the algorithm testing the strong small cycle property. lfmior assumptions hold, it is nontrivial and, in
general, rather time-consuming. However, suppose thairdeonditions of the result mentioned at the
end of sectiof_ A have already been tested and are known tddralae given Its. Then we know that the
weak small cycle property also holds, and testing the stmrggis much easier. (The same principle —
using theory to algorithmic advantage — is behi®d’s fast marked graph synthesis.) It is also planned
to extend word synthesis to the prefix languages of regutayuages. This is pretty straightforward,
since it is well-known how to construct an Its from a regulbapression. Other extensions could consist
of parallelising some of the algorithms. Dennis Borde, oh#éhe APT students, already succeeded in
parallelising part of the coverability graph generatiogoaithm by exploiting the power of a graphics
card processor running concurrently with the main proaesso

Acknowledgements:The authors would like to thank the reviewers for helpful coemts.

References

[1] E. Badouel, L. Bernardinello, P. Darondeau: Petri Net Sgsith In preparation (330 pages). Springer-Verlag
(2015).

[2] E.Best, P. Darondeau: A Decomposition Theorem for EiRiérsistent Transition Systems. Acta Informatica
46:237-254 (2009). d6i:10.1007/s00236-009-0095-6

[3] E. Best, P. Darondeau: Separability in Persistent Pé&dts. Fundamenta Informaticae 113(3-4), 179-203
(2011). doi:10.3233/FI-2011-606

[4] E. Best, P. Darondeau: Petri Net Distributability. Iirbitskaite, A. Voronkov (eds): PSI'11, Novosibirsk,
LNCS \Wol. 7162, Springer-Verlag, 1-18 (2011). doi:10.187B-3-642-29709-0

[5] E. Best, R. Devillers: A Characterisation of the Statea&s of Live and Bounded Marked
Graph Petri Nets. Proceedings of LATA14, LNCS Vol. 8370, riSger-Verlag, 161-172 (2014).
doi{10.1007/978-3-319-049211A

[6] E. Best, R. Devillers: Synthesis of Persistent Systdmss. Ciardo, E. Kindler (eds): Proc. ICATPN’'14,
Tunis, LNCS Vol. 8489, pp. 111-129 (2014). d0i:10.1007/3¢819-07734-5

"The authors are aware of (and have tested) a multitude of Bttei net tools. Not all of them could be mentioned in this
paper.


http://dx.doi.org/10.1007/s00236-009-0095-6
http://dx.doi.org/10.3233/FI-2011-606
http://dx.doi.org/10.1007/978-3-642-29709-0_1
http://dx.doi.org/10.1007/978-3-319-04921-2_13
http://dx.doi.org/10.1007/978-3-319-07734-5_7

66 Analysis of Petri Nets and Transition Systems

[7] E. Best, H. Wimmel: Structure Theory of Petri Nets. Protthe Fifth Advanced Course on Petri Nets,
Rostock, 2010, K. Jensen et al. (eds): ToPNoC VI, volumdBf&NCS, Springer-Verlag, 162—224 (2013).
doi{10.1007/978-3-642-381438)

[8] D. Borde, S. Dierkes, R. Ferrari, M. Gieseking, V. GglRel Grunwald, B. von der Linde, D. Luckehe, U.
Schlachter, C. Schierholz, M. Schwammberger, V. Spreckelsps : //github. com/Cv0-theory/apt
[9] B. Caillaud:https://www.irisa.fr/s4/tools/synet/
[10] J. Carmona et alittp://www.cs.upc.edu/~jcarmona/genet.html
[11] J. Christ, J. Hoenicke, A. Nutz: Proof Tree Preservinigipolation. In N. Piterman, S. Smolka (eds): Tools
and Algorithms for the Construction and Analysis of Systehnedd as Part of ETAPS 2013, Springer-Verlag,
LNCS Vol. 7795,124-138 (2013). doi:10.1007/978-3-64286 79
[12] J. Cortadella et alttp://www.cs.upc.edu/~jordicf/petrify/
[13] E.W. Dijkstra: Hierarchical ordering of sequentialopesses. Acta Informatica 1(2), 115-138 (1971).
doii10.1007/BF00289519
[14] H. Saathoff:APE — anAPT Editor. BSc Thesis, Universitat Oldenburg (2013). Theecoadn be found at [8].
[15] E. Teruel, J.M. Colom, M. Silva: Choice-Free Petri netsnodel for deterministic concurrent systems with

bulk services and arrivals. IEEE Transactions on Systenas, &d Cybernetics, Part A, 27-1 (1997), 73-83.
doii10.1109/3468.553226

[16] K. Wolf: Distributed Verification with LoLA. Fundameatinformaticae, 54(2-3), 253-262 (2003). Version
2.0 alhttp://download.gna.org/service-tech/lola/

A Labelled transition systems and Petri nets

An lts (labelled transition system with initial state) isupke (S, —,T,s), whereSis a set ofstates T is

a set oflabelswith SN T = 0; —C (Sx T x S) is thetransition relation andsy € Sis aninitial state A
labelt is enabledn a states, denoted byg[t), if there is some stat€ such thais,t,s') e—. t)s (5[1)S)
means thas' is reachablefrom sthrough the execution df(resp., oft € T*). By [s), we denote the set
of states reachable from Foro € T*, theParikh vector¥(o) is aT-vector wheréf(o)(t) denotes the
number of occurrences bfn 0. s[o)s is called acycleif s= ¢, and¥(0o) is calledcyclicin this case.
A nontrivial cycles|o)s around a reachable stadec [) is calledsmallif there is no nontrivial cycle
s[o’)s with s’ € [s9) and¥(0’) < W(0).

Two Its (S, —1,T,%01) and (S, —2, T,So2) over the same set of labek are language-equivalenif

their initially enabled sequences coincide, i.edf € T*: sp1[0) <= p2[0), isomorphicif there is a
bijection{: S — S with {(s01) = sz and(s;t,8) e—1 < ({(9),t,{(S)) €—», foralls,s € §; and
bisimilar if there is a relatiof C S x S, with (sp1,S02) € B and whenevefry,r2) € B and(ry,t,s1) €—1,

thends, € $: (r2,t,s) €—2 (andvice versa

A labelled transition systentS,—,T,s) is calledfinite if SandT (hence also-) are finite setspe-
terministicif for any reachable stateand labela, sja)s ands[a)s’ imply s = s’; totally reachableif

S=[5) andVvt € T3se [s): gt); reversibleif Vs e [s): s € [s); persistentf for all reachable states
and labeld,u, if st) ands[u) with t # u, then there is some state= Ssuch that bottstu)r andsut)r.

It has theweak small cycle propertif there is a finite set of mutually transition-disjoint Hdrivectors
such that every small cycle has a Parikh vector in this selttla(strong) small cycle property every
small cycle has the same Parikh vector.

A (finite, initially marked, place-transition, arc-weigit) Petri net is a tupléP, T,F,Mo) such thatP
is a finite set ofplaces T is a finite set oftransitions with PNT = 0, F is aflow function F: ((P x


http://dx.doi.org/10.1007/978-3-642-38143-0_5
https://github.com/CvO-theory/apt
https://www.irisa.fr/s4/tools/synet/
http://www.cs.upc.edu/~jcarmona/genet.html
http://dx.doi.org/10.1007/978-3-642-36742-7_9
http://www.cs.upc.edu/~jordicf/petrify/
http://dx.doi.org/10.1007/BF00289519
http://dx.doi.org/10.1109/3468.553226
http://download.gna.org/service-tech/lola/

Eike Best & Uli Schlachter 67

T)U(T x P)) — N, Mg is theinitial marking, where amarkingis a mappingV : P — N, indicating the
number oftokensin each place. A transitionc T is enabled bya markingM, denoted by |t), if for all
placesp € P, M(p) > F(p,t). If t is enabled aM, thent canoccur (or fire) in M, leading to the marking
M’ defined byM’(p) = M(p) — F(p,t) + F(t, p) (notation: M[t)M’). Thereachability graph of Nwith
initial marking Mo, is the labelled transition system with the set of vertifdg) (i.e., the states which
are reachable froiWp) and set of edge§(M,t,M’) | M,M’ € [Mg) AM[t)M'}. If an lts T Sis isomorphic
to the reachability graph of a Petri gt then we will also say thall solves T SIf k is a natural number
andM a marking, therk-M denotes the marking witfk-M)(p) = k-M(p) for every placep.

For a placep of a Petri netN = (P, T,F,Mp), let*p={t € T | F(t,p) > 0} its pre-places, ang® =
{t e T | F(p,t) > O} its post-places.N is called(strongly/weakly) connecteil it is strongly/weakly
connected as a graphtain if cod(F) C {0,1}; pureor side-condition freéf p* N *p = 0 for all places
p € P; ON (place-output-nonbranchingf | p*| < 1 for all placesp € P; CF (conflict-freq if it is plain and
VpeP: |p*| > 1= p* C *p; BCF (behaviourally conflict-frekif it is plain and for any two transitions
t,t’ € T witht #t’ and for evenyM € [Mp), if M[t) andM|t’) then*tN*t’ = 0; BiCF (binary-conflict-fre¢
if it is plain and for any two transitionst’ € T with t #t’ and for everyM € [Mp), if M[t) andM|t")
thenVp e P: M(p) > F(p,t)+F(p,t’); amarked graph(T-ne) if it is plain and|p*| =1 and|*p| =1
(resp.,|p°*| < 1and|*p| < 1) for all placesp € P; weakly liveif vVt € TIM € [Mo) : M[t) (i.e., there are no
unfireable transitionsk-boundedor some fixek € N, if VM € [Mg)Vp € P: M(p) <k (i.e., the number
of tokens on any place never exceéfihoundedf Jk € N: N is k-bounded persisten{reversiblg if so
is its reachability graph. For a numblee N, a net with markind-M is calledstrongly separable from
k-M if every firing sequence starting &M belongs to the shuffle product kffiring sequences starting
atM, andweakly separable from-K! if the Parikh vector of every firing sequence startinds-8d is the
sum of the Parikh vectors @ffiring sequences starting ist.

A labelled Petri nethas, in addition, a labelling function: T — Z whereX is some set of transition
labels. This induces a double labelling of the arcs of cpwading reachability graph: first, with transi-
tions of T, and then, with labels frora. In case a net is labelled, the definitions of language-edgiivce,
isomorphism and bisimulation are the same as previoustgphthat they are taken with respecttalf

a net is unlabelled. = T is assumed implicitly (and explicitly iaPT).

The interest of the small cycle property arises from theofelhg result [2]: The reachability graph
of a bounded, weakly live, reversible, persistent PetriMes finite and satisfies the weak small cycle
property. If one requires connectedness and replaces “persisteriftONy, then the strong small cycle
property can be deduced. This suggests a close relatiobsiipeen persistent Its having the small
cycle property and ON Petri nets, motivating a question twhias raised in [4]If an Its is Petri net
solvable, reversible, persistent, and has the small cyadparty, does there always exist an ON Petri
net generating it?The answer is negative, even if the critical Parikh vectdr &nd further conditions
are imposed[[5]. The search for a counterexample turnedoobe ttedious, and was, in fact, one of
the reasons for initiatingPT. Another reason was the desire for tool support in examifurtiper open
guestions, such as the following one from [3§ the reachability graph of a plain, pure, bounded,
reversible, persistent net with an initial markingM with K > 2 always isomorphic to the reachability
graph of some marked graph?



	1 Motivation
	2 Introduction to the use of APT, and some examples
	3 Overview of APT
	4 Petri net synthesis with APT
	4.1 Some algorithmic background
	4.2 Benchmarks

	5 Concluding remarks
	A Labelled transition systems and Petri nets

