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A standard contextual equivalence for process algebras is strong barbed congruence. Configuration
structures are a denotational semantics for processes in which one can define equivalences that are
more discriminating, i.e. that distinguish the denotation of terms equated by barbed congruence.
Hereditary history preserving bisimulation (HHPB) is such a relation. We define a strong back and
forth barbed congruence using a reversible process algebra and show that the relation induced by the
back and forth congruence is equivalent to HHPB, providing a contextual characterization of HHPB.

Introduction

A standard notion of equivalence for process algebras identifies processes that interact the same way with
the environment. Reduction congruence [7] is a standard relation that equates terms capable of simulating
each other’s reductions in any context. However observing only the reductions is a too coarse relation. A
predicate, called a barb, is then defined to handle an extra observation on processes: the channel on which
they communicate with the environment.

Configuration structures—also called stable families [12] or stable configuration structures [4]—are
an extensional representation of processes, which explicit all possible future behaviours. It consists of
a family of sets, where each set is called a configuration and stands for a reachable state in the run of
the process. The elements of the sets, called events, represent the actions the process triggered so far.
The inclusion relation between configurations stands for the possible paths followed by the execution.
The encoding of terms of the Calculus of Communicating Systems (CCS)—a simple process algebra—in
configuration structures [12, 4] settled configuration structures as a denotational model for concurrency.

Configuration structures are “true concurrency” models, as opposed to process algebras, which use
an interleaving representation of concurrency. It is hard to deduce in an interleaving semantics the
relationships between events, such as whether two events are independent or not, whereas they are explicit
or easily inferred in a truly concurrent semantics.

On such structures, the equivalence relations defined are more discriminating: it is possible to move
“up and down” in the lattice, whereas in the operational semantics, only forward transitions have to
be simulated. As an example, consider the processes a.0|b.0 and a.b.0+ b.a.0 that are bisimilar in
CCS but whose causal relations between events differ. In particular we investigate hereditary history
preserving bisimulation (HHPB), which equates structures that can simulate each others’ forward and
backward moves. It is the canonical equivalence on configuration structures as it respects the causality
and concurrency relations between events and admits a categorical representation [5].
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Reversibility allows to define HHPB in an operational setting, by simply adding to processes the
capability to undo previous computations. A term can then either continue its forward execution or
backtrack up to a point in the past and resume from there. Reversible process algebras are interesting
in their own right [6, 1], but we focus in this paper on their capability to simulate the back-and-forth
behaviour of configuration structures. To ensure that the backward reduction of CCS indeed corresponds
to the backward moves of its denotational representation, one has to prove that the labelled transition
system is prime [8]. It was already done for CCSK [9], a reversible calculus that has a causal consistent
backtracking machinery. In this paper we use RCCS [2] a causal consistent reversible variant of CCS
whose syntax is given in Sect. 1.1.

In reversible calculi one is also interested in a contextual equivalence for processes. Traditional
equivalences, defined only on forward transitions, are inappropriate for processes that can do back-and-
forth reductions. Strong back-and-forth bisimulation [6] is more adapted but it is not contextual. Hence
we introduce the barbed back-and-forth congruence on RCCS terms (Sect. 1.2) which corresponds to the
barbed congruence of CCS except that backwards reductions are also observed.

Configuration structures (Sect. 2) lacks a notion of contextual equivalence, because the context
is a notion specific to the operational semantics. Hence it makes sense to consider context only for
configuration structures that represent an operational term (Sect. 3). We introduce in Sect. 4 the correct
notions and relations on those structures. The contextual equivalence on processes induces a relation on
the denotation of these processes and this relation corresponds to HHPB (Sect. 5).

Similarly to the proof in CCS, the correspondence between a contextual equivalence and a non
contextual one necessits to approximate hhbp with (a family of) inductive relations defined on configuration
structures. If we are interested only in the forward direction (as in CCS), the inductive reasoning starts
with the empty set, and constructs the bisimilarity relation by adding pairs of configuration reachable
in the same manner from the empty set. However, to approximate hhbp, we need to have an inductive
reasoning on the backward transition as well (Definition 15). These relations are of major importance to
prove our main theorem (Theorem 1), as they re-introduce the possibility of an inductive reasoning thanks
to a stratification of the HHPB relation.

Hhpb is equivalent to strong bisimulation on reversible CCS [10], thus it can be characterised as a
non contextual equivalence on processes. One can then prove the main result of the paper by showing
that in RCCS strong bisimulation and strong barbed congruence equate the same terms. We chose to use
configuration structures instead, as we plan to investigate weak equivalences on reversible process algebra
and their correspondence in denotational semantics.

Our work is restrained to processes that forbid some sort of auto-concurrency (see Remark 1) and that
are “collapsed” (Definition 10): we need to uniquely identify open configurations using only the label and
the order of the events. The “equidepth auto-concurrency” [10] does not help.

1 RCCS syntax and bisimulation

RCCS is a reversible variant of CCS, that allows computations to backtrack, hence introducing the notions
of forward and backward transitions. A mechanism of memories attached to processes store the relevant
information to eventually do backward steps.

In a sequential setting backtracking follows the exact order of the forward computation. This is too
strict for a concurrent calculus where independent processes can fire independent actions. The order of
these actions in the forward direction is just temporal and not causal, and thus it should be allowed to
backtrack them in any order. On the other hand, too much liberty in backtracking could allow the system
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γ := a ‖ ā ‖ . . . α,β := γ ‖ τ (Actions)

m := /0 ‖ g .m ‖ 〈i,α,P〉.m (Memories)

P,Q := 0 ‖ α.P ‖ α.P+β .Q ‖ P|Q ‖ (a)P (CCS processes)

R,S := mB P ‖ R|R ‖ (a)R (RCCS processes)

Figure 1: RCCS processes grammar

to access states that were not reachable with forward transitions alone.

1.1 RCCS syntax

Notations 1. Let N= {a,b, . . .} a set of names, I= {i, j, . . .} a set of identifiers. An action is an input
(resp. output) on a channel a, labelled a (resp. ā), or a synchronisation with the label (a, ā), sometimes
denoted τ . Each action a has a dual written ā, we let ¯̄a = a and τ̄ = τ . Denote L= {α,β , ..} the set of
labels.

CCS processes are build using prefix, sum, parallel composition and restriction. RCCS processes, also
called monitored processes, are built upon CCS processes by adding a memory m that acts as a stack of
the previous computations. Each entry in the memory is called an event and has a unique identifier. The
usual [3] RCCS processes grammar is recalled in Figure 1. A memory 〈i,α,P〉 contains an “identifier” i
that “tags” transitions: it is especially useful in the case of synchronisation (both forward and backward),
for it identifies which two processes interact. The label α marks which action has been fired (in the case
of a forward transition), or what action should be restored (in the case of a backward move). Finally, P
saves the whole process that has been erased when firing a sum. The “fork symbol” g marks that the
memory of a parallel composition has been split down to the two parts of the parallel composition. It was
handled with 〈1〉 and 〈2〉 (Left- and Right-fork) in previous work [2, p. 295].

We can easily retrieve a CCS process from an RCCS one by erasing the memories:

ε(mB P) = P ε(R|S) = ε(R)|ε(S) ε((a)R) = (a)ε(R) ε(R+S) = ε(R)+ ε(S)

Structural congruence on monitored processes is the smallest equivalence relation up to uniform renaming
of identifiers generated by the following rules:

P≡ Q

/0BP≡ /0BQ
mB (P|Q)≡ (g.mB P|g .mB Q)
mB (a)P≡ (a)mB P with a /∈ m

The left rule implies that all equivalence for CCS processes holds for RCCS processes with an empty
memory. The right rules respectively distributes the memory between two forking processes (top) and
moves the restrictions at the process level (bottom).

The labelled transition system (LTS) for RCCS is given by the rules of Figure 2. In the transitions i:α−→
(resp. i:α

 ) for the forward (resp. backward) action, we have that i ∈ I is the event identifier, I(m) (resp.

I(S)) is the set of identifiers occurring in m (resp. in S). We use
i:α
� as a wildcard for i:α−→ or i:α

 , and if

there are indices i1, . . . , in and labels α1, . . . ,αn such that R1
i1:α1
� . . .

in:αn
� Rn, then we write R1�? Rn. We

sometimes omit the identifier or the label in the transition. The trace is unique up to renaming of the
indices.
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R
i:γ
� R′ S

i:γ̄
� S′ syn.

R|S
i:τ
� R′|S′

R
i:α
� R′ par.

R|S
i:α
� R′|S

R
i:α
� R′ a /∈ α

res.
(a)R

i:α
� (a)R′

R1 ≡ R
i:α
� R′ ≡ R′1 ≡

R1
i:α
� R′1

act.
mB α.P+Q i:α−→ 〈i,α,Q〉.mB P

act.∗
〈i,α,Q〉.mB P i:α

 mB α.P+Q

The rule act. and act∗ apply iff i /∈ I(m), the rule par. applies iff i /∈ I(S).

Figure 2: Rules of the LTS

When a prefix is consumed we add in the memory an event consisting of an unique identifier, the
label consumed and the discarded part of the non-deterministic sum. Then backtracking removes an
event at the top of a memory and restores the prefix and the non-deterministic sum. Synchronization,
forward or backward (syn), requires the two synchronization partners to agree on the event identifier and
trigger the transitions simultaneously. The requirement that i /∈ I(S) for the parallel composition (par.)
ensures the uniqueness of the event identifiers in the forward direction and prevents a part of a previous
synchronization to backtrack alone in the backward direction.

Example 1.1. The process g.〈i,α,α ′.0〉. /0 .P | 〈 j,β ,β ′.0〉. /0 .Q highlights that not all syntactically
correct processes have an operational meaning. This term cannot be obtained by a forward computation
from a CCS process, somehow “its memory is broken”. Withoutg, one could backtrack to /0Bα.P+α ′.0 |
/0B β .Q+β ′.0, but this terms violate the structural congruence.

The semantically correct processes are called coherent and are defined as follows:

Definition 1 (Coherent process and OR). A RCCS process R is coherent if there exists a CCS process P
such that /0B P−→? R. This process P is unique up to structural congruence and we write it OR.

Backtracking is not deterministic, but it is noetherian and confluent [3, Lemma 1], hence the unique-
ness. Actually, coherence of processes comes from the coherence relation defined on memories [2,
Definition 1] and implies that in a coherent term, memories are unique. Moreover, coherence is preserved
by transitions and structural congruence.

1.2 A contextual equivalence for RCCS

Let us now revisit the barbed congruence of CCS [7] in the case of RCCS. For that we need the right
notions of context and barb in the reversible setting.

Choosing the right notion of context is subtle. A context has to become an executable process
regardless of the process instantiated with it. We can distinguish three types of contexts: with an empty
memory, with a non empty but coherent memory (i.e. the context can backtrack up to an empty memory
regardless of the process instantiated with) or with a non coherent memory. The later is left as future
work, while the first two are equivalent: we will only, w.l.o.g., consider contexts without memory.

Definition 2 (CCS Context). A context is a process with a hole: C := [ ] ‖ α.C ‖ C+P ‖ C|P ‖ (a)C

We can only instantiate a context with an RCCS process R if the process has an empty memory, i.e.
R = /0BP. We use the notation C[ /0BP] to denote the process /0BC[P].

Definition 3 (Strong commitment (barb)). We write R ↓α if there exists i ∈ I and R′ such that R i:α−→ R′.
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C1

/0

{e1} {e′1}

{e1,e′1}

`1(e1) = a,
`1(e′1) = b

C2

/0

{e2} {e′′2}

{e2,e′2} {e′′2,e′′′2 }

`2(e2) = `2(e′′′2 ) = a,
`2(e′2) = `2(e′′2) = b

C3

/0

{e3} {e′′3}

{e3,e′3}

`3(e3) = `(e′′3) = a,
`3(e′3) = b

C4

/0

{e4} {e′′4}

{e4,e′4} {e′′4,e′′′4 }

`4(e4) = `4(e′′4) = a,
`4(e′4) = `4(e′′′4 ) = b

Figure 3: Four examples of configuration strutures

Definition 4. A strong back-and-forth barbed bisimulation is a symmetric relation on coherent processes
∼̇τ such that if R ∼̇τ S, then

R i:τ
 R′ =⇒ ∃S′ s.t. S i:τ

 S′ and R′ ∼̇τ S′ (Back)

R i:τ−→ R′ =⇒ ∃S′ s.t. S i:τ−→ S′ and R′ ∼̇τ S′ (Forth)

R ↓a =⇒ S ↓a . (Barbed)

We write R∼τ S and define the strong back-and-forth barbed congruence if R ∼̇τ S and for all context
C[·], C[OR] ∼̇τ C[OS].

Lemma 1. R∼τ S =⇒ OR ∼τ OS.

The proof is straightforward. The converse does not hold as R and S can be any derivative of OR.

2 Configuration structures

We use configuration structures [12, 4] as a denotational semantics for processes. We recall the definitions
and the operations necessary to encode processes, and refer to Winskel’s work for the proofs.

Notations 2. Let E be a set, ⊆ be the usual set inclusion relation and C be a family of subsets of E. For
X ⊆C we say that X is compatible and write X ↑fin. if ∃y ∈C finite such that ∀x ∈ X , x⊆ y.

Definition 5. A configuration structure 〈E,C〉 is a set E and C ⊆P(E) satisfying:

∀x ∈C,∀e ∈ x,∃z ∈C finite s.t. e ∈ z and z⊆ x (finitness)

∀x ∈C,∀e,e′ ∈ x, if e 6= e′ then ∃z ∈C,z⊆ x and (e ∈ z ⇐⇒ e′ /∈ z) (coincidence freeness)

∀X ⊆C and X ↑fin.⇒∪X ∈C (finite completness)

∀x,y ∈C, if x∪ y ∈C then x∩ y ∈C (stability)

A labelled configuration structure C = 〈E,C, `〉 is a configuration structure endowed with a labelling
function ` : E→ L. All configurations structures from now on will be supposed to be labelled.

The elements of E are called events and subsets of C configurations. Intuitively, events are the actions
occurring during the run of a process, while a configuration represents a state reached at some point.
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Example 2.1. In Figure 3, the configuration structure C1 have two events e1, e′1, with labels respectively
a and b, that are concurrent. Configuration {e1} then corresponds to the process that fired action a. Its
only possibility is then to fire b and reach the state {e1,e′1}. A process corresponding to this structure is
a.0|b.0. The configuration structure C2 corresponds to a process where the events labelled respectively a
and b are causally dependent, as in a.b.0+b.a.0.

The configuration structure corresponding to a process P is defined inductively on the syntax of P.
Hence the encoding of a process is built from the encoding of its parts, unlike other models such as
process graphs (or prime graphs) for CSSK [9]. Moreover, configuration structures are compositional
in the sense that we can compose configuration structures into new structures. Compositionality is an
important feature as it allows us to reason on the context of a process.

Henceforth we detail how the operations of process algebras are translated on configuration structures,
which in some cases have a nice categorical interpretation. While the underlying category theory is not
used in the paper, it can help in understanding how these structures behave.

Definition 6 (Category of labelled configuration structures). A morphism of labelled configurations
structures f : 〈E1,C1, `1〉 → 〈E2,C2, `2〉 is a partial function on the underlying sets f : E1→ E2 that is:

∀x ∈C1, f (x) = { f (e) | e ∈ x} ∈C2 (configuration preserving)

∀x ∈C1,∀e1,e2 ∈ x, f (e1) = f (e2) =⇒ e1 = e2 (locally injective)

∀x ∈C1,∀e ∈ x, `1(e) = `2( f (e)) (label preserving)

The configuration structures and their morphisms form a category.

Definition 7 (Operation on configuration structures [12]). We let C1 = 〈E1,C1, `1〉, C2 = 〈E2,C2, `2〉 be
two configuration structures, set E? = E ∪{?} and define the following operations:

Product Define the product of C1 and C2 as C = C1×C2, for C = 〈E,C, `〉, where E = E?
1 ×E?

2 is the
product on sets with the projections π1, π2 and

x ∈C ⇐⇒


π1(x) ∈C1 and π2(x) ∈C2,

π1 : C → C1 and π2 : C → C2 are morphisms,

x satisfies (finitness) and (coincidence freeness).

The labelling function ` is defined as `(e) = (`1(e1), `2(e2)), where π1(e) = e1 and π2(e) = e2.

Coproduct Define the coproduct of C1 and C2 as C = C1 +C2, for C = 〈E,C, `〉, where E = ({1}×
E1)∪ ({2}×E2) and C = {{1}× x | x ∈C1}∪{{2}× x | x ∈C2}. The labelling function ` is defined as
`(e) = `i(ei) when ei ∈ Ei and πi(ei) = e.

Restriction Let E ′ ⊆ E. Define the restriction of a set of events as 〈E,C, `〉�E ′ = 〈E ′,C′, `′〉 where
x′ ∈C′ ⇐⇒ x ∈C,x ⊆ E ′. The restriction of a name is then 〈E,C, `〉�Ea where Ea = {e ∈ E | `(e) 6=
τ,a ∈ `(e)}.

Prefix Define the prefix operation on configuration structures as α.〈E,C, `〉= 〈e∪E,C′, `′〉, for e /∈ E
where x′ ∈C′ ⇐⇒ ∃x ∈C,x′ = x∪ e and `′(e) = α , and ∀e′ 6= e, `′(e′) = `(e′).



74 Reversible Barbed Congruence on Configuration Structures

Relabelling Define the relabelling of a configuration structure as C1 ◦ `= 〈E1,C1, `1 ◦ `〉, where ` is a
labelling function.

Parallel composition Define C1‖C2 =
(
(C1×C2)◦ `

)
�E where ` is defined as follows

`(a) = a `(τ) = τ `(a, ā) = `(ā,a) = τ `(τ,a) = `(a,τ) = 0 `(a, b̄) = `(b̄,a) = 0

and for (C1×C2)◦ `= 〈E ′,C′, `′〉 we have the set E = {e ∈ E ′ | `′(e) 6= 0}.
In configuration structures 〈E,C, `〉 we denote x e−→ x′ the configurations x,x′ ∈ C such that x =

x′∪{e} and with x′ e
 x the symmetric relation. We use x′

e
� x for either x e−→ x′ or x′ e

 x: if `(e) = α ,

we sometimes write x
α

� x′.

Definition 8 (Partial order). Let x∈C and e1,e2 ∈ x. Then e1≤x e2 iff ∀x2 ∈C,x2⊆ x,e2 ∈ x2 =⇒ e1 ∈ x2.

If e1 ≤x e2, we say that e1 happens before e2 or that e1 causes e2 in the configuration x. Morphisms on
configuration structures reflect causality: if π : C1→ C2 and for e1,e2 ∈ x and x ∈C1, if π(e1)≤π(x) π(e2)
then e1 ≤x e2.

Definition 9 (Substructure). 〈E1,C1, `1〉 ⊆ 〈E2,C2, `2〉 iff E1 ⊆ E2,C1 ⊆C2 and `1 = `2|E1 .

3 Encoding RCCS in configuration structures

We start by encoding a CCS term into configuration structures and show an operational correspondence
between the term and its encoding. Intuitively, the configuration structure of a process without memory
depicts all its possible future behaviour. We also introduce a notion of context for configuration structures.
Then we proceed to encode a RCCS term. A reversible process can do backward transitions but only
up to a point: until it reaches the empty memory. We encode then a RCCS terms as an “address” in the
configuration structure of its origin. This allows us to encode both the past and the future of a process in
the same configuration structure. However the syntax of a process is not informative enough, hence we
restrict the encoding to a class of processes. Lastly we show an operational correspondence for RCCS
terms and their encoding.

3.1 Encoding CCS

We start by encoding a term without memory, that is a CCS term. We do so by structural induction on the
term using the operations defined previously (Definition 7):

[[P1|P2]] = [[P1]]|[[P2]] [[P1 +P2]] = [[P1]]+ [[P2]] [[α.P]] = α.[[P]] [[νa.P]] = [[P]]�Ea

Note that this encoding and its correspondence with CCS was first proposed by Winksell [12].
To show a strong bisimulation between a CCS process and its encoding, we introduce the following

transformation of a configuration structures representing, intuitively, the structure we obtain after a
transition: 〈E,C, `〉 \ x = 〈E ′,C′, `�E ′〉 with E ′ = ∪C′ and x′ ∈C′ ⇐⇒ ∃y ∈C,x⊆ y and x′ = y\ x.

Intuitively, C \ x is the configuration resulting from the suppression of the events of x in all configura-
tions of C . We call minimal (with respect to the partial order in Definition 8) an event whose singleton is
a configuration.

Proposition 1. Let x be a configuration in C , then C \ x is a configuration structure.
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Proposition 2 (Strong bisimulation between a CCS process P and [[P]]).

If P α−→ Q then ∃e ∈ [[P]] minimal s.t. `(e) = α and [[Q]] = [[P]]\{e} (Soundness)

∀e ∈ [[P]] minimal, ∃Q s.t. P
`(e)−→ Q and [[Q]] = [[P]]\{e} (Completeness)

Proof. We show this by induction on the derivation P α−→ Q for (Soundness) and by structural induction
on [[P]] for (Completeness).

We cannot define a notion of context for configuration structures in general, as it is not clear what a
configuration structure with a hole would be. However, if a configuration structure C has an operational
meaning, i.e. if ∃P a CCS process such that C = [[P]], we can use a CCS context C[·] that we instantiate
with P.

When reasoning on contexts in CCS, it is common to distinguish between the part of a transition fired
by the context alone and the part fired by the process. In the operational setting, one can easily decompose
the term C[P] thanks to the rules of the LTS. We need a similar reasoning for the term [[C[P]]], hence we
attach to the context C[·] and process P a projection morphism πC,P : [[C[P]]]→ [[P]] that can retrieve the
parts of a configuration in [[C[P]]] that belong to [[P]]1.

Morphisms do not preserve causality in general. In the case of a product we can show that all
causalities are due to one of the two configuration structures.

Proposition 3. Let x ∈ C1×C2. Then e <x e′ ⇐⇒ either π1(e)<π1(x) π1(e′) or π2(e)<π2(x) π2(e′).

Without much difficulty the result can be extended to say that in [[C[P]]], causality appears due to
either the causality in C[·] or the causality in P: a context can add but cannot remove causality in the
process [1].

3.2 Encoding RCCS

A RCCS term corresponds to a configuration in the configuration structure of its origin. We can use the
past execution, that is the memory of R to point to a configuration but it is not discriminatory enough.
Consider the process /0Ba.0+a.b.0 a−→ R whose configuration structure is C3 in Figure 3. To determine
which of the configurations labelled a correspond to R we have to consider the future of R as well.

Hence we choose a configuration that respects the past and the future of R, but this is still not enough.
Consider the process a.b.0+a.b.0 whose configuration is C2 in Figure 3. For the trace /0Ba.b+a.b α−→ b
there is no way to choose between the two configurations labelled a. From now on, we consider only
RCCS processes for which the underlying CCS process has the property that collapse(P) = P, where
collapse is defined below.

Definition 10 (Collapse).

collapse(α.P+α.Q) =α.collapse(P), if collapse(P) = collapse(Q) collapse(α.P) =α.collapse(P)

collapse(α.P+β .Q) =α.collapse(P)+β .collapse(Q) collapse((a)P) =(a)collapse(P)

collapse(α.P|α.Q) =α.collapse(P), if collapse(P) = collapse(Q) collapse(0) = 0

collapse(P|Q) =collapse(P)|collapse(Q)

1The formal definitions and the missing proofs can be found in Appendix A.



76 Reversible Barbed Congruence on Configuration Structures

Hence each process points to a unique configuration, enabling us to encode the past behaviour without
difficulty. Thus we define an “address” function that, given the configuration structure of the process’s
origin and a trace to the process we want to encode, returns the configuration corresponding to the current
state.

Definition 11 (Encoding RCCS processes in configuration structures). Given R a RCCS process, its
encoding [[R]] is defined as the couple ([[OR]],ad[[OR]]( /0,OR −→? R)), where

ad[[OR]](x,R1
α−→ R2 −→? R3) = ad[[OR]](x∪{e},R2 −→? R3)) if


x∪{e} ∈ [[OR]]

and

[[ε(R2)]]⊆
(
[[OR]]\ (x∪{e})

)
ad[[OR]](x,R2 −→? R3)) = x if R2 = R3

Let us show that the encoding is correct, and in particular that the function ad is well defined.

Proposition 4 (Soundness of the RCCS encoding). Let R be a process, then ∃!x ∈ [[OR]] such that
ad[[OR]]( /0,OR −→? R) = x.

The proof, presented in Appendix A, proceeds by induction on the trace, uses Proposition 2 and the
collapsing hypothesis (Definition 10).

Let us now define a transition relation on configuration structures, useful in showing the operational
correspondence between terms of RCCS and their encoding.

Definition 12 (Transition in configuration structures). Define ([[P]],x)
`(e)−→ ([[P]],x∪{e}) for x∪{e} ∈ [[P]].

Lemma 2 (Operational correspondence). 1. if R
i:α
� S then [[R]]

α

� [[S]];

2. let [[R]] = (C ,x); if (C ,x)
`(e)−→ (C ,x∪{e}) then ∃S, such that for some i ∈ I fresh, R

i:α
� S and

[[S]] = (C ,x∪{e}).

Proof. 1. As R i:α−→ S, OR = OS and we are in the following situation:

OR = OS

R S

We have that [[S]] = ([[OR]],xs), where xs = ad[[OR]]( /0,OR −→? S) = ad[[OR]]( /0,OR −→? R α−→ S) =

xR∪{e}. As [[R]] = ([[OR]],xR) it follows that ([[OR]],xR)
α−→ ([[OR]],xS). The proof for the backward

direction is similar except that it uses the trace up to R.

2. From (C ,x)
`(e)−→ (C ,x∪{e}) we have that x∪{e} ∈ C . Then {e} ∈ C \ x. From [[R]] = (C ,x) we

have that C \ x = [[ε(R)]], hence {e} ∈ [[ε(R)]]. We use Proposition 2 and obtain that ∃P such that

ε(R)
`(e)−→ P. Then due to the strong bisimulation between a RCCS term and its corresponding CCS

term [2], we have that, for some i, R
i:α
� S. That [[S]] = (C ,x∪{e}) follows from a similar argument

as in 1. above.

4 Definition of Bisimulations

In this section we adapt to configuration structures the definitions of barb and strong back-and-forth barbed
bissimulation on RCCS terms (Definition 3 and Definition 4). We define hereditary history preserving
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bisimulation, show that they “translate” the sister notion on RCCS terms (Lemma 3), and use two family
of relations, denoted Fi and Bi, to inductively approximate the bisimulation (Lemma 4).

Definition 13. A strong back-and-forth barbed bisimulation on labelled configuration structures is a
symmetric relation R ⊆C1×C2 such that ( /0, /0) ∈R, and if (x1,x2) ∈R, then

x1
e1 x′1 =⇒ ∃x′2 ∈C2 s.t. x2

e2 x′2, with `1(e1) = `2(e2) = τ and (x′1,x
′
2) ∈R; (Back)

x1
e1−→ x′1 =⇒ ∃x′2 ∈C2 s.t. x2

e2−→ x′2, with `1(e1) = `2(e2) = τ and (x′1,x
′
2) ∈R; (Forth)

if ∃e1 ∈ E1 s.t. `1(e1) 6= τ and x1
e1−→ x′1 then ∃x′2 ∈C2 s.t. x2

e2−→ x′2, with `1(e1) = `2(e2). (Barbed)

Let C1 ∼̇τ C2 if and only if there exists a strong back-and-forth barbed bisimulation between C1 and C2.
Denote ∼τ a symmetric relation on terms that have an operational meaning such that if [[P1]]∼τ [[P2]]

then ∀C, [[C[P1]]] ∼̇τ [[C[P2]]].

Let us now show that the relation in Definition 13 is the relation induced by the barbed congruence on
processes.

Lemma 3. R∼τ S =⇒ [[ε(OR)]]∼τ [[ε(OS)]] and [[P]]∼τ [[Q]] =⇒ P∼τ Q.

Proof. Both case are similar :

R∼τ S =⇒ OR ∼τ OS (By Lemma 1)

=⇒ ε(OR)∼τ
ε(OS) (As ε( /0B P) = P)

=⇒ ∀C[·],C[ε(OR)] ∼̇τ C[ε(OS)] (By Definition 4)

=⇒ ∀C[·], [[C[ε(OR)]]] ∼̇τ [[C[ε(OS)]]] (By the Soundness part of Proposition 2)

=⇒ [[ε(OR)]]∼τ [[ε(OS)]] (By Definition 13)

Definition 14. A hereditary history preserving bisimulation on labelled configuration structures is a
symmetric relation R ⊆C1×C2×P(E1×E2) such that ( /0, /0, /0) ∈R and if (x1,x2, f ) ∈R, then

f is a label and order preserving bijection between x1 and x2

x1
e1−→ x′1 =⇒ ∃x′2 ∈C2s.t. x2

e2−→ x′2 and f = f ′�x1,(x′1,x
′
2, f ′) ∈R

x1
e1 x′1 =⇒ ∃x′2 ∈C2s.t. x2

e2 x′2 and and f ′ = f �x2,(x′1,x
′
2, f ′) ∈R

We define bisimilarity, denoted C1 ∼ C2, as the greatest hereditary history preserving bisimulation on
labelled configuration structures.

Note that C1 ∼ C2 is an abuse of notation as ∼ is a relation defined on C1×C2×P(E1×E2). Due to
the restrictions imposed on the configuration structures (see Remark 1) there is a unique mapping between
events for the greatest hhp bisimulation.

We can give an inductive characterisation of HHPB by reasoning on the structures up to a level: we
ignore the configurations that have greater cardinality then the considered level. Hhpb is then the relation
obtained when we reach the top level. Hence we can detect, whenever two configuration structures are
not hhp bisimilar, at which level the bisimulation does no longer hold. We do this with the aid of the two
following functions.
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Definition 15 (Fi, Bi). Given C1, C2 two configuration structures, we let k be the cardinal of the largest
configuration of C1

2 and define, for all x1 ∈C1, x2 ∈C2 and f a label and order-preserving function:

(x1,x2, f ) ∈ Fi⇔

{
Card(x1) = Card(x2) = i, f any label and order-preserving function if i = k

∀x′1,∃x′2,x1
e1−→ x′1,x2

e1−→ x′2 and f = f ′�x1 s.t. (x′1,x
′
2, f ′) ∈ Fi+1 elsewhere

(x1,x2, f ) ∈ Bi⇔

{
(x1,x2, f ) ∈ Fi if i = 0

∀x′1,∃x′2,x1
e1 x′1,x2

e1 x′2 and f ′ = f �x2 s.t. (x′1,x
′
2, f ′) ∈ Fi−1∩Bi−1 elsewhere

The relation Bi is built on top of Fi: it “tests for the backward steps” all the couples that “passed
the forward test”. It should be remarked that, with this definition, Bi ⊆ Fi, but, at the price of slight
modifications, one could define Fi on top of Bi.
Example 4.1. Consider C3 and C4 of Figure 3, the relations Fn are enough to discriminate them:

F2 =
(
{e3,e′3},{e4,e′4}

)
;
(
{e3,e′3},{e′′4,e′′′4 }

)
F1 =

(
{e3},{e4}

)
;
(
{e3},{e′′4}

)
F0 = /0

This intuitively is due to the fact that forward transitions are enough to discriminate a+a.b and a.b+a.b.
However for comparing the processes a | b and a.b+b.a whose configurations are C1 and C2 of Figure 3,
we need the backward moves as well:

F2 =
(
{e1,e′1},{e2,e′2}

)
;
(
{e1,e′1};{e′′2,e′′′2 }

)
F1 =

(
{e1},{e2}

)
;
(
{e′1};{e′′2}

)
F0 =

(
/0, /0
)

B2 = /0 B1 =
(
{e1},{e2}

)
;
(
{e′1};{e′′2}

)
B0 =F0 =

(
/0, /0
)

The following proposition states that pairs of configurations are in a bisimulation relation if they have
the same cardinality. It follows from the fact that any configuration is reachable from the empty set and
that they have to mimic each other’s step in the backward direction.
Proposition 5. Let C1 ∼ C2 and x1 ∈ C1, x2 ∈ C2. If ∃ f such that (x1,x2, f ) ∈ {∼} then Card(x1) =
Card(x2).

We are going to prove a fine lemma that will be handy to prove Theorem 1. It implies that if for all
n6 k the maximal cardinal considered, Fn∩Bn 6= /0, then ∪n6k(Fn∩Bn) is a bisimulation.
Lemma 4. For all C1, C2, if C1 ∼ C2, then ∀x1 ∈ C1(∃x2 ∈ C2,∃ f ,(x1,x2, f ) ∈ Fn ∩Bn) ⇐⇒ (∃x2 ∈
C2,∃ f ,(x1,x2, f ) ∈∼).

Proof. Let us denote R the relation ∼. One should first remark that C1 ∼ C2 implies that ∀x1 ∈ C1,∃x2 ∈
C2, and ∃ f such that (x1,x2, f ) ∈R, as ( /0, /0, /0) ∈R and all configurations are reachable from the empty
set. The reader should notice that the x2 ∈ C2 and f on both sides of the ⇐⇒ symbols may be different.

We prove that statement by induction on the cardinal of x1.

Card(x1) = 0
⇒ x2 ∈ C2 s.t. ( /0,x2, f ) ∈R follows by the definition of the bisimulation from x2 = /0 and f = /0.

⇐ By definition, F0∩B0 = F0. Since there exists x2 ∈ C2 such that ( /0,x2, f ) ∈R, we know that any
forward transition made by /0 can be simulated by a forward transition from x2, and that the elements
obtained are in the relation R. By an iterated use of this notion, we can find “maximal” elements
xm

1 ∈ C1 and xm
2 ∈ C2 (that is, elements of maximal cardinality, k) such that (xm

1 ,x
m
2 , f m) ∈R. By

Proposition 5, xm
1 and xm

2 have the same cardinality, and (xm
1 ,x

m
2 , f m) ∈ Fk. By just “reversing the

trace”, we can go backward and stay in relation Fi until i = 0, hence we found the x2 and f we were
looking for.

2All the configurations we manipulate here are finite. In an infinite setting, this bound can be viewed as a way to define an
“up to k steps bisimulation”.
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Card(x1) = k+1 As Card(x1)> 0, we know there exists x′1 such that x1
e1 x′1.

⇒ Let x2 and f such that (x1,x2, f ) ∈ Fk+1∩Bk+1. We know that

∀x′1,∃x′2 and f ′,x1
e1 x′1,x2

e1 x′2 and (x′1,x
′
2, f ′) ∈ Bk (By Definition of Bk)

∃x′′2 , f ′′,(x′1,x
′′
2 , f ′′) ∈R (By Induction Hypothesis)

And as x′1
e1−→ x1, there exists x′′′2 and f ′′′ such that (x1,x′′′2 , f ′′′) ∈R.

⇐ We prove it by contraposition: suppose that ∃x2, f such that (x1,x2, f ) ∈R, we prove that ∀x2,
(x1,x2, f ) /∈ Fk+1∩Bk+1 leads to a contradiction.

As (x1,x2, f ) ∈R, ∃x′1,x′2, f ′ such that x1
e1 x′1, x2

e1 x′2 and (x′1,x
′
2, f ′) ∈R. By induction hypoth-

esis, ∃x′′2 and ∃ f ′′ such that (x′1,x
′′
2 , f ′′) ∈ Fk∩Bk. As x′1

e1−→ x1, ∃x′′′2 and ∃ f ′′′ such that x′′2
e1−→ x′′′2

and (x1,x′′′2 , f ′′′) ∈ Fk+1, by definition of Fk.

So (x1,x′′′2 , f ′′′) /∈ Bk+1, but as x1
e1 x′1 and x′′′2

e1 x′′2 , and as moreover (x′1,x
′′
2 , f ′′) ∈ Fk ∩Bk, we

have that (x1,x′′′2 , f ′′′) ∈ Bk+1.
From this contradiction we know that we found the right element (x′′′2 ) that is in relation with x1
according to Fk+1∩Bk+1.

5 Correspondence between HHPB and Strong Barbed Congruence

In this section we use the relations defined in Sect. 4 to show that two processes are barbed congruent
whenever their denotations are in the HHPB relation (Theorem 1). One direction is straightforward
(Proposition 6), whereas the other is more technical and, as in CCS [7], follows by contradiction. It uses
the relations Fi and Bi (Definition 15) to build contexts that discriminate processes that are not bisimilar.

Remark 1 (On auto-concurrency and others limitations). In the proofs that follow we need to uniquely
identify configurations based on the labels and orders of the “open” (i.e. non synchronized) events. This
is not possible in processes as a.P | a.Q or a.P+a.Q. Auto concurrency [4, Definition 9.5] forbids the
first kind of processes. But we need a stronger condition, a sort of auto conflict, to forbid the second,
that is not ruled out by the collapse function (Definition 10). Hence in the following we do not consider
processes that exhibit auto concurrency or auto conflict.

The problem is specific to the encoding in configuration structures. It appears in the encoding of
Winskel [12], and is treated thanks to tags that discriminates between the right- and the left-hand side
of the sum and of the product [13]. Hence we can retrieve the whole class of processes by adding more
information on the labels, at the cost of a more cumbersome presentation.

Proposition 6. [[P1]]∼ [[P2]] =⇒ ∀C, [[C[P1]]]∼ [[C[P2]]]

The proof, exposed in Appendix A, amounts to carefully build a relation between [[C[P1]]] and [[C[P2]]]
that reflects the known bissimulation between [[P1]] and [[P2]]. Its uses that causality in a product is the
result of the entanglement of the causality of its elements (Proposition 3).

Theorem 1. [[P1]]∼ [[P2]] ⇐⇒ [[P1]]∼τ [[P2]]

Proof. The left-to-right direction follows from the definition of ∼ (Definition 14) and from Proposition 6.
We prove the other direction by contraposition: let us suppose that [[P1]]∼τ [[P2]] and [[P1]] 6∼ [[P2]], we

will find a contradiction. Figure 4 presents the general shape of the configurations at the end of the proof.
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For i ∈ {1,2}, we have:

[[Pi]]

xi
•

x′i•

[[C[Pi]]]

yi
•

y′i•

[[C′[Pi]]]

z′i•

πC,Pi

πC′,C[Pi]πC,Pi

We start with y1 ∼τ y2, then prove that z′1 ∼τ z′2, to end up with (x′1,x
′
2, f ) ∈ Fn∩Bn.

Figure 4: Configurations Structures by the end of the proof of Theorem 1

As [[P1]] 6∼ [[P2]], by Lemma 4, there exists x1 ∈ [[P1]] such that ∀x2 ∈ [[P2]], (x1,x2, f ) /∈ Fn∩Bn holds.
Note that we can only consider x2 such that Card(x1) = Card(x2) = n, and that we use the projections
πC,P (Definition 16) to separate the events of the process P from the events of the context C.

Let us show that for any x1 we can define C[·] := ∏ei∈xi(`(ei)+ cei)|[·] where cei /∈ N(P1)∪N(P2),
such that the following holds

• ∃y1 ∈ [[C[P1]]] such that y1 is closed, πC,P1(y1) = x1 and y1 6↓ cei for all ei ∈ x1;

• We supposed that [[P1]]∼τ [[P2]], so [[C[P1]]]∼τ [[C[P2]]]. Hence ∃y2 ∈ [[C[P2]]] such that (y1,y2,g) ∈
∼τ and y2 6↓ cei for all ei ∈ x1.

Moreover we show that (x1,πC,P1(y2), f ) ∈ Fn, for some f a label and order preserving bijection.
Let us start by showing that such an f exists.
We denote πC,P1(y2) with x2. We have that ∀e1,e′1 ∈ x1, and e2 ∈ x2,

e2 ∈ x2 ⇐⇒ e1 ∈ x2 and `(e1) = `(e2) (1)

e1 <x1 e′1 =⇒ π
−1
C,P1

(e1)<y1 π
−1
C,P1

(e′1) (2)

=⇒ g(π−1
C,P1

(e1))<y2 g(π−1
C,P1

(e′1)) (3)

Remark that (1) follows from y2 6↓ cei and from the fact that if y1 is closed we can show by contradiction
that y2 is closed as well. Secondly, (2) follows from Proposition 3 and from the form of the context, which
does not induce any causality between the events. Lastly, (3) follows from g being an order preserving
bijection between y1 and y2.

We proceed by induction to show that (x1,x2, f ) ∈ Fn.

• If n= k for k the maximal cardinal of events in [[P1]]. This case is trivial, as Card(x1) =Card(x2) = k.

• If n = k−1 for k > 1, we prove that (x1,x2, f ) /∈ Fk−1 leads to a contradiction. There are two cases:

6 ∃x′1,x1
e1−→ x′1,∃x′2,x2

e2−→ x′2 (4)

∃x′1,x1
e1−→ x′1,∀x′2,x2

e2−→ x′2 and (x′1,x
′
2, f ′) /∈ Fk (5)
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The implication (4) is easier: if ∃x′2,x2
e2−→ x′2, then, as a context cannot remove transitions from

the original process, ∃y′2,y2
(e2,?)−→ y′2. As [[C[P2]]] ∼̇τ [[C[P1]]], ∃y′1,y1

(e1,?)−→ y′1, and a similar argument
on the context shows that ∃x′1,x1

e1−→ x′1. Hence a contradiction.
To prove (5) requires more work and uses the induction hypothesis. First, let C′[·] :=C[·]|(`(e1)+
ce1). By induction hypothesis, there exists z′1 ∈ [[C′[P1]]] such that z′1 is closed, πC′,C[P1](z

′
1) = y′1 and

z′1 6↓ cei and z′1 6↓ ce1 for all ei ∈ x1.
By hypothesis, [[P1]]∼τ [[P2]], hence [[C′[P1]]] ∼̇τ [[C′[P2]]] implies that ∃z′2,h′ such that z2 ∈ [[C′[P2]]]
and z′2 6↓ cei and z′2 6↓ ce1 for all ei ∈ x1.
Let us denote the projection πC′,C[P2](z

′
2) as y′′2 . As z′1 is closed, so is z′2. We can infer using the fact

that z′2 is closed and that z′2 6↓ ce1 that ∃e′′2 ∈ y′′2 such that `(e′′2) = `(e1) and y′′2 \{e′′2} is closed.
From z′2 6↓ cei we have that y′′2 6↓ cei . As there exists a label and order preserving bijection h′ between
z′1 and z′2, and as we forbid auto concurrency and “ambiguous” non deterministic sum (Remark 1),
we conclude that πC,P2(y

′′
2) = x′2 and πC′,P2(z

′
2) = x′2.

Then we have πC′,P1(z
′
1) = x′1,πC′,P2(z

′
2) = x′2, and by induction hypothesis, (x′1,x

′
2, f ) ∈ Fk. But as

x1
e1−→ x′1 and x2

e2−→ x′2, we have that (x1,x2, f ) ∈ Fk−1, hence a contradiction.

To prove that (x1,x2, f ) ∈ Bn, we use induction, the base case (n = 0) being trivial. The step case goes
along the line of (and uses) the proof that (x1,x2, f ) ∈ Fn.

Conclusion

We showed that, for a restricted class of RCCS processes (without recursion, auto-concurrency or auto-
conflict) hereditary history preserving bisimilation has a contextual characterisation in CCS. We used the
barbed congruence defined on RCCS as the congruence of reference, adapted it to configuration structures
and then showed a correspondence with HHPB. As a proof tool, we defined two inductively relations that
approximate HHPB. Consequently we have that adding reversibility into the syntax helps in retrieving
some of the discriminating power of configuration structures.

This work follows notable efforts [9, 6] to understand equivalences for reversible processes. There
are many interesting continuations. A first one as suggested in the introduction, is to move to weak
equivalences, which ignore silent moves τ and focus on the observable part of a process. This is arguably
a more interesting relation than the strong one, in which processes have to mimic each other’s silent
moves. Even if such a relation on configuration structures exists [11] one still has to show that this is
indeed the relation we expect. In the denotational setting, the adjective “weak” has sometimes [10, 4] a
different meaning: it stands for the ability to change the label and order preserving bijection as the relation
grows, to modify choices that were made before this step.

The relations defined so far simulate forward (resp. backward) transitions only with forward (resp.
backward) transitions, and only consider “forward” barb. Ignoring the direction of the transitions could
introduce some fruitful liberality in the way processes can simulate each other. Depending on the answer,
a+ τ.b and a+b would be weakly bisimilar or not. Moreover one can also consider irreversible moves
and understand what are the meaningful equivalences in the setting of transactions [3].

Context—which plays a major part in these equivalences—raises questions on the memory handling
of RCCS: what about context that could “fix the memory” of an incoherent process? For instance,
C = 〈1,a,0〉B P′|[·] and P = 〈1, ā,0〉B P′′ are incoherent, but C[P] is coherent and can backtrack.

One can easily retrieve auto concurrency and auto conflict by tagging the transitions. Bisimulations
have then to consider the tags. Maybe of less interest but important for the generality of these results, one
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should include infinite processes as well. This needs a rework of the relations in Definition 15 used to
approximate the HHPB.

Acknowledgement We would like to thank D. Varacca and J. Krivine for the very useful discussions as
well as the referee for his helpful remarks.
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A Appendices

A.1 Additional Definition

Definition 16 (Context for configuration structures). Let P a CCS a process and C[·] a context. Then πC,P

is as the projection morphism πC,P : [[C[P]]]→ [[P]] defined inductively on the structure of [[C[P]]]:
• πC,P : [[α.C′[P]]]→ [[P]] is defined as πC,P(e) = πC′,P(e);

• πC,P : [[C′[P]|P′]]→ [[P]] is defined as πC,P(e) = πC′,P(π1(e)), where π1 : [[C′[P]|P′]]→ [[C′[P]]] is the
projection morphism defined by the product;

• πC,P : [[C′[P]+P′]]→ [[P]] is defined as πC,P(e) = πC′,P(π1(e)), where π1 : [[C′[P]+P′]]→ [[C′[P]]]
is the projection morphism defined by the coproduct;

• πC,P : [[(a)C′[P]]]→ [[P]] defined as πC,P(e) = πC′,P(e).
That the projection πC,P : [[C[P]]]→ [[P]] is a morphism follows by a simple case analysis. We naturally

extend πC,P to configurations.

A.2 Proof of Proposition 4

Proof. Without loss of generality, the trace OR −→? R can be considered to be only forward: every
reversible trace can be re-arranged as a succession of backward moves followed by a succession of
forward moves [2, Lemma 10], but OR cannot go backward. We proceed by induction on the trace
OR −→? R. Let ad[[OR]]( /0,OR −→? R) = xn, for xn ∈ [[OR]] and such that [[ε(R)]] = [[ε(OR)]]\ xn. We have
to show that

ad[[OR]]( /0,OR −→? R a−→ Rn+1) = xn∪{e} and xn∪{e} ∈ [[OR]], with [[ε(Rn+1)]] = [[OR]]\ (xn∪{e}).

We have that ad[[OR]]( /0,OR −→? R a−→ Rn+1) = ad[[OR]](xn,R
a−→ Rn+1) and that [[ε(R)]] = [[OR]] \

xn. We want to show that for R α−→ Rn+1 ,∃!{e} ∈ [[ε(R)]] such that [[ε(Rn+1)]] = [[ε(R)]] \ {e}. We
consider only the case α = a, the rest is similar. We rewrite R≡ (b1 . . .bn)(m1Ba.P1 | P2) and Rn+1 ≡
(b1 . . .bn)(m1BP1 | P2) and hence ε(R) = (b1 . . .bn)(a.P1 | P2) and ε(Rn+1) = (b1 . . .bn)(P1 | P2). We
want to show that ∃!e ∈ [[OR]]\ xn such that `(e) = α and

[[ε(Rn+1)]] = [[ε(OR)]]\ (x∪{e}).

But [[ε(OR)]]\ (x∪{e}) = [[ε(R)]]\{e}. Hence it is enough to show that ∃!e ∈ [[ε(R)]] such that `(e) = α

and
[[ε(Rn+1)]] = [[ε(R)]]\{e}

which is equivalent to show that

[[(b1 . . .bn)(P1 | P2)]] = [[(b1 . . .bn)(a.P1 | P2)]]\{e}.

From Proposition 2 such an event exists and its uniqueness follows from the collapsing hypothesis
(Definition 10).

Let us prove that if x ∈ [[(b1 . . .bn)(P1 | P2)]] then x ∈ [[(b1 . . .bn)(a.P1 | P2)]]\{e}. The other direction
is similar. Let us unfold the definition of the encoding. We have the following equalities:

[[(b1 . . .bn)(P1 | P2)]] = (b1 . . .bn)([[P1]]× [[P2]])�X

[[(b1 . . .bn)(a.P1 | P2)]] = (b1 . . .bn)(a.[[P1]]× [[P2]])�Y
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[[P1]] = 〈E1,C1, `1〉

x1
•

•

e′′1

[[P1|Q]] = 〈E ′1,C′1, `′1〉= ([[P1]]× [[Q]])�X1

y1
•

y′1•

e′′ = (e′′1,e
′′
q)

[[P2]] = 〈E2,C2, `2〉

x2
•

x′′2•

e′′2

[[P2|Q]] = 〈E ′2,C′2, `′2〉= ([[P2]]× [[Q]])�X2

y2
•

y′2•

e′2

fcfc

π2

π1

π1

e = e1, eq

6 6 π1 6 π2

e′ = e′1, e′q

Figure 5: Configurations Structures by the end of the proof of Proposition 6

If x ∈ (b1 . . .bn)([[P1]]× [[P2]])�X then

@e ∈ x, `(e) ∈ {b, b̄,0}. (6)

Hence x ∈ ([[P1]]× [[P2]]). Let π1, π2 the two projections defined by the product. Then

π1(x) ∈ [[P1]] and π2(x) ∈ [[P2]]. (7)

As π1(x) ∈ [[P1]], and from the definition of [[a.P1]] we have that ∃e1, `(e1) = a and such that {e1}∪
π1(x) ∈ a.[[P1]]. From Equation 7 we have that ∃x2 ∈ a.[[P1]]× [[P2]] such that π1(x2) = {e1}∪π1(x) and
π2(x2) = π2(x). Hence ∃!e such that π1(e) = e1, π2(e) = ? and x2 = {e} ∪ x. From Equation 6 we
have that x2 ∈ (b1 . . .bn)(a.[[P1]]× [[P2]])�Y . From the definition of [[OR]]\{e} we infer that if x∪{e} ∈
(b1 . . .bn)(a.[[P1]]× [[P2]])�Y then x ∈ [[(b1 . . .bn)(a.P1 | P2)]]\{e}.

From [[ε(R)]] = [[OR]]\ xn, we have that ∀y ∈ [[ε(R)]], ∃y∪ xn ∈ [[OR]]. In particular xn∪{e} ∈ [[OR]].
Hence ad[[OR]]( /0,OR −→? R a−→ Rn+1) = xn∪{e} with [[ε(Rn+1)]] = [[OR]]\ (xn∪{e}).

A.3 Proof of Proposition 6

Proof. We only consider the following case:

∀P1,P2, [[P1]]∼ [[P2]] =⇒ ∀Q, [[P1|Q]]∼ [[P2|Q]]

As [[P1]]∼ [[P2]], there exists R a hereditary history preserving bisimulation (HHPB) between [[P1]]
and [[P2]]. Figure 5 introduces the variables names and types.
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Define Rc ⊆C′1×C′2×P(E ′1×E ′2) as follows:

(y1,y2, fc) ∈Rc ⇐⇒

{
(π1(y1),π2(y2),π1 ◦ f ) ∈R

fc(e) = (π1 ◦ f (e)),π2(e)) ∈ y2 for all e ∈ y1

Informally (y1,y2, fc) is in the relation Rc if there is (x1,x2, f ) in R such that xi is the first projection
of yi and such that fc satisfies the property: for (e1,eq) ∈ E ′1, fc(e1,eq) = ( f (e1),eq) and ( f (e1),eq) ∈ E ′2.

Let us show that Rc is a HHPB between 〈E ′1,C′1, `′1〉 and 〈E ′2,C′2, `′2〉.
• ( /0, /0, /0) ∈Rc;

• For (y1,y2, fc) ∈ R we show that fc is label and order preserving bijection. We have that fc is
defined as fc(e) = (π1 ◦ f (e)),π2(e)), for some f label and order preserving bijection such that
(π1(y1),π2(y2),π1 ◦ f ) ∈R.
That fc is a bijection follows from f a bijection.
Let e ∈ y1 with π1(e) = e1, π2(e) = eq, then fc(e) = ( f (e1),eq) for some fc s.t. (π(y1),π2(y2), f ) ∈
R. We have that `′1(e) = (`1(e1), `Q(eq)), hence

`′2( fc(e)) = `′2( f (e1),eq) =
(
`2( f (e1)), `Q(eq)

)
As f is label preserving we get `′2( fc(e)) = (`1(e1), `Q(eq)), hence `′1(e) = `′2( fc(e)).
Let us now show that for e,e′ ∈ y1, if e≤y1 e′ then fc(e)≤y2 fc(e′). We denote π1(e)= e1, π2(e)= eq

and π1(e′) = e′1, π2(e′) = e′q. Then from Proposition 3

e≤y1 e′ =⇒ e1 ≤π1(y1) e′1 or eq ≤π2(y1) e′q (8)

We consider the case where e1 ≤π1(y1) e′1. As f is order preserving we have that f (e1)≤π1(y2) f (e′1).
Then ( f (e1),eq)≤x2 ( f (e′1),e

′
q), as the projections are order reflecting.

• Let (y1,y2, fc)∈Rc and y1
e′′−→ y′1, y′1 = y1∪{e′′}. We consider only the case when π1(e′′) = e′′1 6= ?,

π2(e′′) = e′′q 6= ? as the rest is similar. From the definition of the projections π1(y1), π1(y′1) ∈C′1 and
as π1(e′′) = e′′1 6= ?, we have that π1(y′1) = π1(y1)∪{e′′1}. We reason similarly on π2(y1) and get

π1(y1)
e′′1−→ π1(y′1) and π2(y1)

e′′q−→ π2(y′1). (9)

From Equation 9 and as (π1(y1),π2(y2), f ) ∈R, by definition of Rc, we have that

∃x′2 s.t. π1(y2)
e′′2−→ x′2 = x2∪{e′′2} (10)

and
f ′ = f ∪{e′′1 ↔ e′′2} (11)

such that (x′1,x
′
2, f ′) ∈R. From Equation 9 and Equation 10 we have that ∃y′2 ∈ ([[P2]]× [[PQ]]) with

π1(y′2) = x′2, π2(y′2) = π2(y′1) and ∃e′2 ∈ y′2, π1(e′2) = e′′2 , π2(e′2) = e′′q .
Let us show that y′2 /∈ X2. We have that y′2 /∈ X2. As `(e′′1) and `(e′′q) are compatible, then so are
`(e′′2) and `(e′′q), hence y2∪{(e′′2,e′′q)} /∈ X2.
Remains to show (y′1,y

′
2, f ′c)∈R, where f ′c = fc∪{e′′1↔ e′′2}. We have that (π1(y′1),π1(y′2), f ′)∈Rc

and from Equation 11 that π1 ◦ f ′c = f ′.
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