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In this paper we introduce a new programming model of multi-threaded actors which feature the
parallel processing of their messages. In this model an actor consists of a group of active objects
which share a message queue. We provide a formal operational semantics, and a description of a
Java-based implementation for the basic programming abstractions describing multi-threaded actors.
Finally, we evaluate our proposal by means of an example application.

1 Introduction

Object-oriented programs organize data and corresponding operations by means of a hierarchical struc-
ture of classes. A class can be dynamically instantiated and as such extends the concept of a module.
Operations are performed by corresponding method calls on class instances, namely objects. In most
object-oriented languages, like Java, method calls are executed by a thread of control which gives rise
to a stack of call frames. In a distributed setting, where objects are instantiated over different machines,
remote method calls involve a synchronous rendez-vous between caller and callee.

It is generally recognized that asynchronous communication is better suited for distributed applica-
tions. In the Actor-based programming model of concurrency [1] actors communicate via asynchronous
messages. In an object-oriented setting such a message specifies a method of the callee and includes the
corresponding actual parameters. Messages in general are queued and trigger execution of the body of
the specified method by the callee, when dequeued. The caller object proceeds with its own execution
and may synchronize on the return value by means of futures [5].

In [15] JCoBox, a Java extension with an actor-like concurrency model based on the notion of con-
currently running object groups, the concept of coboxes is introduced which integrates thread-based
synchronous method calls with asynchronous communication of messages in a Global Asynchronous,
Local Synchronous (GALS) manner. More specifically, synchronous communication of method calls is
restricted to objects belonging to the same cobox. Objects belonging to the same cobox share control,
consequently within a cobox at most one thread of synchronous method calls is executing. Only objects
belonging to different coboxes can communicate via asynchronous messages.

Instead of sharing control, in this paper we introduce an Actor-based language which features new
programming abstractions for parallel processing of messages. The basic distinction the language sup-
ports is that between the instantiation of an Actor class which gives rise to the initialization of a group
of active objects sharing a queue and that which adds a new active object to an existing group. Such a
group of active objects sharing a message queue constitutes a multi-threaded actor which features the
parallel processing of its messages. The distinction between actors and active objects is reflected by the
type system which includes an explicit type for actors and which is used to restrict the communication
between actors to asynchronous method calls. In contrast to the concept of a cobox, a group of active
objects sharing a queue has its own distinct identity (which coincides with the initial active object). This
distinction further allows, by means of simple typing rules, to restrict the communication between active
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objects to synchronous method calls. When an active object fetches a message from the shared mes-
sage queue, the object starts executing a corresponding thread in parallel with all the other threads. This
basic mechanism gives rise to the new programming concept of a Multi-threaded Actor (MAC) which
provides a powerful Actor-based abstraction of the notion of a thread pool, as for example, implemented
by the Java library java.util.concurrent.ExecutorService. We further extend the concept of a MAC with
a powerful high-level concept of synchronized data to constrain the parallel execution of messages.

In this paper we provide a formal operational semantics like Plotkin [14], and a description of a Java-
based implementation for the basic programming abstractions describing sharing of message queues
between active objects. The proposed run-time system is based on the ExecutorService interface and the
use of lambda expressions in the implementation of asynchronous execution and messaging.

Related work Since Agha introduced in [1] the basic Actor model of concurrent computation in dis-
tributed systems, a great variety of Actor-based programming languages have been developed. In most
of these languages, e.g., Scala [7], Creol [11], ABS [10], JCoBox [15], Encore [2], ProActive [3], Am-
bientTalk [18], Rebeca [17], actors execute messages stored in their own message queue. The Akka
library for Actor-based programming however does support sharing of message queues between actors.
In this paper we introduce a new corresponding Actor-based programming abstraction which integrates
a thread-based execution of messages with event-based asynchronous message passing.

Our work complements in a natural manner that of [15] which introduces groups of actors sharing
control. Another approach to extending the Actor-based concurrency model is that of Multi-threaded
active objects (MAO) [9] and Parallel Actor Monitors (PAM) [16] which allow the parallel execution of
the different method invocations within an actor. Another approach is followed in the language Encore
which provides an explicit construct for describing parallelism within the execution of one method [6].
In contrast to these languages, we do allow the parallel execution of different asynchronous method
invocation inside a group of active objects which provides an overall functionality as that of an actor,
e.g., it supports an interface for asynchronous method calls and a unique identity. Further we provide a
new high-level language construct for specifying that certain parameters of a method are synchronized,
which allows a fine-grained parameter-based scheduling of messages. In contrast, the more coarse-
grained standard scheduling of methods as provided by Java, PAM, and MAO, and JAC [8] in general
only specify which methods can run in parallel independent of the actual parameters. [19] also shows
the notion of Microsoft COM (Component Object Model)’s multi-threaded apartment. In this model,
calls to methods of objects in the multi-threaded apartment can be run on any thread in the apartment. It
however lacks the ability of setting scheduling strategies (e.g. partial order of incoming messages in the
next section). Multi-threaded actors offer a higher level of abstraction to parallel programming and can
be viewed as similar to the OpenMP [4] specification for parallel programming in C, C++ and Fortran.

The rest of this paper is organized as follows: In section 2, an application example is established,
by which we introduce the key features of MAC. Section 3 describes the syntax of MAC and the type
system. Section 4 presents the operational semantics. In Section 5 we show the implementation of MAC
in the Java language and explain its features through an example. We draw some conclusions in Section
6 where we briefly discuss extensions and variations describing static group interfaces, support for the
cooperative scheduling of the method invocations within an actor (as described in for example [11]),
synchronization between the threads of a MAC, and encapsulation of the active objects belonging to the
same actor.
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2 Motivating Example

In this section, we explain an example which is used in the rest of the paper to show the notion of
MAC. We also raise a challenge regarding this example which is solved later in our proposed solution.
We present a simple concurrent bank service where the requests such as withdrawal, checking, and
transferring credit on bank accounts are supported. The requests can be submitted in parallel by several
clients of the bank. The system should respect the temporal order of the submitted requests on the same
accounts. For instance, checking the credit of an account should return the amount of credit for the
account after withdrawal, if there is a withdrawal request for that account which precedes the check
request. The requests can be sent asynchronously. Therefore, respecting temporal order of two events
means that there is a happens-before relation between termination of the execution of the former event
and starting the execution of the latter.

Existing technologies are either not able to implement this property or they need ad-hoc explicit
synchronization mechanism which can be complicated and erroneous. Using locks on accounts (e.g.
synchronized block in Java) may cause deadlock or violate the ordering, unless managed explicitly at
the lower level, since two accounts are involved in transferring credit. Another approach is to imple-
ment the scheduler in PAM [16] to support such ordering which raises synchronization complexities.
The last alternative we investigate in this section is that to implement the service as a thread pool (e.g.
ExecutorService in Java), where the above ordering is respected explicitly via passing the future variable
corresponding to the previous task, to the current one. The variable is then used to force the happens-
before relation by suspending the process until the future is resolved (e.g. get method in Java). One
challenge is that the approach requires that the submitter knows and has access to the future variables
associated to the previous task (or tasks in case the task being submitted is a transfer). The other chal-
lenge is that, in a parallel setting with multiple concurrent source of task submitters, how to provide such
knowledge. Last but not least, the approach first activates the task by allocating a thread and then the
task may be blocked which imposes overhead, while a desirable solution forces the ordering upon the
task activation. As shown in the rest of the paper, we provide the notion of MAC which overcomes this
issue only via annotating the parameters based on which we aim to respect the temporal order.

3 Syntax of MAC

Figure 1 specifies the syntax. A MAC program P defines interfaces and classes, and a main statement.
An interface IF has a name I and method signatures Sg. A class CL has a name C, interfaces I that
C implements (that specify the possible types for its instances), formal parameters and attributes x of
type T , and methods M. A multi-threaded actor consisting of a group of active objects (a MAC) which
share a queue of messages of type I is denoted by Actor<I>. The type Fut<T> denotes futures which
store return values of type T . The fields of the class consist of both its parameters and its attributes. A
method signature Sg declares a method with name m and the formal parameters x of types T with optional
sync<l> modifier which is used to indicate that the corresponding parameter contains synchronized data.
The user-defined label l allows to introduce different locks for the same data type. Informally, a message
which consists of such synchronized data can only be activated if the specified data has not been locked.

Statements have access to the local variables and the fields of the enclosing class. Statements are
standard for sequential composition, assignment, if and while constructs. The statement e.get, where e is
a future variable, blocks the current thread until x stores the return value. Evaluation of a right-hand side
expression new C(e) returns a reference to a new active object within the same group of the executing
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T ::= Bool | I | Actor<I> | Fut<T>

P ::= IF CL {T x;s}
CL ::= class C[(T x)] implements I{T x;M}
IF ::= interface I{Sg}
Sg ::= [sync<l>] T m([sync<l>] T x)

M ::= Sg{T x;s}
s ::= x = e | s;s | e.get | if b{s1}else{s2} | while b{s}
e ::= null | b | x | this | new [actor] C[(e)] | e.m(e) | e!m(e)

b ::= e? | b | b∧b

Figure 1: Syntax

object, whereas new actor C(e) returns a reference to a new actor which forms a new group of active
objects. By e.m(e) we denote a synchronous method call. Here e is assumed to denote an active object,
i.e., e is an expression of some type I, whereas e!m(e) denotes an asynchronous method call on an actor
e, i.e., e is of some type Actor<I>.

Listing 1 contains an example of an actor bank which implements a bank service. The services pro-
vided by a bank are specified by the interface IEmployee which is implemented by the class Employee.
A bank is created by a statement

Actor <IEmployee> bank = new actor Employee().
New employees can be created on the fly by the addEmp method. The actual data of the bank is

represented by the instances of the class Account which implements the interface IAccount and which
contains the actual methods for transferring credit, checking and withdrawal. A simple scenario is the
following:

( 1 ) Fut<I n t> f = bank ! c r e a t e A c c ( . . . ) ;
( 2 ) I n t acc1 = f . g e t ;
( 3 ) Fut<Bool> f3 = bank ! wi thdraw ( acc1 , 5 0 ) ;
( 4 ) Fut<I n t> f2 = bank ! check ( acc1 ) ;

Line 1 models a request to create an account by an asynchronous method call. The result of this call
is a number of the newly created account. Lines 3 and 4 then describe a withdrawal operation followed
by a check on this account by means of corresponding asynchronous method calls. These calls are stored
in the message queue of the actor bank and dispatched for execution by its empoyees, thus allowing a
parallel processing of these requests. However, in this particular scenario such a parallel processing of
requests involving the same account clearly may give rise to inconsistent results. For example a main
challenge in this setting arises how to ensure that the messages are activated in the right order, i.e., the
order in which they have been queued. Note that the execution of messages can be synchronized by
means of standard synchronization mechanisms, e.g., synchronized methods in Java. Another approach
is to use transactional memory to recover from inconsistent states. However both approaches do not
guarantee in general that the messages are activated in the right order because they do not provide direct
control of their activation.

By declaring in Listing 1 all the parameters of the methods of the interface IEmployee which involve
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account numbers as synchronized by means of a single lock ”a” we ensure mutual exclusive access to
the corresponding accounts. More specifically, the selection for execution of a queued message which
contains a request to withdraw a certain amount for a specified account, for example, requires that (1) no
employee is currently holding the lock ”a” on that account and (2) no preceding message in the queue
requires the lock ”a” on that account. Similarly, a message which contains a transfer request, which
involves two accounts, requires that (1) no employee is currently holding the lock ”a” on one of the
specified accounts and (2) no preceding message in the queue requires the lock ”a” on one of these
accounts. The formal details of this synchronization mechanism is described in the following section.

Listing 1: Syntax Example
i n t e r f a c e IEmployee {

IAccoun t c r e a t e A c c ( . . . ) ;
Bool t r a n s f e r ( sync<a> I n t accNum1 , sync<a> I n t accNum2 , I n t amount ) ;
Bool wi thdraw ( sync<a> I n t accNum , I n t amount ) ;
I n t check ( sync<a> I n t acc ) ;

}

i n t e r f a c e IAccoun t {
Bool t r a n s f e r ( IAccoun t acc2 , I n t amount ) ;
Bool wi thdraw ( I n t amount ) ;
I n t check ( ) ;

}

c l a s s Employee implements IEmployee {
I n t c r e a t e A c c ( ){

I n t accNum = . . . ;
IAccoun t acc = new Account ( accNum , . . . ) ; \\ a c c o u n t c r e a t i o n
re turn accNum ;

}
Bool t r a n s f e r ( I n t accNum1 , I n t accNum2 , I n t amount ){

IAccoun t acc1 = g e t A c c o u n t ( accNum1 ) ;
IAccoun t acc2 = g e t A c c o u n t ( accNum2 ) ;
acc1 . t r a n s f e r ( IAccoun t acc2 , I n t amount ) ; . . .

}
Bool wi thdraw ( I n t acc , I n t amount ){

IAccoun t acc1 = g e t A c c o u n t ( acc1 ) ;
acc . wi thdraw ( I n t amount ) ; . . .

}
I n t check ( I n t accNum ){

IAccoun t acc = g e t A c c o u n t ( accNum ) ;
acc . check ( ) ; . . .

}
Uni t addEmp ( ){ . . .

IEmployee emp = new Employee ( ) ;
}
IAccoun t g e t A c c o u n t ( I n t accNum ) { . . . }

}

c l a s s Account ( I n t acn , . . . ) implements IAccoun t {
. . .

}

4 Operational Semantics

Runtime concepts We assume given an infinite set of active object and future references, with typical
element o and f , respectively. We assume distinguished fields myactor, I, and L which denote the identity
of the actor, the type of the active object, and the set of pairs of synchronized entries locked by the active
object, respectively. A local environment τ assigns values to the local variables (which includes the
distinguished variables this and dest, where the latter is used to store the future reference of the return
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value). A closure c = (τ,s) consists of a local environment τ and a statement s. A thread t is a sequence
(i.e., a stack) of closures. A process p of the form (o, t) is a runtime representation of an active object
o with an active thread t. An actor a denotes a pair (o,P) consisting of an object reference o, uniquely
identifying the actor as a group of active objects, and a set of processes P. A set A denotes a set of actors.
By e we denote an event m(v̄) which corresponds to an asynchronous method call with the method
name m and values v. For notational convenience, we simply assume that each event also includes
information about the method signature. A queue q is a sequence of events. A (global) context γ consists
of the following (partial) functions: γh, which denotes for each existing object its local state, that is, an
assignment of values to its fields; γq, which denotes for each existing object identifying an actor its queue
of events, and, finally, γ f , which assigns to each existing future its value (⊥, in case it is undefined).

Some auxiliary functions and notations. By γ[o← σ ] we denote the assignment of the local state
σ , which assigns values to the fields of o, to the object o (affecting γh); by γ[o.x← v] we denote the
assignment of the value v to the field x of object o (affecting γh); by γ[o← q] we denote the assignment
of the queue of events q to the object reference o (affecting γq); and, finally, by γ[ f ← v] we denote
the assignment of value v to the future f (affecting γ f ). By act-dom(γ) and fut-dom(γ) we denote the
actors and futures specified by the context γ . We assume the evaluation function valγ,τ(e). The function
sync-call(o,m,v) generates the closure corresponding to a call to the method m of the actor o with the
values v of the actual parameters. The function async-call(o,m,v) returns the closure corresponding
to the message m(v), where v̄ includes the future generated by the corresponding call (which will be
assigned to the local variable dest), o denotes the active object which has been scheduled to execute this
method. In both cases we simply assume that the class name can be extracted from the identity o of the
active object (to retrieve the method body). The function init-act(o,v,o′) returns the initial state of the
new active object o. The additional parameter o′ denotes the the actor identity which contains o, which
is used to initialize the field myactor of o. The function sg(m(v)) returns the signature of the event m(v).
Finally, syncm(v̄) returns the synchronized arguments of event m(v̄) together with their locks (i.e., the
arguments specified by sync<l> modifier in the syntax where l is the lock).

The Transition Systems Figure 2 gives a system for deriving local transition of the form: γ,(o, t)→
γ ′,(o, t ′) which describes the effect of the thread t in the context of γ . Rules (ASSIGN-LOCAL) and
(ASSIGN-FIELD) assign the value of expression e to the variable x in the local environment τ or in
the fields γh(o′), respectively. o′ is the identity of the active object corresponding to the current clo-
sure. Rules (COND-TRUE) and (COND-FALSE) evaluate the boolean expression and branch the exe-
cution to the different statements depending on the value from the evaluation of boolean expression e.
Rule (SYNC-CALL) addresses synchronous method calls between two active objects. A synchronous call
gives the control to the callee after binding the values of actual parameters to the formal parameters and
forming a closure corresponding to the callee. The closure (τ0,s0), which represents the environment
and the statements of the called method, is placed on top of the stack of closures. Rule (SYNC-RETURN)
addresses the return from a synchronous method call. We assume that return is always the last state-
ment of a method body. Therefore, the rule consists of obtaining the value v of the return expression e,
updating the variable which holds the return value on the caller side with v, and removing the closure of
the callee from the stack. Rule (NEW-ACTOB) creates a new active object in the same actor by allocating
an identity to the new active object and extending the context γh with the fields of the active object.

Rule (READ-FUT) blocks the active object o until the expression e is resolved, i.e., if e is evaluated
to a future which is equal to ⊥ then the active object blocks. Rule (NEW-ACTOR) creates a new actor o′
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and sends the special event init to it with the class name C and the values v obtained by evaluating the
actual parameters of the constructor. This event will initialize the actor with one active object of type C
with the parameters v. Rule (ASYNC-CALL) sends a method invocation message to the actor o′ with the
new future f , the method name m, and the values v obtained by evaluating the expressions e of the actual
parameters. The rule updates γ to place the message in the queue of the target actor o′ and also to extend
the set of futures with f with the initial value ⊥.

Rule (SCHED-MSG) addresses the activation of idle objects of an actor. The rule specifies scheduling
a thread for the idle object o by binding an event from the queue of the actor o′ to which the active object
o belongs, and removing the event from the queue. The q\m(v) removes the first occurrence of message
m(v̄) from the queue.

The event selection mechanism is underspecified, provided that it respects the temporal order of
events in the queue that use the same synchronized data with the same locks. For instance, suppose given
events with the order m1, m2, m3, m4 and m5 in the queue of an actor with the required set of pairs of
lock and data: {(l, v1)}, {(l’, v1)}, {(l, v1), (l, v2)}, {(l, v2)}, and {(l, v3)} for the events respectively
(Recall that each synchronized entry is a pair consisting of a data value and a user-defined lock which
is specified in the program by the sync<l> modifier on the method parameters). The actor also contains
more than one active object. If event m1 is activated then event m2 can be scheduled in parallel since the
required lock for v1 is different. However, m3 cannot be scheduled unless m1 is terminated. Event m4
also cannot be activated in parallel with m1, even though v2 is free, since m3 which requires v2 precedes
m4 in the queue. However m5 can be activated in parallel with m1. The semantics of the select function
is defined as follows:

select(I,L,m(v̄).q) =
{

m(v̄) in case L∩ syncm(v̄) = /0∧Sg(m(v̄)) ∈ I
select(I,L∪ syncm(v̄),q) otherwise

where L ⊆ Labels×Data and select(I,L,ε) =⊥ (where ⊥ stands for undefined). The signature of se-
lected method requires to be supported by the active object type, I. The set of synchronized entries of
the message, syncm(v̄), also requires to be mutually disjoint with the union of synchronized entries of
the actor and the synchronized arguments of the messages preceding to the message in the queue. The
binding proceeds then by assigning the set of synchronized entries of the method to the field L of the
object. Lock(γ,o) =

⋃
{o′.L|γh(o′.myactor) = o} returns the synchronized entries of the actor o, that is,

the union of synchronized entries of its objects, represented by field L of each object.
Rule (ASYNC-RETURN) evaluates the expression e and assigns the resulting value v to the future f

associated to the method call. The return statement belongs to an asynchronous method invocation if
there is only one closure in the thread stack (i.e., the closure generated by (SCHED-MSG)). The set L of
synchronized entries associated to the invocation are also released by assigning /0 to the field L of the
active object. Then the closure is removed and the active object o becomes idle.

Figure 3 gives the rules for the second level, the actor level. Rule (PROCESS- UPDATE) speci-
fies that if the domain of the heap remains the same then only the current process is updated. Rule
(PROCESS-CREATE), on the other hand, shows that if the domain of the heap has been extended with a
new active object o′ then a new idle process p′′ for the active object o′ is introduced to the processes of
the actor.

Figure 4 gives the rules for the third level, the system level. Rule (ACTOR- UPDATE) specifies that if
the domain of γ remains the same then only the current actor is updated. Rule (ACTOR-CREATE), on the
other hand, shows that if the domain of γ has been extended then a corresponding new actor configuration
a′′ is added to the system. Note that this actor is identified by the reference which has been added to γ .
This reference is also used to identify the initial active object of the newly created actor.
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ASSIGN-LOCAL

v = valγ,τ(e)

γ,(o, t.(τ,x = e;s))
→ γ,(o, t.(τ[x← v],s))

(ASSIGN-FIELD)

o′ = τ(this) v = valγ,τ(e)

γ,(o, t.(τ,x = e;s))
→ γ[o′.x← v],(o, t.(τ,s))

(COND-FALSE)

valγ,τ(e) = False

γ,(o, t.(τ, if e then {s1} else {s2};s))
→ γ,(o, t.(τ,s2;s))

(SYNC-CALL)

o′ = valγ,τ(e) v = valγ,τ(e)
(τ0,s0) = sync-call(o′,m,v)

γ,(o, t.(τ,x = e.m(e);s))
→ γ,(o, t.(τ,x =?;s).(τ0,s0))

(COND-TRUE)

valγ,τ(e) = True

γ,(o, t.(τ, if e then {s1} else {s2};s))
→ γ,(o, t.(τ,s1;s))

(SYNC-RETURN)

v = valγ,τ(e)

γ,(o, t.(τ,x =?;s).(τ0,return e))→ γ,(o, t.(τ,x = v;s))

(READ-FUT)

valγ,τ(e) 6=⊥
γ,(o, t.(τ,e.get;s))→ γ,(o, t.(τ,s))

(NEW-ACTOB)

o′ 6∈ dom(γh)

γ,(o, t.(τ,x = new C(e);s))→ γ[o′← init-act(o′,val(γ,τ)(e),γh(o.myactor))],(o, t.(τ[x← o′],s))

(NEW-ACTOR)

o′ 6∈ act-dom(γ) v = valγ,τ(e)

γ,(o, t.(τ,x = new actor C(e);s))→ γ[o′← init(C,v)],(o, t.(τ[x← o′],s))

(ASYNC-CALL)

f /∈ fut-dom(γ) v = valγ,τ(e) o′ = valγ,τ(e) γq(o′) = q

γ,(o, t.(τ,x = e!m(e);s))→ γ[ f ←⊥,o′← q.m(v, f )],(o, t.(τ,x = f ;s))

(ASYNC-RETURN)

v = valγ,τ(e) f = τ(dest)

γ,(o,(τ,return e))→ γ[ f ← v,o.L← /0],(o,ε)

(SCHED-MSG)

o′ = γh(o.myactor)
γq(o′) = q m(v) = select(γh(o.I), lock(γ,o′),q) (τ,s) = async-call(o,m,v)

γ,(o,ε)→ γ[o′← q\m(v),o.L← syncm(v)],(o,(τ,s))

Figure 2: Operational Semantics at the Local Level

We have the following the description of the initial state for the operational semantics in the local,
actor, and system level respectively:

p0 = ( ,(τmain,smain)) a0 = ( ,{p}) A0 = {a}
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(PROCESS-UPDATE)

γ, p→ γ
′, p′

dom(γh) = dom(γh′)

γ,(o,P∪{p})→ γ
′,(o,P∪{p′})

(PROCESS-CREATE)

γ, p→ γ
′, p′

o′ ∈ dom(γh′)\dom(γh) p′′ = (o′,ε)

γ,(o,P∪{p})→ γ
′,(o,P∪{p′, p′′})

Figure 3: Operational Semantics at the Actor Level

(ACTOR-UPDATE)

γ,a→ γ
′,a′

act-dom(γ) = act-dom(γ ′)

γ,A∪{a}→ γ
′,A∪{a′}

(ACTOR-CREATE)

γ,a→ γ
′,a′ o ∈ act-dom(γ ′)\act-dom(γ)

γ
′
q(o) = q.init(C,v) a′′ = (o,{(o,ε)})

γ,A∪{a}→
γ
′[o← q,o← init-act(o,v,o)],A∪{a′,a′′}

Figure 4: Operational Semantics at the System Level

The p0 represents a process with the context τmain for the main body and its statement smain. The process
is considered to be an active object with the anonymous identity which is denoted by underscore. The
a0 represents an anonymous actor with the underscore identity in the system and the process p0 in the
process set. The gamma is initialized as the following,

γ[ ←{myactor← }]

as the active object state for p0. Any object which is created in the main body is a free object, an active
object that belongs to the anonymous actor. All the objects which are created by a free object are also
free objects. The field myactor of all the free objects is equal to underscore. The anonymous actor does
not receive any event as it has no identity in the program.

We conclude this section with the following basic operational property of synchronized data:

Theorem 1 First, let Object(a) = {o | (o, t)∈ P, for some process p} denote the set of objects in a which
contains the set processes P. For every configuration A reachable from the initial configuration A0 we
have o.L∩o′.L = /0 for any o,o′ ∈ Object(a) (o 6= o′)

This invariant property follows immediately from the definition of the select function. It expresses
that at run-time there are no two distinct asynchronous method invocations which require the same syn-
chronized data.

5 Experimental Methodology and Implementation

In this section we present the implementation of the MAC in a widely used, mainstream programming
language, the Java language. The implementation has to take into account the transparency of parallel
computation from the user’s perspective and the functions that are exposed by the abstract class. The
outline of the implementation is presented in Listing 4.

As shown in the operational semantics in section 4, the default policy schedules the idle objects non-
deterministically. However, there is the possibility to overload the policy using the runtime information to
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allow a preferential selection of the active objects. Furthermore, the current selection method presented
is minimal, in the sense that it can be overloaded with different arguments to provide more selection
options based on application specific requirements.

5.1 Actor Abstract Class

The Java module creates an abstract class, Actor, that provides a runtime system for queuing and ac-
tivation of messages. It exposes two methods to the outside world for interaction, namely send(Object
message) and getNewWorker(Object... parameters). This layout is used to allow a clear separation be-
tween internal object selection, message delivery and execution. This class is the mediator between the
outside applications and the active objects defined by the internal interface ActiveObject. These Active
Objects will be assigned execution of the requests sent to the actor. Our abstract class contains a queue
of availableWorkers and a set of busyWorkers separating those objects that are idle from those that have
been assigned a request. Parallel execution and control is ensured through a specific Java Fork Join Pool
mainExecutor that handles the invocations assigned to the internal objects and is optimized for small
tasks executing in parallel. The class uses a special queue, named messageQueue, that is independent of
the thread execution. It is used to store incoming messages and model the shared queue of the group.
This message queue is initialized with a comparator(ordering function) that selects the first available
message according to the rule (SCHED-MSG) specified in Section 4. To use this abstract class as a spe-
cific model, it needs to be extended by each interface defined in our language in order to be initialized as
an Actor.

The default behavior of the exposed method getNewWorker(Object... parameters) is to select a
worker from the availableWorkers queue. The workers are inserted in a first-in-first-out(FIFO) order with
a blocking message delivery if there is no available worker (i.e. the availableWorkers queue is empty).
While the behavior of this method is hidden from the user, it needs to be exposed such that the user
has a clear view of the selection, before sending a request. The second exposed function, send(Object
message, Set<Object> data, takes the first argument in the form of a lambda expression, that models the
request. The format of the lambda expression must be
() -> ( getNewWorker() ).m()

The second argument specifies a set of objects that the method m() needs to lock and maintain data
consistency on. Therefore when a request is made for a method m() the runtime system must also select
an Active Object from the availableWorkers queue to be assigned the request, as well a set of data
that needs concurrency control. Execution is then forwarded to the mainExecutor which returns a Java
Future to the user for synchronization with the rest of the application outside the actor. The selection
of the ActiveObject is important to form the lambda expression that saves the application from having a
significant number of suspended threads if the set of data that is required is locked.

The application outside of the Actor sends requests asynchronously and must be free to continue ex-
ecution regardless of the completion of the request. To this end we provide the class Message illustrated
in Listing 2 which creates an object from the arguments of the send method and initializes a future from
the lambda expression.

This class contains the specific parts of a message which are the lambdaExpression, the syncData
on which the request need exclusive access and the Future f which captures the result of the request. To
maintain a temporal order on messages synchronize on the same messages the class also contains a static
field queuePriority which determines a new message’s priority upon creation and insertion in the queue.

The Actor runs as a process that receives requests and runs them in parallel while maintaining data-
consistency throughout its lifetime. The abstraction is data-oriented as it is a stateful object maintaining
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Listing 2: Message Class in Java
import j a v a . u t i l . S e t ;
import j a v a . u t i l . c o n c u r r e n t . C a l l a b l e ;
import j a v a . u t i l . c o n c u r r e n t . F o r k J o i n T a s k ;
import j a v a . u t i l . c o n c u r r e n t . a t om ic . A t o m i c I n t e g e r ;

p u b l i c c l a s s Message {

s t a t i c f i n a l A t o m i c I n t e g e r q u e u e P r i o r i t y = new A t o m i c I n t e g e r ( 0 ) ;

S t r i n g name ;
O b j e c t l a m b d a E x p r e s s i o n ;
Set<Objec t> s y n c V a r i a b l e s ;
Fo rkJo inTask<?> f ;
A t o m i c I n t e g e r p r e e m p t P r i o r i t y ;
i n t p r i o r i t y = 0 ;

p u b l i c Message ( O b j e c t message , Set<Objec t> v a r i a b l e s , S t r i n g name ) {
t h i s . l a m b d a E x p r e s s i o n = message ;
t h i s . s y n c V a r i a b l e s = v a r i a b l e s ;
t h i s . name = name ;
t h i s . p r e e m p t P r i o r i t y = new A t o m i c I n t e g e r ( 0 ) ;
p r i o r i t y = q u e u e P r i o r i t y . getAndAdd ( 1 ) ;

f = n u l l ;
i f ( message i n s t a n c e o f Runnable )

f = F o r k J o i n T a s k . a d a p t ( ( Runnable ) message ) ;
i f ( message i n s t a n c e o f C a l l a b l e <?>)

f = F o r k J o i n T a s k . a d a p t ( ( C a l l a b l e <?>) message ) ;
}

p u b l i c Message ( Message m) {
t h i s (m. l ambdaExpres s ion , m. s y n c V a r i a b l e s , m. name ) ;
t h i s . p r e e m p t P r i o r i t y . s e t (m. p r e e m p t P r i o r i t y . g e t ( ) ) ;

}

@Override
p u b l i c S t r i n g t o S t r i n g ( ) {

re turn name + ” ” + s y n c V a r i a b l e s + ” :< ” + p r i o r i t y + ” , ”
+ p r e e m p t P r i o r i t y + ” >” ;

}
}

records of all the data that its workers are processing. It contains a set of busyData specifying which
objects are currently locked by the running active objects. An internal method, named reportSynchro-
nizedData is defined to determine if a set of data corresponding to a possible candidate message for
execution is intersecting with the current set of busyData. This method is used as part of the comparator
defined in the messageQueue to order the messages based on their availability. The main process running
the Actor is then responsible to take the message at the head of the queue and schedule it for execution
and add the data locked by the message to the set of busyData. It is possible that at some point during
execution, all messages present in the messagesQueue are not able to execute due to their data being
locked by the requests that are currently executing. To ensure that our Actor does not busy-wait, we
forward all the messages into a lockedQueue such that the Actor thread suspends.

The Actor is a solution that makes parallel computation transparent to the user through the internal
class implementation of its worker actors. These objects are synchronized and can undertake one assign-
ment at a time. Each request may have a set of synchronized variable to which it has exclusive access
while executing. At the end of the execution, the active object calls the freeWorker(ActiveObject worker,
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Object ... data) method that removes itself from the busyWorkers set and becomes available again by
inserting itself in the availableWorkers queue. At this point, the lockedQueue is flushed into the mes-
sageQueue such that all previously locked messages may be checked as candidates for running again. All
of the objects that were locked by this ActiveObject are also passed to this method such that they can be
removed from the busyData set and possibly release existing messages in the newly filled messageQueue
for execution. This control flow is illustrated in an example in the next section, however our motivation
is to modify this module into an API and use it as a basis for a compiler from the modeling language to
Java.

5.2 Service Example and Analysis

Listing 3 shows the implementation of a Bank service as an Actor. As a default behavior, whenever a
new concrete extension of an Actor is made, the constructor or the addWorkers method may create one
or more instances of the internal Active Object. The behavior of getNewWorker(Object... parameters) is
overridden to ensure the return of a specific internal Active Object with exposed methods, in this case the
BankEmployee. This internal class implements the general Active Object interface and exposes a few
simple methods of a general Bank Service. The methods withdraw, deposit, transfer and checkSavings
all perform their respective operations on one or more references of the internal class Account a reference
which is made available through the method createAccount. The MAC behavior is inherited from the
Actor and only the specific banking operations are implemented.

To test the functionality, as well as the performance of the MAC we implement a simple scenario that
creates a fixed number of users each operating on their own bank account. We issue between 100 and
1 million requests distributed evenly over the fixed number of accounts. To ensure that some messages
have to respect a temporal order and forced await execution of prior requests on the same account we
issue sets of 10 calls for each account. This also ensures that the selection rule (SCHED-MSG) does not
become too large of a bottleneck as in the case of issuing all operations for one bank account at a time.
We measure the time taken to process the requests based on a varying number of Active Objects inside
in the Bank Service. The performance figures for a MAC with 1,2 and 4 available Active Objects is
presented in Figure 5

The results validate our solution in the sense that the time:message ratio is almost linear with very
little overhead introduced by the message format and the selection function. Furthermore the benefit
of parallelism is maintained with the increasing volume of request issued to the service. To emphasize
this we computed the throughput of the service in relation to the number of Active Objects running and
present it in Figure 6. From these results we can infer the scalability of the MAC for parallel computation.

6 Conclusion and Future Work

In this paper we have introduced the notion of multi-threaded actors, that is, an actor-based programming
abstraction which allows to model an actor as a group of active objects which share a message queue.
Encapsulation of the active objects which share a queue can be obtained by simply not allowing active
objects to be passed around in asynchronous messages. Cooperative scheduling of the method invoca-
tions within an active object (as described in for example [11]), can be obtained by introduction of a lock
for each active object. In general, synchronization mechanisms between threads is an orthogonal issue
and as such can be easily integrated, e.g., lock on objects, synchronized methods (with reentrance), or
even synchronization by the compatibility relationship between methods as defined in [8] and [9]. Other
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Listing 3: Bank Class in Java
p u b l i c c l a s s Bank ex tends Acto r {

p u b l i c vo id addWorkers ( i n t n ){
f o r ( i n t i = 0 ; i < n ; i ++) {

a v a i l a b l e W o r k e r s . add ( new BankEmployee ( ) ) ;
}

}

@Override
p u b l i c BankEmployee getNewWorker ( O b j e c t . . . p a r a m e t e r s ) {

BankEmployee s e l e c t e d w o r k e r = n u l l ;
t r y {

s e l e c t e d w o r k e r = ( BankEmployee ) a v a i l a b l e W o r k e r s . t a k e ( ) ;
busyWorkers . add ( s e l e c t e d w o r k e r ) ;

} catch ( I n t e r r u p t e d E x c e p t i o n e ) {
e . p r i n t S t a c k T r a c e ( ) ;

}
re turn s e l e c t e d w o r k e r ;

}

c l a s s BankEmployee implements A c t i v e O b j e c t {

p u b l i c Account c r e a t e A c c o u n t ( ) {
Account a = new Account ( ) ;
Bank . t h i s . f r e e W o r k e r ( t h i s ) ;
re turn a ;

}

p u b l i c boolean withdraw ( Account n , i n t x ) {
boolean b = n . wi thdraw ( x ) ;
Bank . t h i s . f r e e W o r k e r ( t h i s , n ) ;
re turn b ;

}

p r o t e c t e d boolean d e p o s i t ( Account n , i n t x ) {
boolean b = n . d e p o s i t ( x ) ;
Bank . t h i s . f r e e W o r k e r ( t h i s , n ) ;
re turn b ;

}

p u b l i c boolean t r a n s f e r ( Account n1 , Account n2 , i n t amount ) {
boolean b = n1 . t r a n s f e r ( n2 , amount ) ;
Bank . t h i s . f r e e W o r k e r ( t h i s , n1 , n2 ) ;
re turn b ;

}

p u b l i c i n t c h e c k S a v i n g s ( Account n ) {
i n t r e s = n . c h e c k S a v i n g s ( ) ;
Bank . t h i s . f r e e W o r k e r ( t h i s , n ) ;
re turn r e s ;

}

c l a s s Account {
/ / Acount p r o c e s s i n g methods

} } } }

extensions and variations describing dynamic group interfaces can be considered along the lines of [12].
Future work will be dedicated toward the development of the compiler which allows importing Java

libraries, and further development of the runtime system, as well as benchmarking on the performance.
Other work of interest is to investigate into dynamic interfaces for the multi-threaded actors and pro-
gramming abstractions for application-specific scheduling of multi-threaded actors.
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Listing 4: Actor Abstract Class in Java
p u b l i c a b s t r a c t c l a s s Acto r implements Runnable {

p r o t e c t e d F o r k J o i n P o o l ma inExecu to r ;
p r o t e c t e d P r i o r i t y B l o c k i n g Q u e u e<Message> messageQueue ;
p r o t e c t e d Concur ren tL inkedQueue<Message> lockedQueue ;
p r o t e c t e d P r i o r i t y B l o c k i n g Q u e u e<A c t i v e O b j e c t> a v a i l a b l e W o r k e r s ;
p r o t e c t e d Set<A c t i v e O b j e c t> busyWorkers ;
p r o t e c t e d Set<Objec t> busyData ;

p u b l i c Acto r ( ) {
/ / i n i t i a l i z a t i o n o f i n t e r n a l da ta s t r u c t u r e s

}

@Override
p u b l i c vo id run ( ) {

whi le ( t rue ) {
t r y {

Message message = messageQueue . t a k e ( ) ;
i f ( r e p o r t S y n c h r o n i z e d D a t a ( message . syncDa ta ) ) {

synchronized ( busyData ) {
busyData . ad dA l l ( message . syncDa ta ) ;

}
mainExecu to r . su bmi t ( message . f ) ;

} e l s e {
t h i s . lockedQueue . o f f e r (newM ) ;

}
} ca tch ( I n t e r r u p t e d E x c e p t i o n e ) {

e . p r i n t S t a c k T r a c e ( ) ;
}

}}

/ / message f o r m a t : ()−>ge tWorker ( ) . m( )
p u b l i c <V> Fu tu re<V> send ( O b j e c t message , Set<Objec t> d a t a ) {

Message m = new Message ( message , da t a , name ) ;
messageQueue . p u t (m) ;
re turn ( Fu tu re<V>) m. f ;

}

p u b l i c A c t i v e O b j e c t getNewWorker ( O b j e c t . . . p a r a m e t e r s ) {
A c t i v e O b j e c t s e l e c t e d w o r k e r = n u l l ;

t r y {
s e l e c t e d w o r k e r = a v a i l a b l e W o r k e r s . t a k e ( ) ;
busyWorkers . add ( s e l e c t e d w o r k e r ) ;

} catch ( I n t e r r u p t e d E x c e p t i o n e ) {
e . p r i n t S t a c k T r a c e ( ) ;

}

re turn s e l e c t e d w o r k e r ;
}

p r i v a t e boolean r e p o r t S y n c h r o n i z e d D a t a ( Set<Objec t> d a t a ) {
Set<Objec t> t empSe t = new HashSet<Objec t > ( ) ;

synchronized ( busyData ) {
t empSet . a dd Al l ( busyData ) ;
t empSet . r e t a i n A l l ( d a t a ) ;

i f ( t empSet . i sEmpty ( ) ) {
re turn true ;

}
re turn f a l s e ;

} }

p r o t e c t e d void f r e e W o r k e r ( A c t i v e O b j e c t worker , O b j e c t . . . d a t a ) {

synchronized ( busyData ) {
busyWorkers . remove ( worker ) ;
a v a i l a b l e W o r k e r s . o f f e r ( worker ) ;

messageQueue . ad dA l l ( lockedQueue ) ;
lockedQueue . c l e a r ( ) ;

f o r ( O b j e c t o b j e c t : d a t a ) {
busyData . remove ( o b j e c t ) ;

} } }

p u b l i c i n t e r f a c e A c t i v e O b j e c t ex tends Comparable<A c t i v e O b j e c t> {
/ / t h e a c t i v e o b j e c t s i n charge o f r e q u e s t s

}
}
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