
M. Bartoletti and S. Knight (Eds.):
11th Interaction and Concurrency Experience (ICE 2018)
EPTCS 279, 2018, pp. 37–51, doi:10.4204/EPTCS.279.6

Realisability of Pomsets via Communicating Automata∗

Roberto Guanciale
KTH Royal Institute of Technology, Sweden

robertog@kth.se

Emilio Tuosto
Department of Informatics, University of Leicester, UK

emilio@le.ac.uk

Pomsets are a model of concurrent computations introduced by Pratt. They can provide a syntax-
oblivious description of semantics of coordination models based on asynchronous message-passing,
such as Message Sequence Charts (MSCs). In this paper, we study conditions that ensure a specification
expressed as a set of pomsets can be faithfully realised via communicating automata.

Our main contributions are (i) the definition of a realisability condition accounting for termination
soundness, (ii) conditions for global specifications with “multi-threaded” participants, and (iii) the
definition of realisability conditions that can be decided directly over pomsets. A positive by-product
of our approach is the efficiency gain in the verification of the realisability conditions obtained when
restricting to specific classes of choreographies characterisable in term of behavioural types.

1 Introduction

Asynchronous message-passing is a widely adopted paradigm for the specification, design, and imple-
mentation of communication-centred applications or systems. This paradigm has been used at different
abstraction levels, including formal models (e.g. π-calculus [22, 17] and communicating automata [6]),
specification languages (e.g. message-sequence charts (MSCs) [18]), choreography languages (e.g. global
calculus [7] and WS-CDL [24]), programming languages (e.g. actor models for Erlang, Scala, and Go).

Choreographic approaches are gaining momentum to handle the complexity of distributed systems [14].
These frameworks envisage two views: a global specification and a local one. The former defines the order
and constraints under which messages are sent and received, while the local view defines the behavior
of each participant. The composition of local participants should respect the global specification. In
this setting, the realisability of the global specifications becomes a concern since there could be some
specifications that are impossible to implement using the local views in a given communication model.

We propose a general semantic representation based on partially ordered multisets (pomsets) [20],
capable of specifying global behaviors and analyze their realisability in terms of asynchronous message-
passing. Our framework assumes asynchronous point-to-point communications and features a notion of
realisability that

1. rules out systems where some participants cannot ascertain termination

2. admits multi-threaded participants

3. allows us to define syntax-oblivious conditions

4. can be decided by an analysis of the partial orders of communication events.

These features have several practical advantages. Indeed, by (1), we admit systems where participants
may get stuck on some messages, only if that is specified in the global model. The use of multi-threaded
participants (2) makes our framework more expressive than existing ones (see discussion on this point

∗Research partly supported by the EU H2020-RISE-2017 project BehAPI and the EU COST Action IC1405.
The authors thank the anonymous reviewers for their comments and the interesting discussions on the forum of ICE18 .

http://dx.doi.org/10.4204/EPTCS.279.6

38 Realisability of Pomsets

AB!x

AC!x

AB?x

DB?y

AC?x

DC?y

DB!y

DC!y

(a) r(1)a

AB!x

AC!x

DB?y

AB?x

DC?y

AC?x

DB!y

DC!y

(b) r(1)b

Figure 1: R1 = {r(1)a ,r(1)b} is a set of two pomsets Two pomsets

in [23]). Syntax independent conditions (3) are applicable to different global models. Finally, (4) enables
the identification of design errors in global models rather than in execution traces where they are harder to
analyse.

Outline Section 2 gives the basic definitions. Section 3 introduces the problems of realisability and
sound termination; also, it provides verification conditions in the style of [1]. Section 4 presents the
sufficient conditions for realisability and sound termination that can be tested over partial orders. Section 5
discusses the complexity of the new verification conditions. Finally, Section 6 discusses related work and
Section 7 draws some conclusions.

2 Pomsets and message-sequence charts

We collect the main definitions needed in the rest of the paper. The material of this section is not an
original contribution1 and it is presented only to make the paper self-contained borrowing and combining
definitions and notations from [8, 1, 13, 6].

We borrow the formalisation of partially-ordered multi-set of [8].

Definition 1 (Lposets). A labelled partially-ordered set (lposet) is a triple (E ,≤,λ), with E a set of
events, ≤⊆ E ×E a reflexive, anti-symmetric, and transitive relation on E , and λ : E → L a labelling
function mapping events in E to labels in L .

Intuitively, ≤ represents causality; for e 6= e′, if e≤ e′ and both events occur then e′ is caused by e.
Note that λ is not required to be injective: for e 6= e′ ∈E , λ(e) = λ(e′) means that e and e′ model different
occurrences of the same action.

Definition 2 (Pomsets). Two lposets (E ,≤,λ) and (E ′,≤′,λ′) are isomorphic if there is a bijection
φ : E → E ′ such that e≤ e′ ⇐⇒ φ(e)≤′ φ(e′) and λ = λ′ ◦φ. A partially-ordered multi-set (of actions),
pomset for short, is an isomorphism class of lposets.

Using pomsets in place of lposets allows us to abstract away from the names of events in E . In the
following, [E ,≤,λ] denotes the isomorphism class of (E ,≤,λ), symbols r,r′, . . . (resp. R,R′, . . .) range
over (resp. sets of) pomsets, and we assume that any r contains at least one lposet which will possibly
be referred to as (Er, ≤r,λr). An event e is an immediate predecessor of an event e′ in a pomset r if
e 6= e′, e≤r e′, and for all e′′ ∈ Er such that e ≤r e′′ ≤r e′ either e = e′′ or e′ = e′′. If e is an immediate
predecessor of e′ in r then e′ is an immediate successor of e in r.

1Except for the different definition of accepting states of communicating automata.

R. Guanciale & E. Tuosto 39

Hereafter, we consider pomsets labelled by communications representing output and input actions
between a sender and a receiver. Technically, this is done by instantiating the set L of labels as follows.

Let P be a set of participants (ranged over by A, B, etc.), M a set (of types) of messages (ranged
over by m, x, etc.). We take P and M disjoint. Participants coordinate with each other by exchanging
messages over communication channels, that are elements of the set C = (P ×P)\{(A,A)

∣∣ A ∈ P} and
we abbreviate (A,B) ∈ C as AB. The set of (communication) labels L is defined by

L = L !∪L? where L ! = C ×{!}×M and L? = C ×{?}×M

The elements of L ! and L?, outputs and inputs, respectively represent sending and receiving actions; we
shorten (AB, !,m) as AB!m and (AB,?,m) as AB?m and let l, l′, . . . range over L . The subject of an
action is defined by

sbj
(
AB!m

)
= A (the sender) and sbj

(
AB?m

)
= B (the receiver)

We will represent pomsets as the (variant2 of) Hasse diagram of the immediate predecessor relation as
done in the examples of Fig. 1. For instance, in the pomset r(1)a the input event of B from A immediately
precedes the input of B from D while the events with those labels are in the reversed order in r(1)b .

Definition 3 (Projection of pomsets). The projection r�A of a pomset r on a participant A ∈ P is obtained
by restricting r to the events having subject A: formally r�A= [Er,A, ≤r ∩ (Er,A×Er,A), λr|Er,A] where
Er,A = {e ∈ Er

∣∣ sbj
(
λr(e)

)
= A}.

Pomsets are a quite expressive model of global views of choreographies [23]; in fact, MSCs3 can be
defined as a subclass of pomsets.

Definition 4 (Well-formedness, completeness, and MSCs). A pomset r over L is well-formed if for every
event e ∈ Er

1. if λr(e) = AB!m, there is at most one e′ ∈ Er immediate successor of e in r with λr(e′) = AB?m
(and, if such e′ exists, we say that e and e′ match each other)

2. if λr(e) = AB?m, there exists exactly one e′ ∈ Er immediate predecessor of e in r with λr(e′) =
AB!m

3. for each e′ ∈ Er, if e is an immediate predecessor of e′ and sbj
(
λr(e)

)
6= sbj

(
λr(e′)

)
then e and e′

are matching output and input events respectively

4. for each e′ 6= e ∈ Er with λr(e) = λr(e′) = AB!m, and for all ē, ē′ ∈ Er immediate successors in r
of e and of e′ respectively if λr(ē) = λr(ē′) = AB?m and e≤r e′ then ē′ 6≤r ē

All conditions of Definition 4 are straightforward but the last one, which requires that ordered output
events with the same label cannot be matched by inputs that have opposite order. Pomset r is complete if
there is no send event in Er without a matching receive event.

A message-sequence chart is a well-formed and complete pomset r such that ≤r�A is a total order, for
every A ∈ P .

Well-formed pomsets permit to represent inter-participant concurrency since they keep independent
not matching communication events of different participants. Also, well-formed pomsets allow intra-
participant concurrency (i.e. multi-threaded participants) since they do not require ≤r�A to be totally

2Edges of Hasse diagrams are usually not oriented; here we use arrow so to draw order relations between events also
horizontally.

3Pomsets can also be used to give semantics to the composition of MSCs; see [13].

40 Realisability of Pomsets

ordered. MSCs are obtained by restricting participants to be single-threaded. The pomsets in Fig. 1 are
indeed MSCs describing different orders of the same set of events. Vertical arrows represent orders on
the events of a participant; for instance, the leftmost vertical arrow of r(1)a represents that the output of
A to B precedes the one to C. Basically, vertical arrows correspond to the projections of the pomsets
on participants; these projections are obtained by restricting r(1)a and r(1)b to the events having the same
subject. More precisely, the projection on one of the participants consists of the i-th vertical arrow where i
is the alphabetical order of the participant (e.g., the projection of C is the third arrow). The behaviour of A
(and D) is the same in both MSCs: A (resp. D) first sends message x (resp. y) to B and then to C. The
behaviour of B (and C) differs: in r(1)a , B first receives the message from A then the one from D, in r(1)b ,
B has the same interactions but in opposite order. Likewise for C.

Well-formed pomsets capture the semantics of choreographic modelling languages; we used them to
give semantics of choreographies in [23]. In particular, to handle distributed choices of choreographies
one uses sets of pomsets R, so that each r ∈ R yields the causal dependencies of the communications in a
branch. For instance, the set R(1) = {r(1)a ,r(1)b} represents a choice between the fact that B may receive
messages x and y in any order.

A natural question to ask is:
“is it possible to realise R(1) with asynchronously communicating local views?”

The next section answers this question for pomsets similarly to what done in [1] where closure conditions
for MSCs where identified.

3 Realisability and termination soundness of pomsets

Hereafter we assume all structures, including languages, words and pomsets, to be finite. Given a pomset
r, a linearization of r is a string in L? obtained by considering a total ordering of the events Er that is
consistent with the partial order ≤r , and then replacing each event by its label. More precisely, let | Er |
be the cardinality of Er, a word w = λr(e1) . . .λr(e|Er|) is a linearization of a pomset r if e1 . . .e|Er| is
a permutation that totally orders the events in Er so that if ei ≤r e j then i ≤ j. For a pomset r, define
L(r) to be the set of all linearizations of r. A word w over L is well-formed (resp. complete) if it is
the linearization of a well-formed (resp. complete) pomset. Hereafter, for a word w ∈ L?, w�A denotes
the projection of w that retains only those events where participant A ∈ P is the subject. Operation
�A acts element-wise on languages over L . The language of a set of pomsets R is simply defined as
L(R) =

⋃
r∈RL(r).

Local views are often conveniently modelled in terms of communicating automata of some sort. An
A-communicating finite state machine (A-CFSM) M = (Q,q0,F,→) is a finite-state automaton on the

alphabet L such that, q0 ∈ Q is the initial state, F ⊆ Q are the accepting states, and for each q l−→ q′

holds sbj
(
l
)
= A. A (communicating) system is a map S = (MA)A∈P assigning an A-CFSM MA to each

participant A ∈ P . For all A 6= B ∈ P , we shall use an unbounded multiset bAB where MA puts the
message to MB and from which MB consumes the messages from MA.

The semantics of communicating systems is defined in terms of transition relations between configu-
rations which keep track of the state of each machine and the content of each buffer. Let S = (MA)A∈P
be a communicating system. A configuration of S is a pair s = 〈~q ; ~b〉 where ~q = (qA)A∈P maps each
participant A to its local state qA ∈ QA and~b = (bAB)AB∈C where the buffer bAB : M → N is a map
assigning the number of occurrences of each message; state qA keeps track of the state of the automaton
MA and buffer bAB keeps track of the messages sent from A to B. The initial configuration s0 is the one
where, for all A ∈ P , qA is the initial state of the corresponding CFSM and all buffers are empty. Given

R. Guanciale & E. Tuosto 41

two configurations s = 〈~q ; ~b〉 and s′ = 〈~q′ ; ~b′〉, relation s l=⇒s′ holds if there is a message m ∈M such
that either (1) or (2) below holds:

1. l = AB!m and qA
l−→A q′A and

a. q′C = qC for all C 6= A ∈ P and

b. b′AB = bAB[m 7→ bAB(m) + 1]

2. l = AB?m and qB
l−→B q′B and

a. q′C = qC for all C 6= B ∈ P and

b. bAB(m)> 0 and b′AB = bAB[m 7→ bAB(m)−1]

where, f [x 7→ y] is the usual notation for the updating of a function f in a point x of its domain with a
value y. Condition (1) puts m on channel AB, while (2) gets m from channel AB by simply updating the
number of occurrences of m in the buffer bAB. In both cases, any machine or buffer not involved in the
transition is left unchanged in the new configuration s′.

The automata model adopted in [1] is a slight variant of communicating-finite state machines (CF-
SMs) [6]. The two models have the same definition of automata; they differ in how communication is
attained, but are equivalent up to internal transitions (which in [1] have been used to simplify proofs).
We used the definition of CFSMs in [6] to encompass accepting states (necessary to define our notion of
termination soundness Definition 6). Another minor deviation from the definition of CFSMs introduced
in [6] is that buffers become multisets in [1] while in [6] they follow a FIFO policy.

Given a communicating system S, a configuration s = 〈~q ; ~b〉 of S is (i) accepting if all buffers in~b are
empty and the local state~q(A) of each participant A is accepting while (ii) s is a deadlock if no accepting
configuration is reachable from s. We can then define the language of S as the set L(S) ∈ L? of sequences

l0 . . . ln−1 such that s0
l0=⇒ . . .

ln−1
==⇒sn and sn is an accepting configuration.

The notion of realisability and sound termination (cf. Definitions 5 and 6 below) are given in terms of
the relation between the language of the global view and the one of a system of local views “implementing”
it. Our notion of realisability considers languages over L as sets of traces of the distributed executions of
some CFSMs, analogously to [1].

Definition 5 (Realisability). A language L⊆ L? is weakly realisable if there is a communicating system
S such that L = L(S); when S is deadlock-free we say that L is safely realisable. A set of pomsets R is
weakly (resp. safely) realisable if L(R) is weakly (resp. safely) realisable.

The notion of realisability is meaningful when pomsets are well-formed and complete, namely when
they yield a proper match among receive and send events.

In general, safe realisability is not enough to rule out undesirable designs. In fact, it admits systems
where participants cannot ascertain termination and may be left waiting forever for some messages.
This may lead non-terminating participants to unnecessarily lock resources once the coordination is
completed. We explain this considering Fig. 2 which can be interpreted as follows. Participant A starts
a transaction with B by sending message x. Pomset r2a represents a scenario where the transaction was
started but neither committed nor aborted. Pomset r2b represents a scenario where the transaction started
and eventually committed. Yet, B is uncertain whether message y is going to be sent or not and hence B be
could locally decide to terminate immediately after receiving x leaving C waiting for message z. However,
depending on the application requirements, it may be the case that termination awareness is important for
B and not for C because e.g., either C is not “wasting” resources or it is immaterial that such resources are
left locked. To handle this limitation we introduce a novel termination condition, which allows to specify
the subset of participants that should be able to identify when no further message can be exchanged.

Definition 6 (Termination soundness). A participant A ∈ P is termination-unaware in a system S if there
exists an accepting configuration 〈~q ; ~b〉 reachable in S having a transition departing from~q(A) that is
labelled in L?.

42 Realisability of Pomsets

A set of participants P ′ ⊆ P is termination-aware in a system S if there is no A ∈ P that is termination-
unaware in S. A language L over L is termination-sound for P ′ ⊆ P if L is safely realisable by a system for
which P ′ is termination-aware. A set of pomsets R is termination-sound for P ′ if L(R) is termination-sound
for P ′.

Realisability and termination soundness can be established by analyzing verification conditions of the
language. In [1] two closure conditions are introduced that entail weak and safe realisability. A word w
over L is P -feasible for L⊆ L? if ∀A ∈ P : ∃w′ ∈ L : w�A= w′ �A. In [1], a language L over the alphabet
L that enjoys the following conditions

L⊇ {w ∈ L?
∣∣ w well-formed, complete, and P -feasible for L}

is said4 to be CC2. Intuitively, the closure condition CC2 entails that L is realisable by the set of
participants performing the actions in L : if each participant cannot tell apart a trace w with one of its
expected executions (i.e., those in L) then w must be in L or, in the terminology of [1], w is implied.
Closure condition CC2 characterises the class of weakly realisable languages over L .

Theorem 1 ([1]). A language L is weakly realisable if, and only if, L contains only well-formed and
complete words and satisfies CC2.

The language of the set of pomsets {r(1)a ,r(1)b} of Fig. 1 is not closed under CC2. In fact, the
well-formed and complete word

AB!x; AB?x; DB!y; DB?y; DC!y; DC?y; AC!x; AC?x (1)

satisfies the conditions of CC2, because the projection of the word (1) on each participant equals the
projection of a linearization of r(1)a or of r(1)b on the same participant. However, (1) is not in the language
L(R(1)), because AC?x must precede DC?y in all the words obtained by the linearization of r(1)a , while in
those obtained by a linearization of r(1)b , DB?y must precede AB?x.

The realisability entailed by condition CC2 is “weak” because it does not rule out possibly deadlocking
systems. Therefore, an additional closure condition, dubbed CC3, has been identified in [16, 1]. A
language L over the alphabet L has the closure condition CC3 when

pref(L)⊇ {w ∈ L?
∣∣ w well-formed and P -feasible for pref(L)}

where pref(L) is the prefix closure of L. Basically, condition CC3 states that any (partial) execution that
cannot be told apart by any of the participants is a (partial) execution in L. And now the following result
characterises safe realisability.

Theorem 2 ([16, 1]). A language L is safe realisable if, and only if, L contains only well-formed and
complete words and satisfies CC2 and CC3 5.

Once a language L is known to be realisable, we get a system S(L) = (MA)A∈P realising L by defining,
for all A ∈ P

MA = (pref(L�A),ε,L�A,−→)

where w l−→ w.l if w.l ∈ pref(L�A). Then, in [1] the following result is shown.

Theorem 3 ([1]). If L is a weakly realisable language then L(S(L)) = L. Moreover, if L is safely realisable
then S(L) is deadlock-free.

R. Guanciale & E. Tuosto 43

AB!x AB?x

(a) r2a

AB!x

AB!y

AB?x

AB?y

BC!z BC?z

(b) r2b

Figure 2: A set of two pomsets that is not termination sound for B or C

We introduce a new verification condition for termination soundness. A participant A ∈ P is
termination-unaware for the language L over L if there exist w,w′ ∈ L such that w �A is a prefix of
w′ �A and the first symbol in w′ �A after w �A is in L?. Given a set of participants P ′ ⊆ P , we say that
L is P ′-terminating when there is no A ∈ P ′ termination-unaware for L. The language of the family of
pomsets {r2a ,r2b} of Fig. 2 is {A}-terminating. However, such language is not {B}-terminating. In fact,
after receiving the message AB?x, participant B cannot distinguish whether A terminates or will send
AB!y; hence B ends up in a state where it is ready to fire the input AB?y, but no matching output could
arrive from A. And likewise for C.
Theorem 4. For P ′ ⊆ P , if L is P ′-terminating and safely realisable then it is termination-sound for P ′.

Proof. The proof is trivial. Let S(L) be the system obtained from the construction of Theorem 3. S(L)
is deadlock-free and L= L(S(L)). Let A ∈ P ′, w ∈ L, and s an accepting configuration reached in a run
of S corresponding to w. For each w′ ∈ L such that w�A is prefix of w′ �A, the first symbol in w′ �A after
w�A cannot be an input (since L is P ′-terminating). Therefore, by construction of S(L), there is no input
transition departing from the local state of A in s.

4 Pomset based verification conditions

We introduce a different approach to check realisability and sound termination of specifications, which
does not require to explicitly compute the language of the family of pomsets. This allows us to avoid
the combinatorial explosion due to interleavings. The main strategy is to provide alternative definitions
of closures directly on pomsets which handle both intra- and inter-participant concurrency. Besides
theoretical benefits, this yields a clear advantage for practitioners. In fact, design errors can be identified
and confined in more abstract models, closer to the global specification than to traces of execution. Also,
our verification conditions require to analyze sets of pomsets; therefore, they are syntax-oblivious. As
discussed in Section 5, our conditions strictly entail the corresponding ones in Section 3
Definition 7 (Closure). Let ρ be a function from P to pomsets and (rA)A∈P be the tuple where rA =
ρ(A)�A for all A ∈ P . The inter-participant closure �((rA)A∈P) is the set of all well-formed pom-
sets [

⋃
A∈P ErA , ≤I ∪

⋃
A∈P ≤rA ,

⋃
A∈P λrA] where ≤I⊆ {(eA,eB) ∈ ErA×ErB ,A,B ∈ P

∣∣ λrA(e
A) =

AB!m,λrB(e
B) = AB?m}.

Informally, the inter-participant closure takes one pomset for every participant and generates all
“acceptable” matches between output and input events. We use Fig. 3 and Fig. 4 to illustrate the inter-
participant closure. The singleton R(3) contains one pomset that is the composition of two independent

4We stick with the terminology in [1] where closure conditions are not given specific names.
5The theorem in [1] describes a different condition, CC2’, which is easier to implement and is equivalent to CC2 when in

conjunction with CC3

44 Realisability of Pomsets

AC!l1

AB!x

BC!l2

AB?x

BC!l3

BC?l2

AC?l1

AC?l3

AC!r1

AB!x

BC!r2

AB?x

BC!r3

BC?r2

AC?r1

AC?r3

Figure 3: R(3) = {[Er(3)a
∪Er(3)b

,≤r(3)a
∪ ≤r(3)b

,λr(3)a
∪λr(3)b

]}

AC!l1

AB!x

AC!r1

AB!x

BC!l2

AB?x

BC!l3

BC!r2

AB?x

BC!r3

BC?l2

AC?l1

AC?l3

BC?r2

AC?r1

AC?r3

Figure 4: Inter-participant closure of pomset of Fig. 3

pomsets: r(3)a and r(3)b . Intuitively, this represents two concurrent “threads” (hereafter left and right
threads) that have no interdependencies. Let rA be the projection of the single pomset in R(3) for A ∈ P ,
then the inter-participant closure of (rA)A∈P consists of the two well-formed pomsets of Fig. 4, the one
that uses the black and green dependencies, and the one that uses the black and red dependencies. Notice
that the order ≤I in Definition 7 is a subset of the product of outputs and matching inputs and this the
closure to contain only well-formed pomsets. For example, the closure of R(3) does not contain the pomset
having both green and red arrows.

Definition 8. A pomset r is less permissive than pomset r′ (or r′ is more permissive than r, written r v r′)
when Er = Er′ , λr = λr′ , and ≤r⊇≤r′ .

Lemma 1. If r v r′ then L(r)⊆ L(r′).

Definition 9 (CC2-POM). A set of pomsets R over L satisfies closure condition CC2-POM if for all tuples
(rA)A∈P of pomsets of R, for every pomset r ∈�((rA�A)A∈P), there exists r′ ∈ R such that r v r′.

Intuitively, Definition 9 requires that if all the possible executions of a pomset cannot be distinguished
by any of the participants of R, then those executions must be part of the language of R. Theorem 5 below
shows that CC2-POM entails CC2; its proof is based on “counting” the number of events with a certain
label l preceding an event e in the order ≤r of a pomset r: we write cardr

l (e) for such number (namely,
cardr

l (e) is the cardinality of {e′ ∈ Er
∣∣ e′ ≤r e∧λr(e′) = l}).

Theorem 5. If R satisfies CC2-POM then L(R) satisfies CC2.

Proof. Let w be a well-formed and complete word over L that satisfies hypothesis of CC2: for every
participant A ∈ P there exists wA ∈ L(R) for which w�A= wA �A. Then, for each A ∈ P , there is a pomset

R. Guanciale & E. Tuosto 45

rA ∈ R such that a linearization `A of rA yields wA. We can hence take the pomset

r =

[⋃
A∈P

ErA�A , ≤I ∪
⋃
A∈P
≤rA�A ,

⋃
A∈P

λrA�A

]

where

≤I=
⋃

B6=A∈P

{
(eA,eB) ∈ ErA�A×ErB�B

∣∣ λrA(e
A) = AB!m and λrB(e

B) = AB?m
and card`AAB!m(e

A) = card`BAB?m(e
B)

}

The pomset r is in �((rA�A)A∈P), since it is well-formed and complete and ≤I satisfies conditions of
Definition 7. In fact, since w is well-formed and complete, all send and receive events have corresponding
matching events. Also by construction, w ∈ L(r) and, for every A, r�Av rA�A. Finally, by CC2-POM
there exists r′ ∈ R such that r v r′, therefore w ∈ L(r′) hence w ∈ L(R).

Fig. 3 provides an example of a family of pomsets that cannot be weakly realised. An execution of
this specification can be as follows:

1. the left thread of A executes AC!l1 and AB!x

2. the right thread of B executes BC!r2 and AB?x, “stealing” the message x generated by the left
thread of A and meant for the left thread of B

3. the right thread of B executes BC!r3.

This violates the constraint that event AC!r1 must always precede event BC!r3, which the specification
imposes independently of the interleaved execution of the participants’ threads. Indeed, R(3) does not
satisfy CC2-POM. In fact, there are two well-formed and complete pomsets that satisfy the hypothesis
of CC2-POM: the pomset of Fig. 4 that uses the black and green dependencies, and the one that uses the
black and red dependencies. Condition CC2-POM is violated because there is no pomset in R(3) that is
more permissive than the pomset using the red dependencies.

The next condition requires to introduce the concept of prefix of a pomset r, which is a pomset r′ on a
subset of the events of r that preserves the order and labelling of r; formally (following [13])

Definition 10 (Prefix pomsets). A pomset r′ = [E ′,≤′,λ′] is a prefix of pomset r = [E ,≤,λ] if there exists
a label preserving injection φ : E ′→ E such that φ(≤′) =≤ ∩(E ×φ(E ′))

We remark that an arbitrary sub-pomset satisfies the weaker condition φ(≤′) =≤ ∩(φ(E ′)×φ(E ′)).
Instead, φ(≤′) =≤ ∩(E ×φ(E ′)) prevents events in E \φ(E ′) from preceding events in φ(E ′) and it is
equivalent to say that for all e′ ∈ E ′ if there is e≤ φ(e′) then there exists e′′ ∈ E ′ such that φ(e′′) = e and
e′′ ≤′ e′.

Lemma 2. Let r be a pomset over L and w be a word in L?, w ∈ pref(L(r)) if, and only if, there exists a
prefix r′ of r such that w ∈ L(r′).

Definition 11 (CC3-POM). A set of pomsets R over L satisfies closure condition CC3-POM if for all
tuples of pomsets (r̄A)A∈P such that for every A r̄A is a prefix of a pomset rA ∈ R, and for every pomset
r̄ ∈�((r̄A�A)A∈P) there is a pomset r′ ∈ R and a prefix r̄′ of r′ such that r̄ v r̄′.

Theorem 6. If R satisfies CC3-POM then L(R) satisfies CC3.

46 Realisability of Pomsets

AB!x

AB!z

AB?x CB?x

AB?z

CB!x

(a) r5a

AB!y

AB!z

AB?y

CB?y

AB!z

CB!y

(b) r5b

AB!y

AB!z

AB?y CB!x

(c) r5c

Figure 5: The language of {r5a ,r5b} is not realisable

Proof. Let w be a word that satisfies hypothesis of CC3: for every participant A ∈ P , there exists a word
wA ∈ pref(L(R)) such that w�A= wA �A. Therefore, there is a pomset r̄A prefix of a pomset rA ∈ R such
that wA ∈ L(r̄A) and let `A be one of the linearizations of r̄A that corresponds to wA. Define

r̄ =

[⋃
A∈P

Er̄A�A , ≤I ∪
⋃
A∈P

(
≤r̄A�A

)
,

⋃
A∈P

λr̄A�A ,

]

where

≤I=
⋃

B6=A∈P

{
(eA,eB) ∈ Er̄A�A×Er̄B�B

∣∣ λr̄A(e
A) = AB!m and λr̄B(e

B) = AB?m
and card`AAB!m(e

A) = card`BAB?m(e
B)

}

The pomset r̄ is in �((r̄A�A)A∈P), since it is well-formed and ≤I satisfies conditions of Definition 7. In
fact, since w is well-formed, all receives have matching sends. Also by construction, w ∈ L(r̄) and, for
every A, r̄�Av r̄A�A. Hence, by CC3-POM there exists r′ ∈ R and a prefix r̄′ of r such that r̄v r̄′, therefore
w ∈ L(r̄′) and therefore w ∈ pref(L(R)).

From Theorems 2,5, and 6, it follows that if a set of pomsets R satisfies CC2-POM and CC3-POM
then L(R) is safe realisable.

The family of pomsets R = {r5a ,r5b} of Fig. 5 exemplifies a common obstacle for safe realisability.
Here, participants A and C should both send the message x or both send the message y. However, A and C
do not coordinate to achieve this behaviour; this makes it impossible for them to distributively commit
to a common choice. The family of pomsets R does not satisfy CC3-POM. In fact, pomset r5c satisfies
hypothesis of CC3-POM (using r5a for C and r5b for both A and B), however there is no pomset in R
whose prefix is more permissive that r5c .

Like for the closure conditions, we lift the sufficient condition for termination soundness to pomsets.

Definition 12 (Terminating pomsets). A participant A ∈ P is termination-unaware for a set of pomsets R
if there are r,r′ ∈ R, and a label-preserving injection φ : Er�A → Er′�A such that ≤= φ(≤r�A)∪ ≤r′�A is a
partial order and

min≤(Er′�A)⊆ φ(min≤r�A
(Er�A)) and min≤(Er′�A \φ(Er�A))∩L? 6= /0

Given a set of participants P ′ ⊆ P , we say that R is P ′-terminating when there is no A ∈ P ′ termination-
unaware for R.

R. Guanciale & E. Tuosto 47

AB!x

AB!y

AB!z

AB?x

AB?y

AB?z

(a) r6a

AB!x

AB!y

AB!z

AB!w

AB?x

AB?y

AB?z

AB?w

(b) r6b

AB!x AB?x

AB!y AB?y

AB!z AB?z

AB!w AB?w

(c) ≤r6a
∪ ≤r6a

Figure 6: The set R(6) = {r6a ,r6a} is not termination sound for B

We use Fig. 6 to describe termination awareness. B is termination-unaware for the set of pomsets R(6).
In fact, let φ : Er6a�B → Er6b�B

be the only possible label-preserving injection, then ≤= φ(≤r6a�B)∪≤r6b�B
is

the partial order in Fig. 6.c, and min≤(Er6b�B
\φ(Er6a�B)) = {AB?w} is not disjoint from L?. Intuitively,

≤ represents the intersection of the languages of the two pomsets r6b�B and r6a�B.

Theorem 7. Given P ′ ⊆ P , if R is P ′-terminating then L(R) is P ′-terminating.

Proof. Given a word w ∈ L(R), there is a pomset r ∈ R such that w ∈ L(R). Let A ∈ P ′ and assume
that there is w′ ∈ L(R) such that w �A is a prefix of w′ �A. Therefore, there is a pomset r′ ∈ R such
that w′ �A∈ L(r′�A). Let e1, . . . ,en and e′1, . . . ,e

′
n′ , with n < n′, be the linearizations of ≤r and ≤r′

respectively for the world w and w′ respectively. Let φ be the injection that maps ei to e′i for 1≤ i≤ n, then
≤= φ(≤r�A)∪ ≤r′�A is a partial order. Therefore min≤(Er′�A \φ(Er�A))∩L? 6= /0 since R is P ′-terminating,
thus the first symbol of w′ after w cannot be an input.

5 Discussion on the pomset based conditions

If a pomset is thought of as the specification of a possible scenario of a system, a practical advantage of
using the conditions of Section 4 is that problems can be discovered at design-time. This permits to easily
isolate the problematic scenarios of a specification even if they share multiple traces with non-problematic
scenarios.

Checking CC2-POM and CC3-POM is decidable since we assume R to be a finite set of finite pomsets
and P to be finite. For CC2-POM, there are finite tuples (rA)A∈P of pomsets of R and for each tuple the
inter-participant closure is a finite set of finite pomsets. For CC3-POM, the number of prefixes of pomsets
in R is also finite. However, verifying these conditions is in general expensive due to two reasons: the
combinatorial explosion of the inter-participant closure and the need of finding a graph isomorphism to
check relation v between pomsets and to prove the existence of the label preserving injection φ. In both
cases, this complexity depends on the presence of multiple and independent instances of the same action.

Definition 13. Let r be a pomset over L . An action l ∈ L concurrently repeats in r if there exist e,e′ ∈ Er

such that e 6= e′, λr(e) = λr(e′) = l, and neither e≤r e′ nor e′ ≤r e.

In practice, the presence of actions that concurrently repeat is limited. In fact, specification formalisms
usually impose conditions that syntactically avoid this issue (e.g. see well-forkedness of [23] or the even
more restrictive conditions of e.g., [12]) because sending the same message in two independent threads
may “confuse” receivers making it hard (or impossible) to decide which receiving thread should consume
the message, leading to coordination problems.

48 Realisability of Pomsets

AC!l1

AB!x

AC!r1

AB!x

BC!l2

AB?x

BC!l3

BC!r2

AB?x

BC!r3

BC?l2

AC?l1

AC?l3

BC?r2

AC?r1

AC?r3

(a) r7a

AC!l1

AB!x

AC!r1

AB!x

BC!l2

AB?x

BC!l3

BC!r2

AB?x

BC!r3

BC?l2

AC?l1

AC?l3

BC?r2

AC?r1

AC?r3

(b) r7b

Figure 7: A set of pomsets language-equivalent to the pomset with red and black dependencies of Fig. 4,
but explicitly interleaves the events BC!l2 and BC!r2 (cyan dependencies)

We sketch the complexity analysis for CC2-POM. For a set of pomsets R, there are |R||P | possible tuples
(rA)A∈P . For each tuple (rA)A∈P , the number of pomsets in the inter-participant closure is proportional
to ∏e 2#(e), where #(e) is the number of concurrent repetitions of the action of an event e in (rA�A)A∈P).
Therefore, if there are no concurrently repeated actions then the inter-participant closure contains at most
one pomset. Checking r v r′ requires to find a label preserving injection φ from events of r to events of r′

that does not violate event orders. This problem can be reduced to graph isomorphism and its complexity
is exponential in ∏e #(e). In fact, for every pomset r in the inter-participant closure, the restriction to
the events of r having a same non-concurrently repeated action is totally ordered by the order of r, thus
the identification of the injection is trivial. Therefore, if there are no concurrently repeated actions in R
then checking CC2-POM can be done in polynomial time with respect to the number of events. Condition
CC2-POM avoids the explicit computation of the language of the family of pomsets, which can lead to
combinatorial explosion due to interleavings.

For example, R(3) contains one pomset and has two actions that occur concurrently: AB!x and BA!x.
Therefore there is only one tuple (rA)A∈P and its inter-participant closure has two pomsets (see Fig.4).
Checking v between these pomsets and the pomset in R(3), requires to iterate over all possible label
preserving isomorphisms. However, since all actions except AB!x and BA!x do not occur concurrently,
there are only two of such isomorphisms. Checking CC2 can be more expensive. Pomsets r(3)a and r(3)b

of Fig. 3 have 32 different linearizations, each one consisting of 8 events. Therefore the language of R(3)
consists of 32∗32∗28 = 218 words. Therefore, directly analyzing the inter-participant closure in Fig. 4 is
more efficient.

We remark that the conditions of Section 4 strictly entail the corresponding ones in Section 3. We show
a counterexample for CC2-POM only, since the same reasoning applies for the other condition. Consider
the set R4 = {r4red ,r4green}, where r4red and r4green respectively are the pomset with red dependencies and
the pomset with green dependencies of Figure 4. Then, R4 satisfies CC2-POM, since it contains all
pomsets that satisfy hypothesis of the closure condition, therefore by Theorem 5 its language satisfies
CC2. Consider the set R7 = {r7a ,r7b ,r4green}, where r7a and r7b are the two pomsets of Figure 7. Notice
that r7a and r7b are equivalent to r4red , with the exception of the dependency between BC!l2 and BC!r2.
Since r7a and r7b have opposite orders between these two events, the union of their languages is equal to
the language of r4red . Therefore the language of R7 is equal to the language of R4, hence it also satisfies
CC2. However, R7 does not satisfy CC2-POM. In fact, the pomset r4red satisfies hypothesis of CC2-POM,
but there is not pomset in R7 that is more permissive than r4red .

R. Guanciale & E. Tuosto 49

6 Related work

The surge of message-passing applications in industry is revamping the interest for software engineering
methodologies supporting designers and developers called to realise communication-centred software.
In this context, realisability of global specifications is of concern for both practical and theoretical
reasons. Our approach can support choreography languages (e.g. the global graphs used in [23] that
allow multi-threaded participants and complex distributed choices). These specifications yield at the
same time (i) concrete support to scenario-based development, (ii) rigorous semantics in terms of partial
order of communication events that enable the use of algorithms and tools to reason about and verify
communicating applications, and (iii) a simple graphical syntax that supports the intuition and makes it
easy to practitioners to master the specification without needing to delve into the underlying theory.

A paradigmatic class of such formalisms are message-sequence charts (MSCs) [18, 9, 19, 11, 10, 2].
A mechanism to statically detect realisability in MSCs is proposed in [3]. The notions of non-local choices
and of termination considered in [3] are less than than our verification conditions since intra-participant
concurrency is not allowed and termination awareness (Definition 6) is not enforced. In the context of
choreographies, several works (e.g., [4, 7, 12]) defined constraints to guarantee the soundness of the
projections of global specifications. These approaches address the problem for specific languages, thus
these conditions often use information on the syntactical structure of the specification. Instead, conditions
presented in Section 4 are syntax-oblivious and they make minimal assumptions on the communication
model. Therefore, our results can be applied to a wide range of languages.

The closure conditions reviewed in Section 3 have been initially introduced in [1] to study realisability
of MSC. The replacement in the framework of MSC with pomsets is technically straightforward and yields
more general results, since it enables multi-threaded participants. In Section 3, to avoid systems where
participants can get stuck due to the termination of some partners, we introduce the notion of termination
soundness and demonstrate sufficient conditions that guarantee it. Then, we introduce new verification
conditions for the distributed realisability of pomsets, which can tame the combinatorial explosion due to
the interleaving of communication events.

A problem related to realisability is satisfiability of logical formulae. Model checkers use temporal
logic, i.e. LTL, to formalize system specifications. A general problem that must be faced is that formal
specifications can be wrong as their implementations. For instance, if a formula is unsatisfiable, then the
specification is probably incorrect. Similarly to realisability, the problem of satisfiability of a temporal
formula [21] allows to demonstrate that there exists an implementation that meets the specification.

7 Concluding remarks

There are some open questions to address. Pomset semantics of recursive processes is infinite, which
precludes to directly use these results for global specifications that have loops. In [5] pomsets were used
in combination with proved transition systems to give an non-interleaving semantics of CCS; basically,
given a sequence of transitions p α1−→ ·· · αn−→ q between two CCS processes p and q, a pomset r can be
derived from a proved transition system so that r represents the equivalence class of traces between p and
q “compatible” with traces labelled α1, . . . ,αn. This work can help us to generalise our results to infinite
computations.

Realisability of high-level MSCs has been addressed in [16], but the verification conditions are not
syntax-oblivious. The conditions of Section 4 are sufficient but not necessary conditions for realisability.
This is due to the fact that the same semantics (i.e., set of traces) can be expressed using different sets of

50 Realisability of Pomsets

pomsets by exploring different interleavings. We do not know if a notion of normal forms for families of
pomsets can be used to guarantee that our conditions are necessary. We conjecture that our semantics
could be applied to other coordination paradigms such as order-preserving asynchronous message-passing
(as the original semantics of CFSMs), synchronous communications, or tuple based coordination. We
leave the exploration of the robustness of our framework as future work. Finally, we plan to extend
ChorGram [15], a tool we are currently developing, to implement our theoretical framework and apply it
to the analysis of global specifications.

References

[1] Rajeev Alur, Kousha Etessami & Mihalis Yannakakis (2003): Inference of Message Sequence Charts. IEEE
Trans. Software Eng. 29(7), pp. 623–633, doi:10.1109/TSE.2003.1214326.

[2] Rajeev Alur, Gerard J. Holzmann & Doron Peled (1996): An analyzer for message sequence charts. In Tiziana
Margaria & Bernhard Steffen, editors: TACAS, Springer, pp. 35–48, doi:10.1007/3-540-61042-1 37.

[3] Hanêne Ben-Abdallah & Stefan Leue (1997): Syntactic detection of process divergence and non-local choice
in message sequence charts. In: International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, Springer, pp. 259–274, doi:10.1007/BFb0035393.

[4] Laura Bocchi, Hernán C. Melgratti & Emilio Tuosto (2014): Resolving Non-determinism in Choreographies.
In: ESOP, pp. 493–512, doi:10.1007/978-3-642-54833-8 26.

[5] Gérard Boudol & Ilaria Castellani (1988): Permutation of transitions: an event structure semantics for CCS
and SCCS. In J.W. de Bakker, W.-P. de Roever & G. Rozenberg, editors: Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, Lecture Notes in Computer Science 354, Springer, pp.
411–427, doi:10.1007/BFb0013028.

[6] Daniel Brand & Pitro Zafiropulo (1983): On Communicating Finite-State Machines. Journal of the ACM
30(2), pp. 323–342, doi:10.1145/322374.322380.

[7] Marco Carbone, Kohei Honda & Nobuko Yoshida (2007): A Calculus of Global Interaction based
on Session Types. Electronic Notes in Theoretical Computer Science 171(3), pp. 127 – 151,
doi:10.1016/j.entcs.2006.12.041.

[8] Haim Gaifman & Vaughan R Pratt (1987): Partial order models of concurrency and the computation of
functions. In: LICS, pp. 72–85.

[9] Emmanuel Gaudin & Eric Brunel (2013): Property Verification with MSC. In: SDL 2013, Springer,
doi:10.1007/978-3-642-38911-5 2.

[10] Elsa L. Gunter, Anca Muscholl & Doron A. Peled (2001): Compositional Message Sequence Charts. In:
TACAS, Springer, pp. 496–511, doi:10.1007/3-540-45319-9 34.

[11] David Harel & Rami Marelly (2003): Come, let’s play: scenario-based programming using LSCs and the
play-engine. Springer, doi:10.1007/978-3-642-19029-2.

[12] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. Journal of
the ACM 63(1), pp. 9:1–9:67, doi:10.1145/2827695. Extended version of a paper presented at POPL08.

[13] Joost-Pieter Katoen & Lennard Lambert (1998): Pomsets for message sequence charts. Formale Beschrei-
bungstechniken für Verteilte Systeme, pp. 197–208.

[14] Susheel Kumar (2017): 7 Reasons Why Organizations Struggle with Mi-
croservices Adoption. https://blogs.perficient.com/integrate/2017/06/26/
7-reasons-why-organization-struggle-with-microservices-adoption/.

[15] Julien Lange & Emilio Tuosto: ChorGram. https://bitbucket.org/emlio_tuosto/chorgram/wiki/
Home.

http://dx.doi.org/10.1109/TSE.2003.1214326
http://dx.doi.org/10.1007/3-540-61042-1_37
http://dx.doi.org/10.1007/BFb0035393
http://dx.doi.org/10.1007/978-3-642-54833-8_26
http://dx.doi.org/10.1007/BFb0013028
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1016/j.entcs.2006.12.041
http://dx.doi.org/10.1007/978-3-642-38911-5_2
http://dx.doi.org/10.1007/3-540-45319-9_34
http://dx.doi.org/10.1007/978-3-642-19029-2
http://dx.doi.org/10.1145/2827695
https://blogs.perficient.com/integrate/2017/06/26/7-reasons-why-organization-struggle-with-microservices-adoption/
https://blogs.perficient.com/integrate/2017/06/26/7-reasons-why-organization-struggle-with-microservices-adoption/
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home

R. Guanciale & E. Tuosto 51

[16] Markus Lohrey (2002): Safe Realizability of High-Level Message Sequence Charts. In Luboš Brim, Mojmı́r
Křetı́nský, Antonı́n Kučera & Petr Jančar, editors: CONCUR, Springer, pp. 177–192, doi:10.1007/3-540-
45694-5 13.

[17] Robin Milner (1999): Communicating and mobile systems - the Pi-calculus. Cambridge University Press.
[18] (2011): Formal description techniques (FDT) - Message Sequence Chart (MSC). Recommendation ITU-T

Z.120. Available at http://www.itu.int/rec/T-REC-Z.120-201102-I/en.
[19] Anca Muscholl & Doron Peled (2005): Deciding Properties of Message Sequence Charts. In Stefan

Leue & Tarja Johanna Systä, editors: Scenarios: Models, Transformations and Tools, Springer, pp. 43–
65, doi:10.1007/11495628 3.

[20] Vaughan Pratt (1986): Modeling concurrency with partial orders. International Journal of Parallel Program-
ming 15(1), pp. 33–71, doi:10.1007/BF01379149.

[21] Kristin Y Rozier & Moshe Y Vardi (2007): LTL satisfiability checking. In: International SPIN Workshop on
Model Checking of Software, Springer, pp. 149–167, doi:10.1007/978-3-540-73370-6 11.

[22] Davide Sangiorgi & David Walker (2001): The π-Calculus: a Theory of Mobile Processes. Cambridge
University Press.

[23] Emilio Tuosto & Roberto Guanciale (2018): Semantics of global view of choreographies. JLAMP 95, pp. 17 –
40, doi:10.1016/j.jlamp.2017.11.002. Available at http://www.sciencedirect.com/science/article/
pii/S2352220816301754.

[24] (2005): Web Services Choreography Description Language Version 1.0. https://www.w3.org/TR/
ws-cdl-10/.

http://dx.doi.org/10.1007/3-540-45694-5_13
http://dx.doi.org/10.1007/3-540-45694-5_13
http://www.itu.int/rec/T-REC-Z.120-201102-I/en
http://dx.doi.org/10.1007/11495628_3
http://dx.doi.org/10.1007/BF01379149
http://dx.doi.org/10.1007/978-3-540-73370-6_11
http://dx.doi.org/10.1016/j.jlamp.2017.11.002
http://www.sciencedirect.com/science/article/pii/S2352220816301754
http://www.sciencedirect.com/science/article/pii/S2352220816301754
https://www.w3.org/TR/ws-cdl-10/
https://www.w3.org/TR/ws-cdl-10/

	1 Introduction
	2 Pomsets and message-sequence charts
	3 Realisability and termination soundness of pomsets
	4 Pomset based verification conditions
	5 Discussion on the pomset based conditions
	6 Related work
	7 Concluding remarks

