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Università degli Studi di Cagliari

maurizio.murgia@unica.it

We study compliance relations between behavioural contracts in a syntax independent setting based
on Labelled Transition Systems. We introduce a fix-point based family of compliance relations, and
show that many compliance relations appearing in literature belong to this family.

1 Introduction

Behavioural contracts are abstract descriptions of the external behaviour and interaction scheme of
distributed services [17]. They often come together with some compliance relation, which intuitively
relates contracts of services whose composition is correct, where the notion of correctness is specific
to the application domain [8]. In a related line of research, so called testing theories are used to study
observational equivalence of CCS processes through the concept of passing a test [14]. Roughly, two
processes are equivalent if they pass the same sets of tests. Tests are themselves processes, and a process
passes a test when its parallel composition with the test enjoys some behavioural property (e.g., must
or may reach a successful state). In retrospect, the relation between a process and a passed test can be
seen as a compliance relation [18]. A selection of compliance/test relations, and their relative merits and
inclusions, has been surveyed in [8] in a common ground based on Labelled Transition Systems. However,
there is still lack of a general unifying theory of compliance relations, which would help to improve
current practices in design and implementation of distributed concurrent systems.

Contribution. This paper is a first step towards a better understanding of the mathematical foundations
of compliance relations. The starting point is a simple observation, based on two well known compliance
relations: progress and must compliance. Progress relates contracts whose composition never gets stuck,
or terminates in a successful state. Must relates contracts whose composition always terminates in a
successful state. Intuitively, there is a duality between progress, which allows infinite behaviour, and must,
which is only about finite behaviour. Two standard tools for reasoning about finiteness and infiniteness
are, respectively, induction and coinduction, or, equivalently, least and greatest fixed points of monotonic
functionals over complete lattices. This paper introduces a family of compliance relations, dubbed
fix-compliance relations, defined as the set of fixed point of a simple and natural functional. We show that
progress and must are, respectively, the greatest and the least fixed point of such compliance functional. We
also consider other notions of compliance. For instance, should and behavioural compliance, which allow
for infinite behaviour but with some limitations, turn out to be intermediate fixed points. Some compliance
relations in literature are not fix-compliance, e.g. IO-compliance and may compliance. However, it turn
out that IO-compliance is a post-fixed point, while may is a pre-fixed point.

∗This work has been partially supported by Aut. Reg. of Sardinia project Smart collaborative engineering. We thank the
anonymous reviewers for their useful comments on a previous version of this work.
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Synopsis. We start introducing the contract model and some notation in Section 2. We then define the
compliance functional and the concept of fix-compliance in Section 3. In the rest of Section 3 we present
several known compliance relations, and we show how the fit the fix-compliance framework. Section 4
discusses related works and concludes. Some rappresentative proofs are relegated to Appendix A.

2 Contracts

In this section we present a model of contracts, following the lines of [8]. Contracts are formalised as
states of a Labelled Transition System (LTS) where labels are partitioned into internal, input, and output
actions. All the compliance relations defined later on in Section 3 will be formalised as binary relations
between states.

Our treatment is developed within the LTS
(
U,Aτ ,

{
`τ−→
∣∣∣`τ ∈ Aτ

})
, where:

• U is the universe of states (ranged over by p,q, . . .), also called contracts;

• Aτ (ranged over by `τ , `
′
τ , . . .) is the set of labels, partitioned into input actions ?a,?b, . . . ∈ A?,

output actions !a, !b, . . . ∈ A!, and the internal action τ;

• `τ−→⊆ U×U is a transition relation, for all `τ .

We let `,`′, . . . range over A= A?∪A!. We postulate an involution co(·) on A, such that co(?a) = !a
and co(!a) = ?a. The reducts of p are the states reachable from p with a finite sequence of transitions with
any label, while the `τ -reducts of p are the states reachable from p with a finite sequence of transitions

with label `τ . A trace is a (possibly infinite) sequence p0
`τ

(1)

−−→ p1
`τ

(2)

−−→ ·· · . A τ-trace is a trace where
`τ

(i) = τ , for all i (similarly for τ-reduct). We assume that there exists a unique state with no outgoing

transitions. Such state is denoted by 0. Note that, since 0 is unique, if p is such that p 6 `τ−→ for all `τ , then
p = 0. We interpret 0 as a correctly terminated state, and we will often refer to 0 as the success state.

Notation 1. We adopt the following notation:

• R∗ for the reflexive and transitive closure of a relation R

• p `τ−→ when ∃p′ . p `τ−→ p′. Further, we write p−→ when ∃`τ . p `τ−→
• for a set L⊆ A, we define L? = L∩A? and L! = L∩A!

• =⇒= (
τ−→)∗ is the weak transition relation. We define `τ=⇒ as =⇒ `τ−→=⇒

• p↓ =
{
`
∣∣∣ p `−→

}
are the barbs of p, and p⇓ =

{
`
∣∣∣ p `

=⇒
}

are its weak barbs

• p↑ is true when p has an infinite internal computation p τ−→ p1
τ−→ p2

τ−→ ·· ·
The above notation for −→ is extended to =⇒ as expected.

In order to define parallel composition of contracts, we require some additional structure on U.
In particular, we assume U to be closed under a binary operation ‖. Contracts in the form p ‖ q are
called compositions, and we refer to the left component p as the client and the right component q as the
server. Compositions where the client is 0 are called successful , and we refer to the set of all successful
compositions as S. Formally, S= {0‖ p | p ∈ U}. Note that 0 models success of a single participant,
while the elements of S model success of compositions of (at least) two participants. Intuitively, S contains
all compositions in which the client is terminated, and so in which the server has successfully satisfied the
client. This asymmetric notion can be found in previous work [5].

The semantics of compositions formalises the standard synchronisation à la CCS [20].
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Figure 1: Some pairs of contracts.

Definition 1 (Parallel composition). For all p,q ∈ U, we impose p ‖ q ∈ U. The transition relation of
compositions contains all and only the transitions that can be derived with the following rules:

p `τ−→ p′

p‖q `τ−→ p′ ‖q

q `τ−→ q′

p‖q `τ−→ p‖q′
p `−→ p′ q

co(`)−−−→ q′

p‖q τ−→ p′ ‖q′

3 A fixed-point based family of compliance relations

In this section we introduce a general class of compliance relations between behaviours, based on the
compliance functional C defined below. We then show that many compliance relations in literature, but
not all, fit within this class. Compliance relation in this class have the following properties:

• contracts whose composition is successful are compliant;

• compositions of compliant contracts never get stuck before a successful state is reached;

• compliance is preserved by τ-transitions, until a successful state is reached.

Definition 2. We define the compliance functional C : U2→ U2 as follows:

C(x) = S∪
{
(p,q)

∣∣∣ p‖q τ−→∧ (p‖q τ−→p′ ‖q′ =⇒ (p′,q′) ∈ x)
}

We say that a relation R⊆ U2 is:

• a pre-compliance relation if R is a pre-fixed point of C, that is C(R)⊆R;

• a post-compliance relation if R is a post-fixed point of C, that is R⊆ C(R);

• a fix-compliance relation if R is a fixed-point of C, that is R= C(R).

We start recalling that, by the Knaster-Tarski theorem [22], every monotonic endo-function over a
complete lattice has a least fixed point and a greatest fixed point (they may coincide). Furthermore, the
least fixed-point coincides with the least pre-fixed point and the greatest fixed point coincides with the
greatest post-fixed point. We will now on work on the complete lattice U×U ordered by set inclusion. It
is easy to verify that C is monotonic with respect to ⊆, that is, for all x,y⊆ U×U:

x⊆ y =⇒ C(x)⊆ C(y)
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Progress compliance. We start by considering the notion of progress, which consists of absence of
deadlocks (on the client-side, since we are considering the asymmetric relation). Formally, in Definition 3
we say that a contract p has progress with q (in symbols, p Cpg q) iff, whenever a τ-reduct of p ‖ q is
stuck, then p has reached the success state.

Definition 3 (Progress). We write p Cpg q iff:

p‖q =⇒ p′ ‖q′ 6 τ−→ implies p′ = 0

This notion has been used e.g. in τ-less CCS [13], in session types (both untimed [5] and timed [6]),
and in types for CaSPiS [2].

Example 1. Consider the behaviours in fig. 1.

• We have that p1 Cpg q1: the composition p1 ‖q1 can only τ-reduce through a synchronisation on a,
leading to a successful state.

• The composition p2 ‖q2 can only take the p2 τ-move, and then synchronise on a, going back to the
starting state. Therefore, p2 Cpg q2.

• The composition p3 ‖q3 may τ-reduce through a synchronisation on b, leading to a state which is
stuck (no τ-reductions are possible) but unsuccessful (p3 is not terminated as she can emit a ?c
action). Therefore, p3 6Cpg q3.

• The composition p4 ‖q4 can loop taking the p4 τ-move, or τ-reduce to a successful state through a
synchronisation on a. Therefore, p4 Cpg q4.

It turns out that Cpg is the largest fix-compliance.

Proposition 1. Cpg is the largest fix-compliance.

An important consequence of Proposition 1 is that all post-compliance relations enjoy the progress
property (as defined in Definition 3): indeed, if x is a post-compliance, then, by the Knaster-Tarki Theorem
it follows x⊆Cpg.

Must-testing compliance. The notion of compliance in [3] is inspired to must-testing [14]. Must
testing requires a contract to reach success in all (sufficiently long) traces. Formally, we say that a τ-trace
r0 −→ r1 −→ ·· · is maximal if it is infinite, or if it ends in a state rn such that rn 6

τ−→. A behaviour p is
must-testing compliant with q (in symbols, p Cmst q) if, in all the maximal τ-traces of p‖q, the contract p
reaches the 0 state.

Definition 4 (Must-testing compliance). We write p0 Cmst q0 iff

for all maximal τ-traces p0 ‖q0
τ−→ p1 ‖q1

τ−→ ·· · : ∃i≥ 0 . pi = 0
Example 2. Consider the behaviours in fig. 1.

• p1 Cmst q1: the only maximal τ-trace is p1 ‖q1
τ−→ 0‖0, which contains a composition whose left

component is 0.

• p2 6Cmst q2: the composition p2 ‖q2 diverges without visiting a successful state.

• p3 6Cmst q3, basically for the same reason of Example 1.

• p4 6Cmst q4: the composition p4 ‖q4 may perpetually loop taking the p4 τ-move, without visiting
any successful state.

Proposition 2. Cmst is the least fix-compliance relation.



42 A note on compliance relations and fixed points.

Should-testing compliance. We now present a notion of compliance inspired by the theory of should-
testing [12, 21]. A behaviour p is should-testing compliant with q (in symbols, p Cshd q) if, after every
possible finite τ-trace of p‖q, there exists a subsequent (finite) τ-trace which leads p to the success state.

Definition 5 (Should-testing compliance). We write p Cshd q iff

p‖q =⇒ p′ ‖q′ implies ∃q′′ . p′ ‖q′ =⇒ 0‖q′′

A notion similar to the one in Definition 5 has been used in [11] (under the name of correct contract
composition), and in [1, 7] (where it is named weak termination).

Example 3. Consider the behaviours in fig. 1.

• p1 Cshd q1: the composition p1 ‖q1 can only τ-reduce through a synchronisation on a, leading to a
successful state.

• p2 6Cshd q2. As noted in Example 2, the composition p2 ‖q2 necessarily diverges, and no successful
state is reachable.

• p3 6Cshd q3, for the same reason of Examples 1 and 2.

• p4 Cshd q4. The composition p4 ‖ q4 can loop taking the p4 τ-move, but a successful state is
invariantly reachable through a synchronisation on a.

Proposition 3. Cshd is a fix-compliance relation.

Behavioural compliance. Definition 6 below formalises in our setting the relation called behavioural
compliance in [18, 19]. A contract p is compliant with q (in symbols, p Cbeh q), if, in every possible
τ-reduct p′ ‖q′ of p‖q, two conditions are satisfied: if the reduct is stuck, then p′ has reached success;
otherwise, if q′ alone can produce an infinite τ-trace, then p′ must be able to reach success without further
synchronisations.

Definition 6 (Behavioural compliance). We write p Cbeh q iff:

p‖q =⇒ p′ ‖q′ implies
(

p′ ‖q′ 6 τ−→ implies p′ = 0
)
∧
(
q′ ↑ implies p′ =⇒ 0

)
Example 4. Consider the behaviours in fig. 1.

• p1 Cbeh q1: q2 does not diverge, and the composition p1 ‖q1 can only τ-reduce through a synchron-
isation on a, leading to a successful state.

• p2 Cbeh q2: as noted in Example 1, the composition p2 ‖q2 never gets stuck, and q2 does not diverge.

• p3 6Cbeh q3, for the same reason of Examples 1 to 3.

• p4 6Cbeh q4: Although the composition p4 ‖ q4 never gets stuck, q4 may diverge and p4 cannot
terminate on her own.

Proposition 4. Cbeh is a fix-compliance.
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I/O compliance. In [9], a contract p is considered compliant with q (in symbols, p Cio q), if, in every
possible τ-reduct p′ ‖q′ of p‖q, the weak outputs of p′ are included in the weak inputs of q′; further, if p′

has no weak outputs but still some weak inputs, then they include the weak outputs of q′.

Definition 7 (I/O compliance). We write p Cio q iff p‖q =⇒ p′ ‖q′ implies:

p′⇓! ⊆ co(q′⇓?) ∧
(
(p′⇓! = /0 ∧ p′⇓? 6= /0) =⇒ /0 6= q′⇓! ⊆ co(p′⇓?)

)
Example 5. Consider the behaviours in fig. 1.

• p1 6Cio q1: p1⇓! = {!a, !b} 6⊆ {!a}= co(q1⇓?).

• p2 Cio q2: we have that, in every τ-reduct p′2 ‖ q′2 of p2 ‖ q2, p′2⇓
! = {!a} and co(q′2⇓

?) = {!a}.
Therefore both conjuncts of Definition 7 holds.

• p3 6Cio q3: after a synchronisation on b, a state p′3 ‖q′3 is reached. However, p′3⇓
! = /0 and p′3⇓

? 6= /0,
but q′3⇓

! = /0. Therefore, the second conjunct of Definition 7 does not hold.

• p4 Cio q4: The only reachable states are p4 ‖q4 and 0‖0. As p′2⇓
! = {!a} and co(q′2⇓

?) = {!a},
p4 ‖q4 satisfies the condition of Definition 7. For 0‖0, it does hold as well: 0⇓! = /0 = co(0⇓?).

It turns out that Cio is a post-compliance but not a pre-compliance (and hence not a fix-compliance).
To see why it is not a pre-compliance, consider p1 and q1 from fig. 1. As noted in Example 5, p1 6Cio q1.
However, p1 ‖q1

τ−→ and its unique τ-reduct is successful and hence composed by compliant behaviours.
Therefore, (p1,q1) ∈ C(Cio).

Proposition 5. Cio is a post-compliance relation.

May-testing compliance. In Definition 8, a contract p is said to be may-testing compliant with q (in
symbols, p Cmay q) if there exists a finite τ-trace of p‖q which leads p to the success state.

Definition 8 (May-testing compliance). We write p Cmay q iff

∃q′ . p‖q =⇒ 0‖q′

Example 6. Consider the behaviours in fig. 1.

• p1 Cmay q1: p1 ‖q1 can reach a successful state after a synchronisation on a.

• p2 6Cmay q2: as noted in Example 3, the composition p2 ‖q2 never reach any successful state.

• p3 Cmay q3: p3 ‖q3 can reach a successful state after a synchronisation on a.

• p4 Cmay q4: p4 ‖q4 can reach a successful state after a synchronisation on a.

In a sense, may-testing compliance assumes a cooperative scenario: participants pre-agree on their
internal choices, and the scheduler to only permit the synchronisations leading to success, seen here as a
common goal.

It turns out that Cmay is a pre-compliance relation but not a post-compliance relation (and hence not
a fix-compliance). To see why it is not a post-compliance, consider p3 and q3 of fig. 1. As noted in
Example 6, p3 Cmay q3. However, (p3,q3) 6∈ C(Cmay): through a synchronisation on b, p3 ‖q3 can reduce
to a composition which is not successful nor composed by may-compliant behaviours.

Proposition 6. Cmay is a pre-compliance relation.
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4 Conclusions and related work.

Behavioural contracts and compliance relations have been studied in several works and contexts, e.g.
service-oriented computing [2, 3, 11, 13, 18, 19, 1] and session types [5, 6, 9]. Testing preorders have
been studied in [14, 18, 21]. The definition of testing compliance in this work is slightly different from
the classical ones [14, 18, 21]: there, the successful states are those that can emit the special label e.
Following [8], we consider 0 as the success state. This makes our treatment simple and uniform. The
work [8] presents a taxonomy of compliance relations in a general setting based on LTS similar to the
one used in this paper, but they also study certain subclasses of the model, which correspond to known
contract models or process algebras: session types [16], τ-less CCS [15], contract automata [10] and
interface automata [4]. Our work, instead, studies only on the full model, focusing on the mathematical
foundations, and revealing the important role of the compliance functional C. Among the compliance
relations surveyed in [8], only IA-compliance (inspired to Interface Automata compatibility) does not
seem to be related to C in any way. This seems due to the fact that Interface Automata, being naturally
suited for modelling systems composed of many components, do not fit well our binary setting.

We have introduced a family of compliance relations, showing how different treatments to divergences
in distributed systems correspond to different fixed-point of a general functional. In particular:

• Must compliance, which disallows any form of divergence, is the least fixed-point of C.

• Should compliance relates contracts whose composition may diverge, but only if a successful
terminated state is always reachable. In a sense, should assumes fairness (but not full cooperation)
of participants and the scheduler to reach a success state. This form of fairness is captured as an
intermediate fixed-point of C.

• Behavioural compliance relates contracts whose composition may diverge, but forbids situations in
which divergence of the server disallows the client to successfully terminate. In this case the server
is considered adversarial. Also this compliance is an intermediate fixed-point of C.

• Progress compliance allows any form of divergence, and is indeed the greatest fixed point of C.

We have shown two examples of compliance relations appearing in literature that are not fixed-point of
C, but turn out to be pre- or post-fixed point of it. Post-compliance relations, like IO-compliance, still
guarantee the good behavioural properties reported in Section 3, namely stuck-freedom and preservation
of compliance by τ-reduction, but somehow relate fewer contracts than expected. In the specific case
of IO-compliance, this is caused by the asymmetric treatment of outputs and inputs. The case of may
compliance, is quite enigmatic: may compliance, being “cooperative” in nature [8], is out of the scope
of fix-compliance relations, which are biased towards the non-cooperative scenario, but still may is a
pre-compliance, and so fits somehow in our setting. It is still unclear to us whether this can lead to useful
consequences, or it holds just by coincidence.

A possible future direction is the study of cooperative compliance relations through fixed-points. For
instance, we would expect may compliance to be the least fixed-point of some suitable functional. We
expect the greatest fixed-point of such functional to be a kind of cooperative progress, relating contracts
whose composition produces at least one execution which is infinite or terminates in a successful state.
An interesting but challenging future direction is characterising the subcontract preorders [13] induced by
fix-compliance relations.
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A Proofs

Proof of Proposition 2 on page 41

Proof. According to the Knaster-Tarski theorem, it suffice to show that Cmst is the least pre-fixed point of
C. In turn, this can proved by showing that must is a pre-fixed point of C, and that any other pre-fixed
point of C is larger than Cmst.

• For the first part, we have to show that C(Cmst) ⊆Cmst. So, let (p,q) ∈ C(Cmst). If (p,q) ∈ S, it
must be p = 0, and so for every maximal τ-trace p0 ‖q0

τ−→ p1 ‖q1
τ−→ . . ., with p0 = p and q0 = q,

there is i such that pi = 0: just take i = 0. If (p,q) 6∈ S, by definition of C, we have that p‖q τ−→,
and, for all p′ ‖q′ such that p‖q τ−→ p′ ‖q′, it holds that p′ Cmst q′ (1). Let p‖q τ−→ p1 ‖q1

τ−→ . . . be a
maximal trace. Note that, by (1), it holds that p1 Cmst q1. Therefore, the maximal trace p1 ‖q1

τ−→ . . .

eventually reaches a state whose left contract is 0, and thus also the trace p‖q τ−→ p1 ‖q1
τ−→ . . ., as

required.

• For the second part, let X be a pre-fixed point of C, i.e. C(X)⊆ X . We have to show Cmst⊆ X . So,
let p Cmst q. If p = 0, it must be (p,q) ∈ S, and so, by definition of C, it follows (p,q) ∈ C(X).
Since C(X) ⊆ X by assumption, we have that (p,q) ∈ X , as required. If p 6= 0, first note that it
must be p‖q τ−→. Indeed, if this is not the case, the only maximal τ-trace starting from p‖q would
be p ‖ q (seen as a singleton trace), which of course does not reach a success state as p is not 0
by assumption. Now suppose, by contradiction, (p,q) 6∈ X . Note that, since C(X)⊆ X , it must be
(p,q) 6∈ C(X). Therefore, by definition of C, there must be (p1,q1) 6∈ X such that p‖q τ−→ p1 ‖q1.
As before, (p1,q1) 6∈ C(X). Iterating the argument again and again, we can construct an infinite
maximal τ-trace p0 ‖ q0

τ−→ p1 ‖ q1
τ−→ . . . (with p0 = p and q0 = q) such that (pi,qi) 6∈ C(X) for

all i. Then, since S ⊆ C(X) by definition of C, it must be (pi,qi) 6∈ S for all i. Then, there is
maximal τ-trace starting from p‖q that do not reach a success state, contradicting the hypothesis
that p Cmst q.

Proof of Proposition 5 on page 43

Proof. We have to show that Cio⊆ C(Cio). So, let p Cio q. The case where p = 0 is immediate, as
(p,q) ∈ S ⊆ C(Cio). For the remaining case p 6= 0, we have to show that p‖q τ−→ and that for all p′,q′

such that p‖q τ−→ p′ ‖q′ it holds that p′ Cio q′. Since p 6= 0, it must be p `τ−→ for some `τ . So, if `τ = τ ,
the thesis follows by the first rule of parallel composition. If `τ ∈ A!, then `τ ∈ p⇓! and so, by the first

conjunct in the definition of Cio, we have that p⇓! ⊆ co(q⇓?). Therefore, q
co(`τ )
===⇒. If the first transition of

such reduction is τ , the thesis follows by an application of the second rule of parallel composition. If the
first transition is `τ , the thesis follows by an application of the third rule. In the remaining case `τ ∈ A?,
we have that `τ ∈ p⇓? 6= /0. So, if p⇓! 6= /0, we can conclude similarly to the previous case. If p⇓! = /0, by
the second conjunct in the definition of Cio, we can conclude that co(`τ) ∈ p⇓?. We can then conclude
similarly to the previous case. It remain to show that for all p′,q′ such that p‖q τ−→ p′ ‖q′ it holds p′ Cio q′.
But this follows immediately by the definition of Cio, because p′ ‖q′ is a τ-reduct of p‖q.
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