
J. Lange, A. Mavridou, L. Safina, A. Scalas (Eds.):

14th Interaction and Concurrency Experience (ICE 2021).

EPTCS 347, 2021, pp. 38–56, doi:10.4204/EPTCS.347.3

© Van den Heuvel & Pérez

This work is licensed under the

Creative Commons Attribution License.

Deadlock Freedom for

Asynchronous and Cyclic Process Networks*

Bas van den Heuvel and Jorge A. Pérez

University of Groningen, The Netherlands

This paper considers the challenging problem of establishing deadlock freedom for message-passing

processes using behavioral type systems. In particular, we consider the case of processes that im-

plement session types by communicating asynchronously in cyclic process networks. We present

APCP, a typed process framework for deadlock freedom which supports asynchronous communica-

tion, delegation, recursion, and a general form of process composition that enables specifying cyclic

process networks. We discuss the main decisions involved in the design of APCP and illustrate its

expressiveness and flexibility using several examples.

1 Introduction

Modern software systems often comprise independent components that interact by passing messages.

The π-calculus is a consolidated formalism for specifying and reasoning about message-passing pro-

cesses [19, 20]. Type systems for the π-calculus can statically enforce communication correctness. In

this context, session types are a well-known approach, describing two-party communication protocols

for channel endpoints and enforcing properties such as protocol fidelity and deadlock freedom.

Session type research has gained a considerable impulse after the discovery by Caires and Pfen-

ning [7] and Wadler [28] of Curry-Howard correspondences between session types and linear logic [12].

Processes typable in type systems derived from these correspondences are inherently deadlock free. This

is because the CUT-rule of linear logic imposes that processes in parallel must connect on exactly one

pair of dual endpoints. However, whole classes of deadlock free processes are not expressible with

the restricted parallel composition and endpoint connection resulting from CUT [9]. Such classes com-

prise cyclic process networks in which parallel components are connected on multiple endpoints at once.

Defining a type system for deadlock free, cyclic processes is challenging, because such processes may

contain cyclic dependencies, where components are stuck waiting for each other.

Advanced type systems that enforce deadlock freedom of cyclic process networks are due to Koba-

yashi [17], who exploits priority annotations on types to avoid circular dependencies. Dardha and Gay

bring these insights to the realm of session type systems based on linear logic by defining Priority-based

CP (PCP) [8]. Indeed, PCP incorporates the type annotations of Padovani’s simplification of Kobayashi’s

type system [21] into Wadler’s Classical Processes (CP) derived from classical linear logic [28].

In this paper, we study the effects of asynchronous communication on type systems for deadlock free

cyclic process networks. To this end, we define Asynchronous PCP (APCP), which combines Dardha

and Gay’s type annotations with DeYoung et al.’s semantics for asynchronous communication [10], and

adds support for tail recursion. APCP uncovers fundamental properties of type systems for asynchronous

communication, and simplifies PCP’s type annotations while preserving deadlock freedom results.

*Research partially supported by the Dutch Research Council (NWO) under project No. 016.Vidi.189.046 (Unifying Cor-

rectness for Communicating Software).

http://dx.doi.org/10.4204/EPTCS.347.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Van den Heuvel & Pérez 39

In Section 2, we motivate APCP by discussing Milner’s cyclic scheduler [19]. Section 3 defines

APCP’s language and type system, and proves Type Preservation (Theorem 2) and Deadlock Freedom

(Theorem 6). In Section 4, we showcase APCP by returning to Milner’s cyclic scheduler and using

examples inspired by Padovani [21] to illustrate asynchronous communication and deadlock detection.

Section 5 discusses related work and draws conclusions.

2 Motivating Example: Milner’s Cyclic Scheduler

We motivate by example the development of APCP, our type system for deadlock freedom in asyn-

chronous, cyclic message-passing processes. We consider Milner’s cyclic scheduler [19], which crucially

relies on asynchrony and recursion. This example is inspired by Dardha and Gay [8], who use PCP to

type a synchronous, non-recursive version of the scheduler.

A1

A2

A3

A4

A5

A6

P1

P2

P3

P4

P5

P6

Figure 1: Milner’s cyclic sche-

duler with 6 workers.

Lines denote channels connect-

ing processes.

The system consists of n ≥ 1 worker processes Pi (the workers, for

short), each attached to a partial scheduler Ai. The partial schedulers

connect to each other in a ring structure, together forming the cyclic

scheduler. The scheduler then lets the workers perform their tasks in

rounds, each new round triggered by the leading partial scheduler A1

(the leader) once each worker finishes their previous task. We refer to

the non-leading partial schedulers Ai+1 for 1 ≤ i < n as the followers.

Each partial scheduler Ai has a channel endpoint ai to connect with

the worker Pi’s channel endpoint bi. The leader A1 has an endpoint cn

to connect with An and an endpoint d1 to connect with A2 (or with A1

if n = 1; we further elude this case for brevity). Each follower Ai+1 has

an endpoint ci to connect with Ai and an endpoint di+1 to connect with

Ai+2 (or with A1 if i+1 = n; we also elude this case).

In each round of the scheduler, each follower Ai+1 awaits a start

signal from Ai, and then asynchronously signals Pi+1 and Ai+2 to start. After awaiting acknowledgment

from Pi+1 and a next round signal from Ai, the follower then signals next round to Ai+2. The leader A1, re-

sponsible for starting each round of tasks, signals A2 and P1 to start, and, after awaiting acknowledgment

from P1, signals next round to A2. Then, the leader awaits An’s start and next round signals.

It is crucial that A1 does not await An’s start signal before starting P1, as the leader would otherwise

not be able to initiate rounds of tasks. Asynchrony thus plays a central role here: because An’s start signal

is non-blocking, it can start Pn before A1 has received the start signal. Of course, A1 does not need to

await An’s start and next round signals to make sure that every partial scheduler is ready to start the next

round.

Let us specify the partial schedulers formally:

A1 := µX(a1,cn,d1);d1 ⊳ start ·a1 ⊳ start ·a1 ⊲ack;d1 ⊳next · cn ⊲ start;cn ⊲next;X〈a1,cn,d1〉

Ai+1 := µX(ai+1,ci,di+1); ci ⊲ start;ai+1 ⊳ start ·di+1 ⊳ start ·ai+1 ⊲ ack;

ci ⊲next;di+1 ⊳next ·X〈ai+1,ci,di+1〉
∀1 ≤ i < n

The syntax ‘µX(x̃);P’ denotes a recursive loop where P has access to the endpoints in x̃ and P may

contain recursive calls ‘X〈ỹ〉’ where the endpoints in ỹ are assigned to x̃ in the next round of the loop. The

syntax ‘x⊳ ℓ’ denotes the output of label ℓ on x, and ‘x⊲ ℓ’ denotes the input of label ℓ on x. Outputs are

non-blocking, denoted ‘·’, whereas inputs are blocking, denoted ‘;’. For example, process x ⊳ ℓ · y⊲ ℓ′;P

may receive ℓ′ on y and continue as x⊳ ℓ ·P.

40 Deadlock Freeodm for Asynchronous and Cyclic Process Networks

Leaving the workers unspecified, we formally specify the complete scheduler as a ring of partial

schedulers connected to workers:

Schedn := (νννcidi)1≤i≤n(∏1≤i≤n(νννaibi)(Ai |Pi))

The syntax ‘(νννxy)P’ denotes the connection of endpoints x and y in P, and ‘∏i∈IPi’ and ‘P |Q’ denote

parallel composition. Figure 1 illustrates Sched6, the scheduler for six workers.

We return to this example in Section 4, where we type check the scheduler using APCP to show that

it is deadlock free.

3 APCP: Asynchronous Priority-based Classical Processes

In this section, we define APCP, a linear type system for π-calculus processes that communicate asyn-

chronously (i.e., the output of messages is non-blocking) on connected channel endpoints. In APCP,

processes may be recursive and cyclically connected. Our type system assigns to endpoints types that

specify two-party protocols, in the style of binary session types [14].

APCP combines the salient features of Dardha and Gay’s Priority-based Classical Processes (PCP) [8]

with DeYoung et al.’s semantics for asynchronous communication [10], both works inspired by Curry-

Howard correspondences between linear logic and session types [7, 28]. Recursion—not present in the

works by Dardha and Gay and DeYoung et al.—is an orthogonal feature, whose syntax is inspired by the

work of Toninho et al. [25].

As in PCP, types in APCP rely on priority annotations, which enable cyclic connections by ruling out

circular dependencies between sessions. A key insight of our work is that asynchrony induces significant

improvements in priority management: the non-blocking outputs of APCP do not need priority checks,

whereas PCP’s outputs are blocking and thus require priority checks.

Properties of well-typed APCP processes are type preservation (Theorem 2) and deadlock freedom

(Theorem 6). This includes cyclically connected processes, which priority-annotated types guarantee

free from circular dependencies that may cause deadlock.

3.1 The Process Language

We consider an asynchronous π-calculus [15, 4]. We write x,y,z, . . . to denote (channel) endpoints (also

known as names), and write x̃, ỹ, z̃, . . . to denote sequences of endpoints. Also, we write i, j,k, . . . to

denote labels for choices and I,J,K, . . . to denote sets of labels. We write X ,Y, . . . to denote recursion

variables, and P,Q, . . . to denote processes.

Figure 2 (top) gives the syntax of processes. The output action ‘x[y,z]’ sends a message y (an end-

point) and a continuation endpoint z along x. The input prefix ‘x(y,z);P’ blocks until a message and

a continuation endpoint are received on x (referred to in P as the placeholders y and z, respectively),

binding y and z in P. The selection action ‘x[z]⊳ i’ sends a label i and a continuation endpoint z along x.

The branching prefix ‘x(z) ⊲ {i : Pi}i∈I’ blocks until it receives a label i ∈ I and a continuation endpoint

(reffered to in Pi as the placeholder z) on x, binding z in each Pi. Restriction ‘(νννxy)P’ binds x and y

in P, thus declaring them as the two endpoints of the same channel and enabling communication, as in

Vasconcelos [27]. The process ‘(P |Q)’ denotes the parallel composition of P and Q. The process ‘000’

denotes inaction. The forwarder process ‘x↔ y’ is a primitive copycat process that links together x and

y. The prefix ‘µX(x̃);P’ defines a recursive loop, binding occurrences of X in P; the endpoints x̃ form

a context for P. The recursive call ‘X〈x̃〉’ loops to its corresponding µX , providing the endpoints x̃ as

Van den Heuvel & Pérez 41

Process syntax:

P,Q ::= x[y,z] output | x(y,z);P input

| x[z]⊳ i selection | x(z)⊲{i : Pi}i∈I branching | (νννxy)P restriction

| (P |Q) parallel | 000 inaction | x↔ y forwarder

| µX(x̃);P recursive loop | X〈x̃〉 recursive call

..

Structural congruence:

P ≡α P′ =⇒ P ≡ P′ x↔ y ≡ y↔ x

P |Q ≡ Q |P (νννxy)x↔ y ≡ 000

P |000 ≡ P P | (Q |R)≡ (P |Q) |R

x,y /∈ fn(P) =⇒ P | (νννxy)Q ≡ (νννxy)(P |Q) (νννxy)000 ≡ 000

|x̃|= |ỹ| =⇒ µX(x̃);P ≡ P{µX(ỹ);P{ỹ/x̃}/X〈ỹ〉} (νννxy)P ≡ (νννyx)P

(νννxy)(νννzw)P ≡ (νννzw)(νννxy)P
..

Reduction:

βID z,y 6= x =⇒ (νννyz)(x↔ y |P)−→P{x/z}

β⊗

& (νννxy)(x[a,b] | y(v,z);P)−→P{a/v,b/z}

β⊕& j ∈ I =⇒ (νννxy)(x[b]⊳ j | y(z)⊲{i : Pi}i∈I)−→Pj{b/z}

κ & x /∈ ṽ, w̃ =⇒ (ννν ṽw̃)(x(y,z);P |Q)−→x(y,z);(ννν ṽw̃)(P |Q)

κ& x /∈ ṽ, w̃ =⇒ (ννν ṽw̃)(x(z)⊲{i : Pi}i∈I |Q)−→x(z)⊲{i : (ννν ṽw̃)(Pi |Q)}i∈I

(P ≡ P′)∧ (P′−→Q′)∧ (Q′ ≡ Q)
�≡

P−→Q

P−→Q
�ν

(νννxy)P−→ (νννxy)Q

P−→Q
�|

P |R−→Q |R

Figure 2: Definition of APCP’s process language.

context. We only consider contractive recursion, disallowing processes with subexpressions of the form

‘µX1(x̃); . . . ; µXn(x̃);X1〈x̃〉’.

Endpoints and recursion variables are free unless otherwise stated (i.e., unless they are bound some-

how). We write ‘fn(P)’ and ‘frv(P)’ for the sets of free names and free recursion variables of P, respec-

tively. Also, we write ‘P{x/y}’ to denote the capture-avoiding substitution of the free occurrences of y

in P for x. The notation ‘P{µX(ỹ);P′/X〈ỹ〉}’ denotes the substitution of occurrences of recursive calls

‘X〈ỹ〉’ in P with the recursive loop ‘µX(ỹ);P′’, which we call unfolding recursion. We write sequences

of substitutions ‘P{x1/y1} . . . {xn/yn}’ as ‘P{x1/y1,...,xn/yn}’.

Except for asynchrony and recursion, there are minor differences with respect to the languages of

Dardha and Gay [8] and DeYoung et al. [10]. Unlike Dardha and Gay’s, our syntax does not include

empty input and output prefixes that explicitly close channels; this simplifies the type system. We also

do not include the operator for replicated servers, denoted ‘!x(y);P’, which is present in the works by

42 Deadlock Freeodm for Asynchronous and Cyclic Process Networks

both Dardha and Gay and DeYoung et al. Although replication can be handled without difficulties, we

omit it here; we prefer focusing on recursion, because it fits well with the examples we consider. We

discuss further these omitted constructs in Section 3.4.

Simplifying Notation In an output ‘x[y,z]’, both y and z are free; they can be bound to a continuation

process using parallel composition and restriction, as in (νννya)(νννzb)(x[y,z] |Pa,b). The same applies to

selection ‘x[z]⊳ i’. We introduce useful notations that elide the restrictions and continuation endpoints:

Notation 1 (Derivable Actions and Prefixes). We use the following syntactic sugar:

x[y] ·P := (νννya)(νννzb)(x[a,b] |P{z/x}) x⊳ ℓ ·P := (νννzb)(x[b]⊳ ℓ |P{z/x})

x(y);P := x(y,z);P{z/x} x⊲{i : Pi}i∈I := x(z)⊲{i : Pi{z/x}}i∈I

Note the use of ‘ · ’ instead of ‘ ; ’ in output and selection to stress that they are non-blocking.

Operational Semantics We define a reduction relation for processes (P−→Q) that formalizes how

complementary actions on connected endpoints may synchronize. As usual for π-calculi, reduction

relies on structural congruence (P ≡ Q), which equates the behavior of processes with minor syntactic

differences; it is the smallest congruence relation satisfying the axioms in Figure 2 (middle).

Structural congruence defines the following properties of our process language. Processes are equiv-

alent up to α-equivalence. Parallel composition is associative and commutative, with unit ‘000’. The

forwarder process is symmetric, and equivalent to inaction if both endpoints are bound together through

restriction. A parallel process may be moved into or out of a restriction as long as the bound channels do

not appear free in the moved process: this is scope inclusion and scope extrusion, respectively. Restric-

tions on inactive processes may be dropped, and the order of endpoints in restrictions and of consecutive

restrictions does not matter. Finally, a recursive loop is equivalent to its unfolding, replacing any recur-

sive calls with copies of the recursive loop, where the call’s endpoints are pairwise substituted for the

contextual endpoints of the loop (this is equi-recursion; see, e.g., Pierce [22]).

We can now define our reduction relation. Besides synchronizations, reduction includes commuting

conversions, which allow pulling prefixes on free channels out of restrictions; they are not necessary for

deadlock freedom, but they are usually presented in Curry-Howard interpretations of linear logic [7, 28,

8, 10]. We define the reduction relation ‘P−→Q ’ by the axioms and closure rules in Figure 2 (bottom).

Axioms labeled ‘β ’ are synchronizations and those labeled ‘κ’ are commuting conversions. We write

‘−→β ’ for reductions derived from β -axioms, and ‘−→∗’ for the reflexive, transitive closure of ‘−→’.

Rule βID implements the forwarder as a substitution. Rule β⊗

&synchronizes an output and an input

on connected endpoints and substitutes the message and continuation endpoint. Rule β⊕& synchronizes a

selection and a branch: the received label determines the continuation process, substituting the continua-

tion endpoint appropriately. Rule κ &(resp. κ&) pulls an input (resp. a branching) prefix on free channels

out of enclosing restrictions. Rules →≡, →ν , and →| close reduction under structural congruence, re-

striction, and parallel composition, respectively.

Notice how output and selection actions send free names. This is different from the works by Dardha

and Gay [8] and DeYoung et al. [10], where, following an internal mobility discipline [3], communication

involves bound names only. As we show in the next subsection, this kind of bound output is derivable

(cf. Theorem 1).

Van den Heuvel & Pérez 43

3.2 The Type System

APCP types processes by assigning binary session types to channel endpoints. Following Curry-Howard

interpretations, we present session types as linear logic propositions (cf., e.g., Wadler [28], Caires and

Pfenning [6], and Dardha and Gay [8]). We extend these propositions with recursion and priority anno-

tations on connectives. Intuitively, actions typed with lower priority should be performed before those

with higher priority. We write o,κ ,π,ρ , . . . to denote priorities, and ‘ω’ to denote the ultimate prior-

ity that is greater than all other priorities and cannot be increased further. That is, ∀t ∈ N. ω > t and

∀t ∈ N. ω + t = ω .

Duality, the cornerstone of session types and linear logic, ensures that the two endpoints of a channel

have matching actions. Furthermore, dual types must have matching priority annotations. The following

inductive definition of duality suffices for our tail-recursive types (cf. Gay et al. [11]).

Definition 1 (Session Types and Duality). The following grammar defines the syntax of session types

A,B, followed by the dual A,B of each type. Let o ∈ N∪{ω}.

A,B ::= A⊗o B | A

&

o B |⊕o{i : Ai}i∈I | &o{i : Ai}i∈I | • | µX .A | X

A,B ::= A

&

o B | A⊗o B | &o{i : Ai}i∈I |⊕
o{i : Ai}i∈I | • | µX .A | X

An endpoint of type ‘A⊗o B’ (resp. ‘A

&

o B’) first outputs (resp. inputs) an endpoint of type A and then

behaves as B. An endpoint of type ‘&o{i : Ai}i∈I’ offers a choice: after receiving a label i∈ I, the endpoint

behaves as Ai. An endpoint of type ‘⊕o{i : Ai}i∈I’ selects a label i∈ I and then behaves as Ai. An endpoint

of type ‘•’ is closed; it does not require a priority, as closed endpoints do not exhibit behavior and thus

are non-blocking. We define ‘•’ as a single, self-dual type for closed endpoints, following Caires [5]:

the units ‘⊥’ and ‘111’ of linear logic (used by, e.g., Caires and Pfenning [7] and Dardha and Gay [8] for

session closing) are interchangeable in the absence of explicit closing.

Type ‘µX .A’ denotes a recursive type, in which A may contain occurrences of the recursion variable

‘X ’. As customary, ‘µ’ is a binder: it induces the standard notions of α-equivalence, substitution (de-

noted ‘A{B/X}’), and free recursion variables (denoted ‘frv(A)’). We work with tail-recursive, contractive

types, disallowing types of the form ‘µX1.µXn.X1’. We adopt an equi-recursive view: a recursive

type is equal to its unfolding. We postpone formalizing the unfolding of recursive types, as it requires

additional definitions to ensure consistency of priorities upon unfolding.

The priority of a type is determined by the priority of the type’s outermost connective:

Definition 2 (Priorities). For session type A, ‘pr(A)’ denotes its priority:

pr(A⊗o B) := pr(A

&

o B) := o pr(µX .A) := pr(A)

pr(⊕o{i : Ai}i∈I) := pr(&o{i : Ai}i∈I) := o pr(•) := pr(X) := ω

The priority of ‘•’ and ‘X ’ is ω : they denote “final”, non-blocking actions of protocols. Although ‘⊗’

and ‘⊕’ also denote non-blocking actions, their priority is not constant: duality ensures that the priority

for ‘⊗’ (resp. ‘⊕’) matches the priority of a corresponding ‘

&

’ (resp. ‘&’), which denotes a blocking

action.

Having defined the priority of types, we now turn to formalizing the unfolding of recursive types.

Recall the intuition that actions typed with lower priority should be performed before those with higher

priority. Based on this rationale, we observe that unfolding should increase the priorities of the unfolded

type. This is because the actions related to the unfolded recursion should be performed after the prefix.

The following definition lifts priorities in types:

44 Deadlock Freeodm for Asynchronous and Cyclic Process Networks

Definition 3 (Lift). For proposition A and t ∈ N, we define ‘↑tA’ as the lift operation:

↑t(A⊗o B) := (↑tA)⊗o+t (↑tB) ↑t(⊕o{i : Ai}i∈I) :=⊕o+t{i : ↑tAi}i∈I ↑t• := •

↑t(A

&

o B) := (↑tA)

&

o+t (↑tB) ↑t(&o{i : Ai}i∈I) := &o+t{i : ↑tAi}i∈I

↑t(µX .A) := µX .↑t(A) ↑tX := X

Henceforth, the recursive type ‘µX .A’ and its unfolding ‘A{↑t µX .A/X}’ denote the same type, where the

lift t ∈ N of the unfolded recursive calls depends on the context in which the type appears.

Typing Rules The typing rules of APCP ensure that actions with lower priority are performed before

those with higher priority (cf. Dardha and Gay [8]). To this end, they enforce the following laws:

1. an action with priority o must be prefixed only by inputs and branches with priority strictly smaller

than o—this law does not hold for output and selection, as they are not prefixes;

2. dual actions leading to synchronizations must have equal priorities (cf. Def. 1).

Judgments are of the form ‘P ⊢ Ω;Γ’, where P is a process, Γ is a context that assigns types to channels

(‘x:A’), and Ω is a context that assigns natural numbers to recursion variables (‘X :n’). The intuition

behind the latter context is that it ensures the amount of context endpoints to concur between recursive

definitions and calls. Both contexts Γ and Ω obey exchange: assignments may be silently reordered. Γ

is linear, disallowing weakening (i.e., all assignments must be used) and contraction (i.e., assignments

may not be duplicated). Ω allows weakening and contraction, because a recursive definition does not

necessarily require a recursive call although it may be called more than once. The empty context is

written ‘ /0’. We write ‘pr(Γ)’ to denote the least priority of all types in Γ. Notation ‘(xi:Ai)i∈I’ denotes

indexing of assignments by I. We write ‘↑tΓ’ to denote the component-wise extension of lift to typing

contexts.

Figure 3 (top) gives the typing rules. Typing is closed under structural congruence; we sometimes

use this explicitly in typing derivations in the form of a rule ‘≡’. Axiom ‘EMPTY’ types an inactive

process with no endpoints. Rule ‘•’ silently adds a closed endpoint to the typing context. Axiom ‘ID’

types forwarding between endpoints of dual type. Rule ‘MIX’ types the parallel composition of two

processes that do not share assignments on the same endpoints. Rule ‘CYCLE’ removes two endpoints

of dual type from the context by adding a restriction on them. Note that a single application of ‘MIX’

followed by ‘CYCLE’ coincides with the usual rule ‘CUT’ in type systems based on linear logic [7, 28].

Axiom ‘⊗’ types an output action; this rule does not have premises to provide a continuation process,

leaving the free endpoints to be bound to a continuation process using ‘MIX’ and ‘CYCLE’. Similarly,

axiom ‘⊕’ types an unbounded selection action. Priority checks are confined to rules ‘

&

’ and ‘&’, which

type an input and a branching prefix, respectively. In both cases, the used endpoint’s priority must be

lower than the priorities of the other types in the continuation’s typing context.

Rule ‘REC’ types a recursive definition by eliminating a recursion variable from the recursion context

whose value concurs with the size of the typing context, where contractiveness is guaranteed by requiring

that the eliminated recursion variable may not appear unguarded in each of the context’s types. Axiom

‘VAR’ types a recursive call by adding a recursion variable to the context with the amount of introduced

endpoints. As mentioned before, the value of the introduced and consequently eliminated recursion

variable is crucial in ensuring that a recursion is called with the same amount of channels as required by

its definition.

Let us compare our typing system to that of Dardha and Gay [8] and DeYoung et al. [10]. Besides

our support for recursion, the main difference is that our rules for output and selection are axioms.

Van den Heuvel & Pérez 45

EMPTY
000 ⊢ Ω; /0

P ⊢ Ω;Γ
•

P ⊢ Ω;Γ,x:•
ID

x↔y ⊢ Ω;x:A,y:A

P ⊢ Ω;Γ Q ⊢ Ω;∆
MIX

P |Q ⊢ Ω;Γ,∆

P ⊢ Ω;Γ,x:A,y:A
CYCLE

(νννxy)P ⊢ Ω;Γ

⊗
x[y,z] ⊢ Ω;x:A⊗o B,y:A,z:B

P ⊢ Ω;Γ,y:A,z:B o< pr(Γ) &

x(y,z);P ⊢ Ω;Γ,x:A

&

o B

j ∈ I
⊕

x[z]⊳ j ⊢ Ω;x:⊕o{i : Ai}i∈I ,z:A j

∀i ∈ I. Pi ⊢ Ω;Γ,z:Ai o< pr(Γ)
&

x(z)⊲{i : Pi}i∈I ⊢ Ω;Γ,x:&o{i : Ai}i∈I

P ⊢ Ω,X :|I|;(xi:Ai)i∈I ∀i ∈ I. Ai 6= X
REC

µX((xi)i∈I);P ⊢ Ω;(xi:µX .Ai)i∈I

VAR
X〈(xi)i∈I〉 ⊢ Ω,X :|I|;(xi:X)i∈I

..

P ⊢ Ω;Γ,y:A,x:B
⊗⋆

x[y] ·P ⊢ Ω;Γ,x:A⊗o B

P ⊢ Ω;Γ,x:A j j ∈ I
⊕⋆

x⊳ j ·P ⊢ Ω;Γ,x:⊕o{i : Ai}i∈I

P ⊢ Ω;Γ t ∈ N
LIFT

P ⊢ Ω;↑tΓ

Figure 3: The typing rules of APCP (top) and admissible rules (bottom).

This makes priority checking much simpler for APCP than for Dardha and Gay’s PCP: our outputs

and selections have no typing context to check priorities against, and types for closed endpoints have no

priority at all. Although DeYoung et al.’s output and selection actions are atomic too, their corresponding

rules are similar to the rules of Dardha and Gay: the rules require continuation processes as premises,

immediately binding the sent endpoints.

As anticipated, the binding of output and selection actions to continuation processes (Notation 1)

is derivable in APCP. The corresponding typing rules in Figure 3 (bottom) are admissible using ‘MIX’

and ‘CYCLE’. Note that it is not necessary to include rules for the sugared input and branching in

Notation 1, because they rely on name substitution only and typing is closed under structural congruence

and thus name substitution. Figure 3 (bottom) also includes an admissible rule ‘LIFT’ that lifts a process’

priorities.

Theorem 1. The rules ‘⊗⋆’, ‘⊕⋆’, and ‘LIFT’ in Figure 3 (bottom) are admissible.

Proof. We show the admissibility of rules ⊗⋆ and ⊕⋆ by giving their derivations in Figure 4 (omitting

the recursion context). The rule ‘LIFT’ is admissible, because P ⊢ Ω;Γ implies P ⊢ Ω;↑tΓ (cf. Dardha

and Gay [8]), by simply increasing all priorities in the derivation of P by t.

Theorem 1 highlights how APCP’s asynchrony uncovers a more primitive, lower-level view of message-

passing. In the next subsection we discuss deadlock freedom, which follows from a correspondence

between reduction and the removal of ‘CYCLE’ rules from typing derivations. In the case of APCP, this

requires care: binding output and selection actions to continuation processes leads to applications of

‘CYCLE’ not immediately corresponding to reductions.

46 Deadlock Freeodm for Asynchronous and Cyclic Process Networks

P ⊢ Γ,y:A,x:B
⊗⋆

x[y] ·P ⊢ Γ,x:A⊗o B
⇒

⊗
x[a,b] ⊢ x:A⊗o B,a:A,b:B

P ⊢ Γ,y:A,x:B
≡

P{z/x} ⊢ Γ,y:A,z:B
MIX

x[a,b] |P{z/x} ⊢ Γ,x:A⊗o B,y:A,a:A,z:B,b:B
CYCLE

2

(νννya)(νννzb)(x[a,b] |P{z/x})
︸ ︷︷ ︸

x[y]·P (cf. Notation 1)

⊢ Γ,x:A⊗o B

P ⊢ Γ,x:A j j ∈ I
⊕⋆

x⊳ j ·P ⊢ Γ,x:⊕o{i : Ai}i∈I
⇒

j ∈ I
⊕

x[b]⊳ j ⊢ x:⊕o{i : Ai}i∈I ,b:A j

P ⊢ Γ,x:A j
≡

P{z/x} ⊢ Γ,z:A j
MIX

x[b]⊳ j |P{z/x} ⊢ Γ,x:⊕o{i : Ai}i∈I ,z:A j,b:A j
CYCLE

(νννzb)(x[b]⊳ j |P{z/x})
︸ ︷︷ ︸

x⊳ j·P (cf. Notation 1)

⊢ Γ,x:⊕o{i : Ai}i∈I

Figure 4: Proof that rules ‘⊗⋆’ and ‘⊕⋆’ are admissible (cf. Theorem 1).

3.3 Type Preservation and Deadlock Freedom

Well-typed processes satisfy protocol fidelity, communication safety, and deadlock freedom. All these

properties follow from type preservation (also known as subject reduction), which ensures that reduc-

tion preserves typing. In contrast to Caires and Pfenning [7] and Wadler [28], where type preservation

corresponds to the elimination of (top-level) applications of rule CUT, in APCP it corresponds to the

elimination of (top-level) applications of rule CYCLE.

Theorem 2 (Type Preservation). If P ⊢ Ω;Γ and P−→Q, then Q ⊢ Ω;↑tΓ for t ∈ N.

Proof. By induction on the reduction −→, analyzing the last applied rule (Fig. 2 (bottom)). The cases of

the closure rules �≡, �ν , and �| easily follow from the IH. The key cases are the β - and κ-rules. Figure 5

shows two representative instances (eluding the recursion context Ω): rule β⊗

&(top), a synchronization,

and rule κ &(bottom), a commuting conversion. Note how, in the case of rule κ &, the lift ↑t ensures

consistent priority checks.

Protocol fidelity ensures that processes respect their intended (session) protocols. Communication

safety ensures the absence of communication errors and mismatches in processes. Correct typability

gives a static guarantee that a process conforms to its ascribed session protocols; type preservation gives

a dynamic guarantee. Because session types describe the intended protocols and error-free exchanges,

type preservation entails both protocol fidelity and communication safety. We refer the curious reader to

the early work by Honda et al. [16] for a detailed account, which shows by contradiction that well-typed

processes do not reduce to so-called error processes. This is a well-known and well-understood result.

In what follows, we consider a process to be deadlocked if it is not the inactive process and cannot

reduce. Our deadlock freedom result for APCP adapts that for PCP [8], which involves three steps:

1. First, CYCLE-elimination states that we can remove all applications of CYCLE in a typing deriva-

tion without affecting the derivation’s assumptions and conclusion.

2. Only the removal of top-level CYCLEs captures the intended process semantics, as the removal of

other CYCLEs corresponds to reductions behind prefixes which is not allowed [28, 8]. Therefore,

the second step is top-level deadlock freedom, which states that a process with a top-level CYCLE

reduces until there are no top-level CYCLEs left.

Van den Heuvel & Pérez 47

⊗
x[a,b] ⊢ x:A⊗o B,a:A,b:B

P ⊢ Γ,v:A,z:B &

y(v,z).P ⊢ Γ,y:A

&

o B
MIX+
CYCLE(νννxy)(x[a,b] | y(v,z).P) ⊢ Γ,a:A,b:B

−→
P ⊢ Γ,v:A,z:B

≡
P{a/v,b/z} ⊢ Γ,a:A,b:B

..

Below, the contexts Γ′ and ∆′ together contain ṽ and w̃, i.e. Γ′,∆′ = (vi:Ci)vi∈ṽ,(wi:Ci)wi∈w̃.

P ⊢ Γ,Γ′,y:A,z:B o< pr(Γ) &

x(y,z).P ⊢ Γ,Γ′,x:A

&

o B Q ⊢ ∆,∆′

MIX +CYCLE
∗

(ννν ṽw̃)(x(y,z).P |Q) ⊢ Γ,∆,x:A

&

o B

−→

P ⊢ Γ,Γ′,y:A,z:B Q ⊢ ∆,∆′

MIX +CYCLE
∗

(ννν ṽw̃)(P |Q) ⊢ Γ,∆,y:A,z:B
LIFT

(ννν ṽw̃)(P |Q) ⊢ ↑o+1Γ,↑o+1∆,y:↑o+1A,z:↑o+1B o< pr(↑o+1Γ,↑o+1∆) &

x(y,z).(ννν ṽw̃)(P |Q) ⊢ ↑o+1Γ,↑o+1∆,x:(↑o+1A)

&

o (↑o+1B)

Figure 5: Type Preservation (cf. Theorem 2) in rules β⊗

&(top) and κ &(bottom).

3. Third, deadlock freedom follows for processes typable under empty contexts.

Here, we address cycle-elimination and top-level deadlock-freedom in one proof.

As mentioned before, binding APCP’s asynchronous outputs and selections to continuations involves

additional, low-level uses of CYCLE, which we cannot eliminate through process reduction. Therefore,

we establish top-level deadlock freedom for live processes (Theorem 4). A process is live if it is equiva-

lent to a restriction on active names that perform unguarded actions. This way, e.g., in ‘x[y,z]’ the name

x is active, but y and z are not.

Definition 4 (Active Names). The set of active names of P, denoted ‘an(P)’, contains the (free) names

that are used for unguarded actions (output, input, selection, branching):

an(x[y,z]) := {x} an(x(y,z).P) := {x} an(000) := /0

an(x[z]⊳ j) := {x} an(x(z)⊲{i : Pi}i∈I) := {x} an(x↔ y) := {x,y}

an(P |Q) := an(P)∪ an(Q) an(µX(x̃);P) := an(P)

an((νννxy)P) := an(P)\{x,y} an(X〈x̃〉) := /0

Definition 5 (Live Process). A process P is live, denoted ‘live(P)’, if there are names x,y and process P′

such that P ≡ (νννxy)P′ with x,y ∈ an(P′).

We additionally need to account for recursion: as recursive definitions do not entail reductions, we

must fully unfold them before eliminating CYCLEs.

Lemma 3 (Unfolding). If P ⊢ Ω;Γ, then there is process P⋆ such that P⋆ ≡ P and P⋆ is not of the form

‘µX(x̃);Q’ and P⋆ ⊢ Ω;Γ.

Proof. By induction on the amount n of consecutive recursive definitions prefixing P, such that P is of

the form ‘µX1(x̃); . . . ; µXn(x̃);Q’. If n = 0, the thesis follows immediately by letting P⋆ := P.

48 Deadlock Freeodm for Asynchronous and Cyclic Process Networks

VAR
X〈(yi)i∈I〉 ⊢ Ω′,X :|I|;(yi:X)i∈I...

...
. . .

Q ⊢ Ω,X :|I|;(xi:Ai)i∈I
REC

µX((xi)i∈I);Q ⊢ Ω;(xi:µX .Ai)i∈I

..

VAR
X〈(yi)i∈I〉 ⊢ Ω′′,X :|I|;(yi:X)i∈I...

...
. . .

Q ⊢ Ω′,X :|I|;(xi:Ai)i∈I ≡
Q{(yi)i∈I/(xi)i∈I} ⊢ Ω′,X :|I|;(yi:Ai)i∈I

REC
µX((yi)i∈I);Q{(yi)i∈I/(xi)i∈I} ⊢ Ω′;(yi:µX .Ai)i∈I t ≥ maxpr (Ai)i∈I

LIFT
µX((yi)i∈I);Q{(yi)i∈I/(xi)i∈I} ⊢ Ω′;(yi:↑

t µX .Ai)i∈I...
...

. . .
R ⊢ Ω;(xi:Ai{↑

t µX .Ai/X})i∈I

Figure 6: Typing recursion before (top) and after (bottom) unfolding (cf. Lemma 3).

Otherwise, n ≥ 1. Then there are X ,Q such that P = µX((xi)i∈I);Q. By inversion of typing rule REC,

P ⊢ Ω;(xi:µX .Ai)i∈I . Generally speaking, such typing derivations have the shape as in Figure 6 (top),

with zero or more VAR-axioms on X appearing at the top. We use structural congruence (Fig. 2 (middle))

to unfold the recursion in P, obtaining the process R := Q{µX((yi)i∈I);Q{(yi)i∈I/(xi)i∈I}/X〈(yi)i∈I〉} ≡ P.

We can type R by taking the derivation of P (cf. Figure 6 (top)), removing the final application of the

REC-rule and replacing any uses of the VAR-axiom on X by a copy of the original derivation, applying

α-conversion where necessary. Moreover, we lift the priorities of all types by at least the highest priority

occurring in any type in Γ using the LIFT-rule, ensuring that priority conditions on typing rules remain

valid; we explicitly use at least the highest priority, as the context of connected endpoints may lift the

priorities in dual types even more. Writing the highest priority in Γ as ‘maxpr(Γ)’, the resulting proof

is of the shape in Figure 6 (bottom). Since types are equi-recursive, Ai{↑
t µX .Ai/X} = Ai for every i ∈ I.

Hence, (yi:Ai{↑
t µX .Ai/X})i∈I = Γ. Thus, the above is a valid derivation of R ⊢ Ω;Γ.

The rules applied after LIFT in the derivation of R in Figure 6 (bottom) are the same as those applied

after VAR and before REC in the derivation of P in Figure 6 (top) before unfolding. By the assumption

that recursion is contractive, there must be an application of a rule other than REC in this part of the

derivation. Therefore, the application of REC in the derivation of R is not part of a possible sequence of

RECs in the last-applied rules of this derivation. Hence, since we removed the final application of REC

in the derivation of P, the size of this sequence of RECs is n− 1, i.e. R is prefixed by n− 1 recursive

definitions. Thus, we apply the IH to find a process P⋆ not prefixed by recursive definitions s.t. P⋆ ≡ R ≡
P ⊢ Ω;Γ.

Dardha and Gay’s top-level deadlock freedom result concerns a sequence of reduction steps that

reaches a process that is not live anymore [8]. In our case, top-level deadlock freedom concerns a single

reduction step only, because recursive processes might stay live across reductions forever.

Van den Heuvel & Pérez 49

Theorem 4 (Top-Level Deadlock Freedom). If P ⊢ /0;Γ and live(P), then there is process Q such that

P−→Q.

Proof. By structural congruence (Fig. 2 (middle)), there is Pc = (νννxiyi)i∈I(ννν ñm̃)Pm such that Pc ≡ P,

with Pm = ∏k∈KPk and Pm ⊢ /0;Λ,(xi:Ai,yi:Ai)i∈I s.t. for every i ∈ I, xi and yi are active names in Pm, and

Λ consists of Γ and the channels ñ,m̃ which are dually typed pairs of endpoints of which at least one is

inactive in Pm. Because P is live, there is always at least one pair xi,yi.

Next, we take the j ∈ I s.t. A j has the least priority, i.e. ∀i ∈ I \ { j}. pr(A j) ≤ pr(Ai). If there are

multiple to choose from, any suffices. The rest of the analysis depends on whether there is an endpoint

z of input/branching type in Γ with lower priority than pr(A j). We thus distinguish the two cases below.

Note that output/selection types in Γ are associated with non-blocking actions and can be safely ignored.

• If there is such z, assume w.l.o.g. it is of input type. The input on z cannot be prefixed by an

input/branch on another endpoint, because then that other endpoint would have a type with lower

priority than z. Hence, there is k′ ∈ K s.t. Pk′ = z(u,v);P′
k′ . We thus apply communicating conver-

sion κ &to find Q such that P−→Q:

P ≡ (νννxiyi)i∈I(ννν ñm̃)(∏k∈K\{k′}Pk | z(u,v);P′
k′)−→ z(u,v);(νννxiyi)i∈I(ννν ñm̃)(∏k∈K\{k′}Pk |P

′
k′) = Q

• If there is no such z, we continue with x j:A j and y j:A j. In case there is k′ ∈ K s.t. Pk ≡ u↔ v with

u ∈ {x j,y j}, the reduction is trivial by �ID; we w.l.o.g. assume there is no such k′.

By duality, A j and A j have the same priority, so priority checks in typing derivations prevent an

input/branching prefix on x j (resp. y j) from blocking an output/selection on y j (resp. x j). Hence,

x j and y j appear in separate parallel components of Pm, i.e. Pm = Px j
|Py j

|PR s.t.

Px j
⊢ /0;Λx j

,x j:A j , Py j
⊢ /0;Λy j

,y j:A j , and PR ⊢ /0;ΛR ,

where Λx j
,Λy j

,ΛR,x j:A j,y j:A j = Λ,(xi:Ai,yi:Ai)i∈I .

By Lemma 3 (unfolding), Px j
≡ P⋆

x j
and Py j

≡ P⋆
y j

s.t. P⋆
x j

and P⋆
y j

are not prefixed by recursive

definitions and P⋆
x j
⊢ /0;Λx j

,x j:A j and P⋆
y j
⊢ /0;Λy j

,y j:A j. We take the unfolded form of A j: by the

contractiveness of recursive types, A j has at least one connective. We w.l.o.g. assume that A j is an

input or branching type, i.e. either (a) A j = B

&

oC or (b) A j = &o{l : Bl}l∈L.

Since pr(A j) = o is the least of the priorities in Γ, we know that either (in case a) P⋆
x j
≡ x j(v,z).Qx j

or (in case b) P⋆
x j
≡ x j(z) ⊲ {l : Ql

x j
}l∈L. Moreover, since either (in case a) A j = B⊗o C or (in

case b) A j = ⊕o{l : Bl}l∈L, we have that either (in case a) P⋆
y j
≡ y j[a,b] |Qy j

or (in case b) P⋆
y j
≡

y j[b] ⊳ l⋆ |Qy j
for l⋆ ∈ L. In case (a), let Q′

x j
:= Qx j

{a/v,b/z}; in case (b), let Q′
x j

:= Ql⋆

x j
{b/z}. Then,

(in case a) by reduction β⊗

&or (in case b) by reduction β⊕&,

P ≡ (νννxiyi)i(ννν ñm̃)(P⋆
x j
|P⋆

y j
|PR)≡ (νννxiyi)i\ j(ννν ñm̃)((νννx jy j)(P

⋆
x j
|P⋆

y j
) |PR)

−→ (νννxiyi)i\ j(ννν ñm̃)(Q′
x j
|Qy j

|PR).

Our deadlock freedom result concerns processes typable under empty contexts (as in, e.g., Caires and

Pfenning [7] and Dardha and Gay [8]). This way, the reduction guaranteed by Theorem 4 corresponds to

a synchronization (β -rule), rather than a commuting conversion (κ-rule). We first need a lemma which

ensures that non-live processes typable under empty contexts do not contain actions or prefixes.

Lemma 5. If P ⊢ /0; /0 and P is not live, then P contains no actions or prefixes whatsoever.

50 Deadlock Freeodm for Asynchronous and Cyclic Process Networks

Proof. Suppose, for contradiction, that P does contain actions or prefixes. For example, P contains some

subterm x(y,z);P′. Because P ⊢ /0; /0, there must be a restriction on x in P binding it with, e.g., x′. Now,

x′ does not appear in P′, because the type of x in the derivation of P ⊢ /0; /0 must be lower than the types

of the endpoints in P′, and by duality the types of x and x′ have equal priority. Hence, there is some Q

s.t. P ≡ (ννν ũṽ)(νννxx′)(x(y,z);P′ |Q) where x′ ∈ fn(Q). There are two cases for the appearance of x′ in Q:

(1) not prefixed, or (2) prefixed.

• In case (1), x′ ∈ an(Q), so the restriction on x,x′ in P is on a pair of active names, contradicting the

fact that P is not live.

• In case (2), x′ appears in Q behind at least one prefix. For example, Q contains some subterm

a(b,c);Q′ where x′ ∈ fn(Q′). Again, a must be bound in P to, e.g., a′. Through similar reasoning

as above, we know that a′ does not appear in Q′. Moreover, the type of a must have lower priority

than the type of x′, so by duality the type of a′ must have lower priority than the type of x. So, a′

also does not appear in P′. Hence, there is R s.t. P ≡ (ννν ũṽ)(νννaa′)(νννxx′)(x(y,z);P′ |a(b,c);Q′ | R)
where a′ ∈ fn(R).

Now, the case split on whether a′ appears prefixed in R or not repeats, possibly finding new names

that prefix the current name again and again following case (2). However, process terms are finite

in size, so we know that at some point there cannot be an additional parallel component in P to

bind the new name, contradicting the existence of the newly found prefix. Hence, eventually case

(1) will be reached, uncovering a restriction on a pair of active names and contradicting the fact

that P is not live.

In conclusion, the assumption that there are actions or prefixes in P leads to a contradiction. Hence, P

contains no actions or prefixes whatsoever.

We now state our deadlock freedom result:

Theorem 6 (Deadlock Freedom). If P ⊢ /0; /0, then either P ≡ 000 or P−→β Q for some Q.

Proof. The analysis depends on whether P is live or not.

• If P is not live, then, by Lemma 5, it does not contain any actions or prefixes. Any recursive

loops in P are thus of the form ‘µX1(); . . . ; µXn();000’: contractiveness requires recursive calls to

be prefixed by inputs/branches or bound to parallel outputs/selections, of which there are none.

Hence, we can use structural congruence to rewrite each recursive loop in P to 000 by unfolding,

yielding P′ ≡ P. The remaining derivation of P′ only contains applications of EMPTY, MIX, •, or

CYCLE on closed endpoints. It follows easily that P ≡ P′ ≡ 000.

• If P is live, by Theorem 4 there is Q s.t. P−→Q. Moreover, P does not have free names, for

otherwise it would not be typable under empty context. Because commuting conversions apply

only to free names, this means P−→β Q.

3.4 Explicit Closing and Replicated Servers

As already mentioned, our presentation of APCP does not include explicit closing and replicated servers.

We briefly discuss what APCP would look like if we were to include these constructs.

We achieve explicit closing by adding empty outputs ‘x[]’ and empty inputs ‘x();P’ to the syntax of

Figure 2 (top). We also add the synchronization ‘β111⊥’ and the commuting conversion ‘κ⊥’ in Figure 7

(bottom). At the level of types, we replace the conflated type ‘•’ with ‘111o’ and ‘⊥o’, associated to empty

Van den Heuvel & Pérez 51

111
x[] ⊢ Ω;x:111o

P ⊢ Ω;Γ o< pr(Γ)
⊥

x();P ⊢ Ω;Γ,x:⊥o

?
?x[y] ⊢ Ω;x:?oA,y:A

P ⊢ Ω;?Γ,y:A o< pr(?Γ)
!

!x(y);P ⊢ Ω;?Γ,x:!oA

P ⊢ Ω;Γ
W

P ⊢ Ω;Γ,x:?oA

P ⊢ Ω;Γ,x:?oA,x′:?κA π = min(o,κ)
C

P{x/x′} ⊢ Ω;Γ,x:?πA

P ⊢ Ω;Γ,y:A
?⋆

?x[y] ·P ⊢ Ω;Γ,x:?oA

..

β111⊥ (νννxy)(x[] | y();P)−→P

β?! (νννxy)(?x[a] | !y(v);P |Q)−→P{a/v} | (νννxy)(!y(v);P |Q)

κ⊥ x /∈ ṽ, w̃ =⇒ (ννν ṽw̃)(x();P |Q)−→x();(ννν ṽw̃)(P |Q)

κ! x /∈ ṽ, w̃ =⇒ (ννν ṽw̃)(!x(y);P |Q)−→ !x(y);(ννν ṽw̃)(P |Q)

Figure 7: Typing rules for explicit closing and replicated servers.

outputs and empty inputs, respectively. Note that we do need priority annotations on types for closed

endpoints now, because the empty input is blocking and thus requires priority checks. In the type system

of Figure 3 (top), we replace rule ‘•’ with the rules ‘111’ and ‘⊥’ in Figure 7 (top).

For replicated servers, we add client requests ‘?x[y]’ and servers ‘!x(y);P’, typed ‘?oA’ and ‘!oA’,

respectively. We include syntactic sugar for binding client requests to continuations as in Notation 1:

‘?x[y] ·P := (νννya)(?x[a] |P)’. New reduction rules are in Figure 7 (bottom): synchronization rule ‘β?!’,

connecting a client and a server and spawns a copy of the server, and commuting conversion ‘κ!’. Also,

we add a structural congruence axiom to clean up unused servers: (νννxz)(!x(y);P)≡ 000. In the type system,

we add rules ‘?’, ‘!’, ‘W’ and ‘C’ in Figure 7 (top); the former two are for typing client requests and

servers, respectively, and the latter two are for connecting to a server without requests and for multiple

requests, respectively. In rule ‘!’, notation ‘?Γ’ means that every type in Γ is of the form ‘?oA’. Figure 7

(top) also includes an admissible rule ‘?⋆’ which types the syntactic sugar for bound client requests.

4 Examples

Up to here, we have presented our process language and its type system, and we have discussed the

influence of asynchrony and recursion in their design and properties ensured by typing. We now present

examples to further illustrate the design and expressiveness of APCP.

4.1 Milner’s Typed Cyclic Scheduler

To consider a process that goes beyond the scope of PCP, here we show that our specification of Milner’s

cyclic scheduler from Section 2 is typable in APCP, and thus deadlock free (cf. Theorem 6). Let us recall

the process definitions of the leader and followers, omitting braces ‘{. . .}’ for branches with one option:

A1 := µX(a1,cn,d1);d1 ⊳ start ·a1 ⊳ start ·a1 ⊲ack;d1 ⊳next · cn ⊲ start;cn ⊲next;X〈a1,cn,d1〉

Ai+1 := µX(ai+1,ci,di+1); ci ⊲ start;ai+1 ⊳ start ·di+1 ⊳ start ·ai+1 ⊲ ack;

ci ⊲next;di+1 ⊳next ·X〈ai+1,ci,di+1〉
∀1 ≤ i < n

52 Deadlock Freeodm for Asynchronous and Cyclic Process Networks

VAR
⊢ X :3;a1:X ,cn:X ,d1:X

&
⊢ X :3;a1:X ,cn:&ρn{next : X},d1:X

&
⊢ X :3;a1:X ,cn:&πn{start : &ρn{next : X}},d1:X

⊕⋆

⊢ X :3;a1:X ,cn:&πn{start : &ρn{next : X}},d1:⊕ρ1{next : X}
&

⊢ X :3;a1:&κ1{ack : X},cn:&πn{start : &ρn{next : X}},d1:⊕ρ1{next : X}
⊕⋆

⊢ X :3;a1:⊕o1{start : &κ1{ack : X}},cn:&πn{start : &ρn{next : X}},d1:⊕ρ1{next : X}
⊕⋆

⊢ X :3; a1:⊕o1{start : &κ1{ack : X}}, cn:&πn{start : &ρn{next : X}},
d1:⊕π1{start : ⊕ρ1{next : X}}

REC
⊢ /0; a1:µX .⊕o1{start : &κ1{ack : X}}, cn:µX .&πn{start : &ρn{next : X}},

d1:µX .&π1{start : ⊕ρ1{next : X}}

Figure 8: Typing derivation of the leader scheduler A1 of Milner’s cyclic scheduler (processes omitted).

Each process Ai+1 for 0 ≤ i < n—thus including the leader—is typable as follows, assuming ci is cn for

i = 0 (see Fig. 8 for the derivation of A1, omitting processes from judgments):

Ai+1 ⊢ /0; ai+1:µX .⊕oi+1{start : &κi+1{ack : X}}, ci:µX .&πi{start : &ρi{next : X}},
di+1:µX .⊕πi+1{start : ⊕ρi+1{next : X}}

Note how, for each 1 ≤ i ≤ n, the types for ci and di are duals.

To verify these typing derivations, we need to assign values to the priorities oi,κi,πi,ρi for each

1 ≤ i ≤ n that satisfy the necessary requirements. From the derivation of A1 we require κ1 < ρ1,πn. For

each 1 ≤ i < n, from the derivation of Ai+1 we require ρi < ρi+1 and κi+1 < ρi,ρi+1 and πi < oi+1,πi+1.

We can easily satisfy these requirements by assigning oi := κi := πi := i and ρi := i+2 for each 1≤ i≤ n.

Assuming that Pi ⊢ /0;ai:µX .&oi{start : ⊕κi{ack : X}} for each 1 ≤ i ≤ n, we have Schedn ⊢ /0; /0.

Hence, it follows from Theorem 6 that Schedn is deadlock free for each n ≥ 1.

4.2 Comparison to Padovani’s Type System for Deadlock Freedom

Padovani’s type system for deadlock freedom [21] simplifies a type system by Kobayashi [17]; both these

works do not consider session types. Just as for Dardha and Gay’s PCP [8], the priority annotations of

APCP are based on similar annotations in Padovani’s and Kobayashi’s type systems. Here, we compare

APCP to these type systems by discussing some of the examples in Padovani’s work.

Ring of Processes To illustrate APCP’s flexible support for recursion, we consider Padovani’s ever-

growing ring of processes [21, Ex. 3.8]. For the ring to continuously loop, Padovani uses self-replicating

processes. Although this exact method is not possible in APCP, we can use recursion instead:

Ringy
x := µX(x,y);(νννaa′)(x(z);(νννbb′)(X〈z,b〉 |X〈b′,a〉) | y[c] ·a′↔ c) ⊢ /0;x:µX .X

&

o •,y:µX .X ⊗κ •

Each iteration, this process receives a fresh endpoint from its left neighbor and sends another fresh

endpoint to its right neighbor. It then spawns two copies of itself, connected to each other on a fresh

channel, and one connected to the left neighbor and the other to the right neighbor. There are no priority

Van den Heuvel & Pérez 53

requirements, so we can let o = κ . We can then connect the initial copy of Ring to itself, forming a

deadlock free ring of processes that doubles in size at every iteration (cf. Theorem 6):

(νννxy)Ring
y
x −→

3 (νννx1y1)(νννx2y2)(Ring
y2
x1
|Ring

y1
x2
)

−→6(νννx1y1)(νννx2y2)(νννx3y3)(νννx4y4)(Ring
y2
x1 |Ring

y3
x2 |Ring

y4
x3 |Ring

y1
x4)−→

12 . . .

Blocking versus Non-blocking Padovani discusses the significance of blocking inputs versus non-

blocking outputs [21, Exs. 2.2 & 3.6]. Although we can express Padovani’s example in APCP with

minor modifications, we can do so more directly by including replication as in Section 3.4. Consider the

following processes, which are identical up to the order of input and output:

NodeA := !cA(c);c(x);c(y);x[a] · y(z);000 NodeB := !cB(c);c(x);c(y);y(z);x[a] ·000

We consider several configurations of nodes, using the syntactic sugar x〈y〉 ·P := x[y′] · (y↔y′ |P):

L1(X) := (νννcAc′A)(νννcBc′B)(NodeA |NodeB | ?c′X [c] · (νννee′)(c〈e〉 · c〈e′〉 ·000))

L2(X ,Y) := (νννcAc′A)(νννcBc′B)(NodeA |NodeB | (νννee′)(ννν f f ′)

(
?c′X [c] · c〈e〉 · c〈 f 〉 ·000

|?c′Y [c
′] · c′〈 f ′〉 · c′〈e′〉 ·000

)

)

L3(X ,Y,Z) := (νννcAc′A)(νννcBc′B)(NodeA |NodeB | (νννee′)(ννν f f ′)(νννgg′)





?c′X [c] · c〈e〉 · c〈 f 〉 ·000

|?c′Y [c
′] · c′〈g〉 · c′〈e′〉 ·000

|?c′Z[c
′′] · c′′〈 f ′〉 · c′′〈g′〉 ·000



)

where X ,Y,Z ∈ {A,B}.

To illustrate the significance of APCP’s asynchrony, let us consider how L2(A,A) reduces:

L2(A,A)−→
6 (νννee′)(ννν f f ′)(e[a] · f (z);000 | f ′[a′] · e′(z′);000)−→ (ννν f f ′)(f (z);000 | f ′[a′] ·000)−→000.

The synchronization on e and e′ is possible because the output on f ′ is non-blocking. It is also possible

for f and f ′ to synchronize first, because the output on e is also non-blocking. In contrast, the reduction

of L2(B,B) illustrates the blocking behavior of inputs:

L2(B,B)−→
6 (νννee′)(ννν f f ′)(f (z);e[a] ·000 | e′(z′); f ′[a′] ·000) 6−→.

This results in deadlock, for each node awaits a message, blocking their output to the other node.

Let us show how APCP detects (freedom of) deadlocks in each of these configurations by considering

priority requirements. For X ∈ {A,B}, we have NodeX ⊢ /0;cX :!o((•⊗κX •)

&πX (•

&ρX •)

&ψX •), requir-

ing ρB < κB and πX ,ψX < κX ,ρX . In each configuration, the input endpoint of one node is connected

to the output endpoint of another. Duality thus requires that κW = ρW ′ for W,W ′ ∈ {X ,Y,Z}. Hence, in

any configuration, if the input endpoint of a NodeB is connected the output endpoint of another NodeB,

we require κB = ρB, violating the requirement that ρB < κB. From this we can conclude that the above

configurations are deadlock free if and only if at least one of X ,Y,Z is A, and at most one of them is B.

This verifies that L2(A,A) contains no deadlock, while L2(B,B) does.

Note that in PCP the conditions for deadlock freedom are much stricter, as PCP’s blocking outputs

additionally require that κA < ρA. Hence, we also cannot connect the input of a NodeA to the output of

another NodeA. This means that L2(A,B) and L2(B,A) are the only deadlock free configurations in PCP.

54 Deadlock Freeodm for Asynchronous and Cyclic Process Networks

5 Related Work & Conclusion

We have already discussed several related works throughout the paper [8, 10, 17, 21]. The work of

Kobayashi and Laneve [18] is related to APCP in that it addresses deadlock freedom for unbounded

process networks. Another related approach is Toninho and Yoshida’s [26], which addresses deadlock

freedom for cyclic process networks by generating global types from binary types. The work by Balzer et

al. [1, 2] is also worth mentioning: it guarantees deadlock freedom for processes with shared, mutable re-

sources by means of manifest sharing, i.e. explicitly acquiring and releasing access to resources. Finally,

Pruiksma and Pfenning’s session type system derived from adjoint logic [23, 24] treats asynchronous,

non-blocking actions via axiomatic typing rules, similarly as we do (cf. axioms ‘⊗’ and ‘⊕’ in Figure 3);

we leave a precise comparison with their approach for future work.

In this paper, we have presented APCP, a type system for deadlock freedom of cyclic process net-

works with asynchronous communication and recursion. We have shown that, when compared to (the

synchronous) PCP [8], asynchrony in APCP significantly simplifies the management of priorities re-

quired to detect cyclic dependencies (cf. the discussion at the end of Section 4.2). We illustrated the

expressivity of APCP using multiple examples, and concluded that it is comparable in expressivity to

similar type systems not based on session types or logic, in particular the one by Padovani [21]. More

in-depth comparisons with this and the related type systems cited above would be much desirable. Fi-

nally, in ongoing work we are applying APCP to the analysis of multiparty protocols implemented as

processes [13].

Acknowledgements We are grateful to the anonymous reviewers for their careful reading of our paper

and their useful feedback. We also thank Ornela Dardha for clarifying the typing rules of PCP to us.

References

[1] Stephanie Balzer & Frank Pfenning (2017): Manifest Sharing with Session Types. Proc. ACM Program.

Lang. 1(ICFP), pp. 37:1–37:29, doi:10.1145/3110281.

[2] Stephanie Balzer, Bernardo Toninho & Frank Pfenning (2019): Manifest Deadlock-Freedom for Shared Ses-

sion Types. In Luı́s Caires, editor: Programming Languages and Systems, Lecture Notes in Computer Sci-

ence, Springer International Publishing, Cham, pp. 611–639, doi:10.1007/978-3-030-17184-1_22.

[3] Michele Boreale (1998): On the Expressiveness of Internal Mobility in Name-Passing Calculi. Theoretical

Computer Science 195(2), pp. 205–226, doi:10.1016/S0304-3975(97)00220-X.

[4] Gérard Boudol (1992): Asynchrony and the Pi-Calculus. Research Report RR-1702, INRIA.

[5] Luı́s Caires (2014): Types and Logic, Concurrency and Non-Determinism. Technical Report MSR-TR-2014-

104, In Essays for the Luca Cardelli Fest, Microsoft Research.

[6] Luı́s Caires & Jorge A. Pérez (2017): Linearity, Control Effects, and Behavioral Types. In Hongseok Yang,

editor: Programming Languages and Systems, Lecture Notes in Computer Science, Springer, Berlin, Heidel-

berg, pp. 229–259, doi:10.1007/978-3-662-54434-1_9.

[7] Luı́s Caires & Frank Pfenning (2010): Session Types as Intuitionistic Linear Propositions. In Paul Gastin &

François Laroussinie, editors: CONCUR 2010 - Concurrency Theory, Lecture Notes in Computer Science,

Springer, Berlin, Heidelberg, pp. 222–236, doi:10.1007/978-3-642-15375-4_16.

[8] Ornela Dardha & Simon J. Gay (2018): A New Linear Logic for Deadlock-Free Session-Typed Processes.

In Christel Baier & Ugo Dal Lago, editors: Foundations of Software Science and Computation Struc-

tures, Lecture Notes in Computer Science, Springer International Publishing, pp. 91–109, doi:10.1007/

978-3-319-89366-2_5.

http://dx.doi.org/10.1145/3110281
http://dx.doi.org/10.1007/978-3-030-17184-1_22
http://dx.doi.org/10.1016/S0304-3975(97)00220-X
http://dx.doi.org/10.1007/978-3-662-54434-1_9
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/978-3-319-89366-2_5
http://dx.doi.org/10.1007/978-3-319-89366-2_5

Van den Heuvel & Pérez 55

[9] Ornela Dardha & Jorge A. Pérez (2015): Comparing Deadlock-Free Session Typed Processes. Electronic

Proceedings in Theoretical Computer Science 190, pp. 1–15, doi:10.4204/EPTCS.190.1.

[10] Henry DeYoung, Luı́s Caires, Frank Pfenning & Bernardo Toninho (2012): Cut Reduction in Linear Logic

as Asynchronous Session-Typed Communication. In Patrick Cégielski & Arnaud Durand, editors: Computer

Science Logic (CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, Leibniz

International Proceedings in Informatics (LIPIcs) 16, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, pp. 228–242, doi:10.4230/LIPIcs.CSL.2012.228.

[11] Simon J. Gay, Peter Thiemann & Vasco T. Vasconcelos (2020): Duality of Session Types: The Final Cut.

Electronic Proceedings in Theoretical Computer Science 314, pp. 23–33, doi:10.4204/EPTCS.314.3.

[12] Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science 50(1), pp. 1–101, doi:10.1016/

0304-3975(87)90045-4.

[13] Bas van den Heuvel & Jorge A. Pérez (2021): A Decentralized Analysis of Multiparty Protocols.

arXiv:2101.09038 [cs].

[14] Kohei Honda (1993): Types for Dyadic Interaction. In Eike Best, editor: CONCUR’93, Lecture Notes in

Computer Science, Springer, Berlin, Heidelberg, pp. 509–523, doi:10.1007/3-540-57208-2_35.

[15] Kohei Honda & Mario Tokoro (1991): An Object Calculus for Asynchronous Communication. In Pierre

America, editor: ECOOP’91 European Conference on Object-Oriented Programming, Lecture Notes in Com-

puter Science, Springer, Berlin, Heidelberg, pp. 133–147, doi:10.1007/BFb0057019.

[16] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Discipline for

Structured Communication-Based Programming. In Chris Hankin, editor: Programming Languages and

Systems, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 122–138, doi:10.1007/

BFb0053567.

[17] Naoki Kobayashi (2006): A New Type System for Deadlock-Free Processes. In Christel Baier & Holger

Hermanns, editors: CONCUR 2006 – Concurrency Theory, Lecture Notes in Computer Science, Springer

Berlin Heidelberg, pp. 233–247, doi:10.1007/11817949_16.

[18] Naoki Kobayashi & Cosimo Laneve (2017): Deadlock Analysis of Unbounded Process Networks. Informa-

tion and Computation 252, pp. 48–70, doi:10.1016/j.ic.2016.03.004.

[19] Robin Milner (1989): Communication and Concurrency. Prentice Hall International Series in Computer

Science, Prentice Hall, New York, USA.

[20] Robin Milner, Joachim Parrow & David Walker (1992): A Calculus of Mobile Processes, I. Information and

Computation 100(1), pp. 1–40, doi:10.1016/0890-5401(92)90008-4.

[21] Luca Padovani (2014): Deadlock and Lock Freedom in the Linear π-Calculus. In: Proceedings of the Joint

Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-

Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, ACM, New

York, NY, USA, pp. 72:1–72:10, doi:10.1145/2603088.2603116.

[22] Benjamin C. Pierce (2002): Types and Programming Languages. MIT Press, Cambridge, Massachusetts.

[23] Klaas Pruiksma & Frank Pfenning (2019): A Message-Passing Interpretation of Adjoint Logic. In: Program-

ming Language Approaches to Concurrency- and Communication-cEntric Software (PLACES), Electronic

Proceedings in Theoretical Computer Science 291, Open Publishing Association, pp. 60–79, doi:10.4204/

EPTCS.291.6.

[24] Klaas Pruiksma & Frank Pfenning (2021): A Message-Passing Interpretation of Adjoint Logic. Journal of

Logical and Algebraic Methods in Programming 120(100637), doi:10.1016/j.jlamp.2020.100637.

[25] Bernardo Toninho, Luis Caires & Frank Pfenning (2014): Corecursion and Non-Divergence in Session-

Typed Processes. In Matteo Maffei & Emilio Tuosto, editors: Trustworthy Global Computing, Lecture Notes

in Computer Science, Springer, Berlin, Heidelberg, pp. 159–175, doi:10.1007/978-3-662-45917-1_11.

[26] Bernardo Toninho & Nobuko Yoshida (2018): Interconnectability of Session-Based Logical Processes. ACM

Transactions on Programming Languages and Systems (TOPLAS) 40(4), p. 17, doi:10.1145/3242173.

http://dx.doi.org/10.4204/EPTCS.190.1
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.228
http://dx.doi.org/10.4204/EPTCS.314.3
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1007/3-540-57208-2_35
http://dx.doi.org/10.1007/BFb0057019
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/11817949_16
http://dx.doi.org/10.1016/j.ic.2016.03.004
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1145/2603088.2603116
http://dx.doi.org/10.4204/EPTCS.291.6
http://dx.doi.org/10.4204/EPTCS.291.6
http://dx.doi.org/10.1016/j.jlamp.2020.100637
http://dx.doi.org/10.1007/978-3-662-45917-1_11
http://dx.doi.org/10.1145/3242173

56 Deadlock Freeodm for Asynchronous and Cyclic Process Networks

[27] Vasco T. Vasconcelos (2012): Fundamentals of Session Types. Information and Computation 217, pp. 52–70,

doi:10.1016/j.ic.2012.05.002.

[28] Philip Wadler (2012): Propositions As Sessions. In: Proceedings of the 17th ACM SIGPLAN International

Conference on Functional Programming, ICFP ’12, ACM, New York, NY, USA, pp. 273–286, doi:10.1145/

2364527.2364568.

http://dx.doi.org/10.1016/j.ic.2012.05.002
http://dx.doi.org/10.1145/2364527.2364568
http://dx.doi.org/10.1145/2364527.2364568

	1 Introduction
	2 Motivating Example: Milner's Cyclic Scheduler
	3 APCP: Asynchronous Priority-based Classical Processes
	3.1 The Process Language
	3.2 The Type System
	3.3 Type Preservation and Deadlock Freedom
	3.4 Explicit Closing and Replicated Servers

	4 Examples
	4.1 Milner's Typed Cyclic Scheduler
	4.2 Comparison to Padovani's Type System for Deadlock Freedom

	5 Related Work & Conclusion
	References

