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We present a novel and well automatable approach to formal verification of C programs with un-
derspecified semantics, i.e., a language semantics that leaves open the order of certain evaluations.
First, we reduce this problem to non-determinism of concurrent systems, automatically extracting
a distributed Active Object model from underspecified, sequential C code. This translation pro-
cess provides a fully formal semantics for the considered C subset. In the extracted model every
non-deterministic choice corresponds to one possible evaluation order. This step also automatically
translates specifications in the ANSI/ISO C Specification Language (ACSL) into method contracts
and object invariants for Active Objects. We then perform verification on the specified Active Ob-
jects model, using the Crowbar theorem prover, which verifies the extracted model with respect to
the translated specification and ensures the original property of the C code for all possible evaluation
orders. By using model extraction, we can use standard tools, without designing a new complex pro-
gram logic to deal with underspecification. The case study used is highly underspecified and cannot
be handled correctly by existing tools for C.

1 Introduction

Verification of programs relies on the availability of a formal, or at least a formalizable, semantics of the
used programming language. However, the semantics of mainstream programming languages contain
challenges that require special attention from programmers and verification tools alike.

In this work we consider the semantics of the C language, which in addition to fully specified behav-
ior contains undefined, unspecified and implementation defined behavior: these semantics describe not
exactly what should happen, but leave crucial decisions to the implementing compiler and/or the runtime
environment. Our focus here is on the unspecified evaluation order within the C standard, which we
refer to as underspecified. Importantly, the semantics for underspecified behavior is not undefined, as
the semantics limits the possible choices. This is not merely a fringe case, but is observable already in
natural and small programs. Consider the C program in Fig. 1. The C99 standard [23] does not specify
the order of evaluation of the subexpressions in the addition.1 Indeed, the two main compilers for C
return different values: gcc 7.4.0 returns 2 (evaluating the second summand first), clang 6.0.0 returns 1
(evaluating the first summand first). The reason is that gcc uses a stack-based translation of expressions,
while clang uses a queue-based one.

Verification of underspecified C code is still an open problem and merely fixing the choice is not
enough for verification: As the semantics is underspecified, compilers are not required to be consistent
in their choice even during the run of a single program and optimizations are not obligated to preserve
the choice of the compiler.

1This unspecified evaluation order is also prevalent in other C standards.
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2 The Right Kind of Non-Determinism

1 int x;

2 int id_set_x(int val){

3 x=1;

4 return val;}

5 int main(void){
6 x=0;

7 return x + id_set_x(1);}

Figure 1: Addition with side-effect.

This effect is further amplified from a software engineering perspective, when program equivalence
becomes a problem: For one, changing, updating the compiler, or indeed barely changing its parameters
may result in different program behavior. For another, reengineering legacy software, a critical activity to,
e.g., enable parallelization [18] cannot rely on analyses proving functional equivalence, if these analyses
are not considering underspecification. Before attempting to prove program equivalence, one must be
able to reason about functional behavior of programs in a language with underspecified semantics.

Approach. At the core of this work is the idea to transform non-determinism in sequential programs
arrising due to underspecification to non-determinism due to concurrency and then use tools to specify
and verify concurrent behavior, which are more advanced and investigated in more detail. Each possible
evaluation order is one possible interleaving order.

More precisely, this work presents an approach to automatically verify functional behavior of C pro-
grams with underspecified semantics, which is based on reducing underspecification to non-determinism
in a fully specified language: We are able to verify functional properties of C programs without undefined
behavior with respect to every possible standard-compliant semantics. In this work we build upon the
model-extraction approach by Wasser et al. [37] for a subset of the C language and give an implemented
system that verifies the functional behavior of the extracted model. The extracted model gives a fully
formal and analyzable semantics for C in terms of an Active Object framework.

We translate C code into an Active Objects language [9] and regard sequential C programs as parallel
programs, in which the non-determinism arises from parallelism and not from underspecified semantics.
Conceptually, this is a rare case where a problem of sequential programs is transformed to a problem
of parallel programs, because the support for analysis of parallel systems is better than the support for
reasoning about underspecified semantics.

For Active Objects there are program logics [26] that enable modular reasoning and we are able
to employ method contracts for asynchronous calls [27]. The expected behavior under all possible se-
mantics is annotated with ACSL [8] and automatically translated into cooperative contracts and object
invariants of Active Objects. Using this approach we give a case study to verify that a highly underspeci-
fied recursive function that computes the nth Fibonacci number in one semantics returns a value between
1 and the nth Fibonacci number in every standard-adhering semantics.

Contributions. Our contributions are (1) an implemented approach to automatically verify functional
behavior of C programs with underspecified semantics, and a deductive verification case study of under-
specified C code which is (2) the biggest verification case study of such code that cannot be handled by
existing approaches (see next section) (3) the biggest deductive verification case study for Active Ob-
jects (in lines of code) to date. The case study can be proven fully automatically. Additionally to the
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conceptual approach and case study, we also contribute a translation of ACSL specifications for C into
BPL specifiations for ABS.

State-of-the-Art. Underspecified (and to a lesser degree undefined) semantics are a rarely approached
challenge for deductive verification. Here, we review the tools that consider these kinds of semantics.

Frama-C [13] can find (some) undefined behavior related to read-write or write-write accesses be-
tween sequence points. However, it does not recognize unspecified behavior when these accesses occur
indeterminately sequenced as in our examples here, instead only examining a single fixed evaluation
order2 [11, p.40]. Further, while most of ACSL is utilized in Frama-C, this does not include global
invariants, which we are able to handle. Additionally, new tools must be built specifically for the C inter-
mediate representation only used within Frama-C, while our approach can profit from all tools available
for ABS, which has included so far model checking, simulation, deadlock analysis and deductive veri-
fication. RV-Match [1]—based on C semantics formalized [2, 19] in the K framework [3, 36]—is able
to find (some) undefined and implementation defined behavior in C programs, but like Frama-C chooses
only a single evaluation order when faced with underspecified behavior. This in turn prevents both from
finding undesired behavior that is only obvious when a different evaluation order is chosen. While our
approach currently works only with an admittedly smaller subset of C containing underspecification than
that allowed in RV-Match and Frama-C, it faithfully considers all possible evaluation paths allowed by
the standard. Cerberus [4, 33] is an analysis tool for undefined and underspecified behavior; however, it
cannot utilize any specifications and its treatment of unspecified evaluation order of side effects does not
match the C standard, as demonstrated in [37]. The separation logic system of Frumin et al. [17], based
on small-step semantics in Coq [30] correctly treats underspecification. They give a formal system to
verify a program in their toy language λMC and check effects of underspecified behavior with a modi-
fied separation logic. In contrast to the subset of C we consider, λMC is emphatically not a subset of C
and is described as merely a C-style language3. Verification of any C program therefore requires man-
ual translation into an equivalent λMC program and manual specification of the λMC program in Coq.
Our model-extraction based approach is fully automated, can be used with standard program logics and
analyses for Active Objects and does not rely on complex rule modifications to handle underspecified
behavior. We stress that this automation includes the verification, which needs not be performed by the
user in an interactive prover such as Coq [5].

Holzmann and Smith [22] attempt to reuse the SPIN model checker by extracting Promela code
from a C program. However, their approach requires manual translation/adjustment (flattening) of the
underspecified parts. Furthermore, Promela/SPIN only support model checking and cannot be applied
to unbounded inputs. Concerning semantics, several formalizations [16, 34, 35] of the C semantics deal
with underspecified evaluation order without giving a reasoning system.

To conclude the overview of the state-of-the-art, there is no satisfying approach to verify underspec-
ified C code and the partial approaches are not suited for automatization.

Structure. In Sec. 2 we investigate the program in Fig. 1 in more detail. In Sec. 3 we give preliminar-
ies: the basics of ABS [24], the Active Object language used, and its contracts. In Sec. 4 we describe the
model-extraction, which we then use in Sec. 5 to verify the Fibonacci case study. We conclude in Sec-
tion 6. The accompanying technical report with formal details, proofs and a link to the implementation
is not referred to for the double-blind review.

2E.g., value analysis in Frama-C claims that the program in Fig. 1 can only return 2.
3Even this is debatable, but underspecified C-style behavior is present.
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2 Overview over Workflow

Before we introduce the used systems, we illustrate our approach using the code in Fig. 2, which adds
ACSL specifications to the previous example. The strong global invariant specifies a condition that must
hold at every point during execution, while the requires/ensures clauses are standard pre/postconditions.

Specified C-code is translated into specified ABS-code. ABS is object-oriented and uses the follow-
ing concurrency model: (1) An object cannot access the fields of another object. (2) Every method call
is asynchronous (i.e., does not block the caller) and returns a future. A future can be used to synchronize
on the called method and read its eventual return value. (3) Only one process is active per object and a
process can only be interrupted when executing an await g statement. An await g statement waits until
all futures in the guard g are resolved, i.e., their process has terminated. There are no global variables
and for specification, ABS supports object invariants and method contracts.

The code in Fig. 3 shows a (prettified) part of the translation of Fig. 2. The global variables are
handled by a special (singleton) class Global. In Global, each global variable is a field and the global
invariant becomes the object invariant of this class. Similarly, the global invariant is also added as
pre/postcondition to the setter and getter method handling the fields.

Each C-function f is translated into an ABS-class C_f and an interface I_f with a call method that
models its execution. The function contract of id_set_x becomes the method contract of I_id_set_x.
call. We only show the translation of main in detail. Again, the function contract becomes the method
contract of call. The other methods in the class C_main model memory accesses to global variable x,
calling function id_set_x and addition with the + operator.

The call method is a translation of the main function. It first sets x to 0 and than waits for this
operation to finish — the await at line 21 models synchronization at the sequence point ;. The next
three lines translate the addition operation and contain no await, because the C-expression contains no
sequence point. The two calls to model evaluation of the subexpressions are called in one order, but may
be executed in a different one.

The method op_plus_fut_fut models evaluation of the addition expression. It takes two futures,
i.e., two references to yet unfinished executions. It then synchronizes with both of them, i.e., it waits
until both are resolved (line 34) and then adds the corresponding return values. It depends on the global
scheduling which method is executed first and therefore whether the read triggered in C_main or the write
in C_id_set_x takes place on Global first. Note that the specification of C_main is also automatically de-
rived from the ACSL specification. The translated model can now be passed to the Crowbar verification
system, which checks that the code adheres to its specification. It indeed does so and, as expected, fails
to close the proof if the specification is wrong, i.e., if the results is specifed as only 1 or only 2.

1 int x; //@ strong global invariant x == 0 || x == 1;
2 int id_set_x(int val)
3 /*@ requires val == 1; ensures \result == 1; @*/ {
4 x=1; return val;}
5 int main(void)
6 /*@ ensures \result == 1 || \result == 2; @*/ {
7 x=0; return x + id_set_x(1);}

Figure 2: Specified addition with side-effect.
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1 [Spec:ObjInv(this.x == 0||this.x == 1)]
2 class Global implements Global {
3 Int x = 0;
4 [Spec:Ensures(result == 0||result == 1)]
5 Int get_x() { return this.x; }
6 [Spec:Requires(value == 0||value == 1)]
7 Unit set_x(Int value) { this.x = value; }
8 }
9 class C_id_set_x(Global global)

10 implements I_id_set_x {
11 [Spec: Requires( val == 1 )]
12 [Spec: Ensures( result == 1 )]
13 Int call(Int val){...}// executes id set x(val)
14 ... }
15 class C_main(Global global)
16 implements I_main {
17 [Spec:Ensures(result == 1||result == 2)]
18 Int call() { // executes main()
19 Fut<Unit> tmp_4 =
20 this!set_global_x_val(0); // sets x to 0
21 await tmp_4?; // introduces sequence point ‘‘;’’
22 Fut<Int> tmp_5 =
23 this!get_global_x(); // reads x
24 Fut<Int> tmp_6 =
25 this!call_id_set_x_val_0(1);//calls id set x
26 Fut<Int> tmp_7 =
27 this!op_plus_fut_fut(tmp_5, tmp_6);//add
28 await tmp_7?; // introduces sequence point ‘‘;’’
29 return tmp_7.get; // returns result of addition
30 }
31 [Spec: Ensures(valueOf(fut_arg1) + valueOf(fut_arg2) == result)]
32 Int op_plus_fut_fut(Fut<Int> fut_arg1,
33 Fut<Int> fut_arg2) {
34 await fut_arg1? & fut_arg2?;
35 Int arg1 = fut_arg1.get;
36 Int arg2 = fut_arg2.get;
37 return ( arg1 + arg2 );
38 }
39 ... }

Figure 3: Partial translation of Fig. 2.

3 Active Objects and Their Verification

In this section we give the preliminaries for our work: the ABS language and cooperative contracts. For
space reasons, we refrain from introducing the full formalisms and refer to [26] for a full definition of
the underlying program logic and to [27] for a definition of the used ABS semantics and cooperative
contracts. We stress, however, that the approach is fully formal.

ABS [24] is an executable, object-oriented modeling languages based on Active Objects [9], designed
to model and analyze distributed systems. It has been applied to model a wide range of concurrent
software systems, such as cloud-based services [14, 31], YARN [32] or memory systems [28].

Overview. ABS syntax is largely based on Java and we refrain from describing the full language here.
Instead, we introduce ABS in an example-driven way to demonstrate its concurrency model and formal
semantics. The main features of the concurrency model can be summarized with the points below:
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Strong Encapsulation. Every object is strongly encapsulated at runtime, such that no other object can
access its fields, not even objects of the same class.

Asynchronous Calls with Futures. The ABS language combines actors [21] with futures [6]. Each
method call is asynchronous and generates a future. Futures can be passed around and are used to
synchronize on the process generated by the call. Once the called process terminates, its future is
resolved and the return value can be retrieved. We say that the process computes its future.

Cooperative Scheduling. At every point in time, at most one process is active in an object. Active
Objects are preemption-free: A running process cannot be interrupted unless it explicitly releases
control over the object. This is done either by termination with a return statement or with an await

g statement that waits until guard g holds. A guard polls a set of futures and holds iff all futures
in it are resolved.

These features ensure that a process has exclusive control over the heap memory of its object be-
tween syntactically marked statements. This vastly simplifies deductive verification, as between such
statements techniques from sequential program verification carry over directly.

Example 1. As the extracted models from C code are rather unintuitive, we demonstrate the concurrency
model of ABS with a more natural program.

Fig. 4 gives an ABS model with two objects that folds some binary operation over three numbers:
one object that performs the operation and a second object that performs the folding. Interface Fold

defines an interface for the fold. Lines 2 and 3 give the specification, which we discuss in more detail
below. Here, we specify that the input values must be positive (Requires) and that the result is positive
(Ensures). Interface Comp specifies a single method, which performs some operation that also operates
only on positive numbers. Class FoldC implements the folding and has a field comp that points to a Comp

instance. We specify that the field is initialized with a non-null value (Requires) and stays non-null
(ObjInv). It has a field last to store the intermediate result. ABS uses a main block to initialize the
system, which here creates one instance of each class, starts two fold-processes and synchronizes on
both. There is no await in the class – the processes executing C.fold do not overlap, so the value of last
cannot change before it is returned and it is safe to save the intermediate value in this field.

Cooperative Method Contracts. Here, we give the used fragment of the specification language for
ABS: cooperative method contracts [27] and object invariants for Active Objects [15]. We recap the
Behavioral Program Logic [26] used to verify cooperative method contracts.

Cooperative Method Contracts use two kinds of preconditions for methods: parameter precondi-
tions, which describe the expected parameters; and heap preconditions, which additionally describe the
class fields. Splitting the precondition is necessary, because the parameters are controlled by the caller
process (and must be guaranteed by the caller), while the fields are controlled by the last active process
in the callee object (and must be guaranteed by this process). There are also two postconditions: the
heap postcondition defines the final state upon termination of the method in terms of its fields and local
variables plus a special program variable result for the return value; the parameter postcondition defines
the return value in terms of the parameters. The parameter postcondition can be used upon reading from
the future if the call parameters are known.

We also use object invariants, which must hold at every point a method loses or regains control over
the object: at method start, termination and await statements. The initial state of classes is specified with
creation conditions.
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1 interface Fold {
2 [Spec: Requires(a>0 && b>0 && c>0)]
3 [Spec: Ensures(result>0)]
4 Int fold(Int a, Int b, Int c);
5 }
6 interface Comp {
7 [Spec: Requires(a>0 && b>0)]
8 [Spec: Ensures(result>0)]
9 Int op(Int a, Int b);

10 }
11 class CompC implements Comp { ... }
12 [Spec: Requires(comp != null)]
13 [Spec: ObjInv(comp != null)]
14 class FoldC(Comp comp, Int last)
15 implements Fold{
16 Int fold(Int a, Int b, Int c){
17 Fut<Int> f = comp!op(a, b); last = f.get;
18 f = comp!op(last, c); last = f.get;
19 return last;
20 }
21 }
22 { Comp a = new CompC();
23 Fold c = new FoldC(a,0);
24 Fut<Int> f1 = c!fold(1,2,5);
25 Fut<Int> f2 = c!fold(1,2,4);
26 await f1? & f2?; }

Figure 4: Simple ABS Model, slightly beautified.

Specification. Method signatures in interfaces may be annotated with parameter preconditions of the
form [Spec:Requires(e)] and postconditions ([Spec:Ensures(e)]), where e is an expression of Boolean
type. Similarly, method implementations in classes may be annotated with heap pre- and postconditions.
A heap precondition that could be a parameter precondition is automatically transformed. Classes may
be annotated with object invariants [Spec: ObjInv(e)] and creation conditions [Spec: Requires(e)].
Loops may be annotated with loop invariants [Spec: WhileInv(e)]. The specifications in Fig. 4 are
explained in Example 1.

Full cooperative contracts have mechanisms to specify and verify await statements with suspension
contracts and get statements with resolving contracts [27]. Similarly, so called context sets [27] are used
to specify and analyze the heap preconditions. As neither heap preconditions nor suspension or resolving
contracts are used by the extracted models, we refrain from introducing them in detail.

Verification Crowbar [29] is a verification system for ABS that implements symbolic execution (SE)
i.e., the step-wise execution of statements to generate a set of first-order logic formulas. Validity of all
generated formulas implies safety of the method. The resulting formulas are output in SMT-LIB [7]
format and passed to solvers such as Z3.

Additionally to verifying cooperative contracts, Crowbar implements a lightweight deadlock checker
for ABS that contrary to existing deadlock checkers for ABS [25, 20], requires no main block: The struc-
tural deadlock analysis deduces which methods cannot be part of a deadlock for any program: A dead-
lock is a cycle of dependencies caused by future (and condition) synchronizations [25] and is analyzed
in terms of cycles in dependency graphs between synchronizations, objects and methods. Any method
that contains no synchronization cannot be part of any dependency cycle, it is structurally deadlock-free.
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Similarly, all methods that only call deadlock-free methods and synchronize only on their futures are not
part of any deadlock.

Example 2. Consider Ex. 1. If the implementation of CompC.op contains no blocks or call, e.g., the
statement return a*b, then we can show deadlock freedom.

CompC.op is structurally deadlock-free: it contains no synchronization or suspension. C.fold de-
pends only on CompC.op and is thus not part of any deadlock.

4 Extraction of Annotated Model

In order to extract an ABS model annotated with appropriate specifications from a (specified) C program,
we extend the approach from [37] (which extracts a non-deterministic Active Objects model from C code
containing underspecified behavior) by automatically generating some specifications which are sound by
construction and generating all other specifications by translation of the specifications in the underlying
C program. In order to translate ACSL function contracts into method contracts it was also required to
slightly change the manner in which function parameters were modeled, from parameters of the class
to parameters of the call method within the class. Otherwise, simple functional properties would have
required reasoning about heap properties.

ACSL

The ANSI/ISO C Specification Language (ACSL) [8] is a behavioral specification language for C pro-
grams, used by the state-of-the-art Frama-C [13] tool suite. ACSL can be used to specify function
contracts (pre- and postconditions), data invariants over global variables and some further constructs,
such as loop invariants, statement contracts (pre- and postconditions for a single statement or block of
statements), assertions or ghost code.

Function contracts consist of a requires clause for the precondition and an ensures clause for the
postcondition. Both clauses can be simple C expressions of arithmetic type4, with the postcondition
allowed to contain \result to refer to the return value. Additionally, an assigns clause to specify which
locations may be accessed can be given. We ignore assigns clauses for now as they are not directly
relevant for underspecified semantics.

ACSL allows two types of data invariants on global variables: 1. strong global invariants, which
hold at all times; and 2. weak global invariants, which hold before and after each execution of a function
call and can thus equivalently be added as a requires and ensures clause to all functions. We therefore
focus here only on strong global invariants, in particular as these cannot be easily dealt with in Frama-C.
Furthermore, we restrict strong global invariants to properties about single variables and thus exclude
relational properties.

4.1 From C Code to ABS (C2ABS)

C2ABS [37] is an Eclipse plugin which extracts an ABS model from a C program. Here we describe
how this extraction takes place. In the next subsection we describe the novel extension of this model
extraction: synthesizing specification annotations for the extracted model. Table 1 details how C concepts
are translated into ABS. The basic idea is to have one Active Object which models access to global
variables and further model each executed function call as its own Active Object. Within these function

4Full ACSL allows more operators, which we ignore for now.
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C ABS
Top-level declarations

Global variables Class Global with methods to get/set variable values
definition of function f class C_f with parameter global
Execution of function f Execution of call method on object of class C_f

Parameters and local variables
const parameter parameter of call method

non-const parameter parameter of call method stored in field
const local variable local variable

non-const local variable field
Local const read Direct variable/parameter access

Other (sub-)expressions Methods awaiting parameters and:
global read/write synchronous call to global object (write is side effect)

local non-const read/write get/set value of field
C built-in operators ⊕ return result of performing ⊕

invocation of function f await side effects, create C_f object, make synchronous call to method call of object
Unspecified evaluation order Asynchronous method calls to this object

Sequence points await statements

Table 1: Translation of C concepts into ABS

call objects each (sub)expression being evaluated is modeled as an asynchronous method call to itself
with await statements modeling sequence points: the point between evaluation of all arguments and side
effects of a function call, and the call itself; the semicolon at the end of an expression statement; etc.
Access to global variables is modeled by methods making blocking calls to the global object, while
(potentially recursive) function calls are modeled by creating new Active Objects for the appropriate
function and making blocking calls to these new objects.

Example 3. Consider the function main in Fig. 1 and the statement return x + id_set_x(1); inside,
where there is a sequence point between evaluation of the expression and returning from the function.
The ABS class extracted is shown in Fig. 5, where the method call models function execution and lines 5-
9 model the unspecified evaluation order of the the expression x + id_set_x(1) with the await at line 10
allowing non-deterministic choice in which order the methods to this are executed in. Once all futures
have been resolved, the await regains control, modeling the sequence point before returning. The method
call then returns the value of the addition. The method get_global_x models the memory access, by
making a synchronous call5 to the global parameter of the class, requesting the value of x. The method
call_id_set_x_val_0 models a call to the function id_set_x with an argument evaluated at compile
time and zero side effects from evaluating its argument6. This is done by first creating a new C_id_set_x

object with access to the same global object and then making a synchronous call to the call method of
that object with the evaluated function arguments as parameters. Finally, the method op_plus_fut_fut

models the addition of two subexpressions evaluated at runtime and therefore modeled as futures. First,
the method awaits the resolution of its subexpressions, then returns the sum. While the three methods
can be executed in arbitrary (and interleaving) order, the only visible difference depends on the order
of get_global_x and call_id_set_x_val_0, as op_plus_fut_fut immediately awaits resolution of the

5An asynchronous call to an object in another object immediately followed by a get.
6If the argument were a future or side effects (modeled as futures) were present, the method would immediately await

resolution of all these futures.
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1 class C_main(Global global)
2 implements I_main {
3 Int call() {
4 ...
5 Fut<Int> fut_x = this!get_global_x();
6 Fut<Int> fut_set =
7 this!call_id_set_x_val_0(1);
8 Fut<Int> fut_add =
9 this!op_plus_fut_fut(fut_x, fut_set);

10 await fut_x? & fut_set? & fut_add;
11 return fut_add.get;
12 }
13 Int get_global_x() {
14 Fut<Int> f = global!get_x();
15 return f.get;
16 }
17 Int call_id_set_x_val_0(Int arg1) {
18 I_id_set_x o = new C_id_set_x(global);
19 Fut<Int> f = o!call(arg1); return f.get;
20 }
21 Int op_plus_fut_fut(Fut<Int> fut_arg1,
22 Fut<Int> fut_arg2) {
23 await fut_arg1? & fut_arg2?;
24 Int arg1 = fut_arg1.get;
25 Int arg2 = fut_arg2.get;
26 return arg1 + arg2;
27 }
28 }

Figure 5: Class C_main extracted from function main in Fig. 1

other two methods.

4.2 Automatically Synthesizing Specifications

Due to the automated nature in which function-modelling classes and helper methods are generated, we
can synthesize some specifications directly. For others we require ACSL specification of the underlying
C program.

Auto-generate specifications related to global object As each function-modelling class receives the
global object as a parameter, uses it to access global variables and passes it on when instantiating any
further function-modelling classes, we must (at least) specify that this class parameter (and field) is never
null. To this end all function-modelling classes are specified with:

[Spec : Requires(global != null)]
[Spec : ObjInv(global != null)]

Auto-generate precise postconditions for operator methods C2ABS-generated methods from C built-
in operators ⊕ all perform the same basic steps: await resolution of all future parameters and then return
the result of performing ⊕ on the (resolved) parameters. Precise postcondition specifications for each
of these methods can therefore be generated automatically, by ensuring that the result of the method is
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equal to the result of performing ⊕ on the (resolved) parameters. All C operator method declarations in
interfaces are thus automatically annotated with appropriate postcondition specifications.

Example 4. The interface I_main in the model extracted from the program in Fig. 1 contains the follow-
ing annotated method declaration:

[Spec : Ensures(valueof(fut_arg1) + valueof(fut_arg2) == result)]

Int op_plus_fut_fut(Fut<Int> fut_arg1,

Fut<Int> fut_arg2);

Translate ACSL requires/ensures function contracts ACSL requires/ensures clauses specify (rela-
tional) restrictions upon the function arguments and functional guarantees for the result. Following
similar steps to those for extracting C expressions—simplified somewhat due to lack of side effects—
these can be converted into pre- and postconditions of the call method in the interface modelling the
function. Additionally, similar pre- and postconditions are added to the indirect call methods in any
interfaces modelling functions calling the specified function. When an argument to an indirect call is a
future value, the pre- and postconditions must be formulated to hold for the resolved argument.

Example 5. Given the specified function id_set_x at line 3 in Fig. 2:

2 int id_set_x(int val)

3 /*@ requires val == 1; ensures \result == 1; @*/ {

We annotate both the call method in I_id_set_x and the call_id_set_x_val method in I_main

with the following specifications:

[Spec : Requires(val == 1)]

[Spec : Ensures(result == 1)]

Translate ACSL strong global invariants While a strong global invariant must hold at every point in
the program, it suffices to check that it holds at program start and whenever the global variable is changed.
The ACSL invariant is translated as above and added as an object invariant in the Global class and as
preconditions on the argument of all setter methods for said variable. When the argument to indirect
setters outside of Global is a future value, the precondition must be formulated to hold for the resolved
argument. In order to use the invariant, we add postconditions to all getter methods for the variable.

Example 6. Given the strong global invariant at line 1 in Fig. 2 that x == 0 || x == 1, the global state
is modeled as the code in Fig. 6. Additionally, I_id_set_x and I_main contain the annotated method
declarations in the lower code in Fig. 6.

Use ABS functions in lieu of ACSL logic functions ACSL allows pure logic functions to be defined
(inductively or axiomatically) and called in ACSL specifications. Translating these definitions is outside
of the scope of this work and we therefore instead allow ABS functions to be called directly in ACSL
specifications. If the ABS function is not inside the standard library, it must be defined inside an ACSL-
style comment in the C program.

Scope The C Standard lists 52 cases of unspecified behavior [23, Annex. J.1]. However, most of
these cases are not relevant to functional verification of runtime semantics, e.g., unspecified behavior
of macros; or concern well-investigated elements outside of the considered language fragment, such as
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interface Global {
[Spec : Ensures(result == 0||result==1)]
Int get_x();
[Spec : Requires(arg == 0||arg == 1)]
Unit set_x(Int arg);

}
[Spec : ObjInv(this.x == 0 || this.x == 1)]
class Global implements Global {
Int x = 0;
Int get_x() { return this.x; }
Unit set_x(Int arg) {
this.x = arg;
return unit;
}

}

[Spec:Requires(arg == 0 || arg == 1)]
Unit set_global_x_val(Int arg);
[Spec:Requires(valueof(fut_arg) == 0||valueof(fut_arg) == 1)]
Unit set_global_x_fut(Fut<Int> fut_arg);
[Spec:Ensures(result == 0||result == 1)]
Int get_global_x();

Figure 6: Example for translating strong global invariants.

floating points and string literals; or concern deprecated features of old compilers for rare hardware, such
as the use of negative zeros in integer types. Our focus is therefore on those cases that touch on core
aspects of the runtime semantics and are relevant for almost all programs: order of subexpression and side
effect evaluation (except for some operators such as &&) [23, 6.5], of function argument evaluation [23,
6.5.2.2] and of evaluation of complex assignments [23, 6.5.16]. All these aspects can be handled by our
approach and reduced to non-determinism of concurrent systems.

5 Case Study

Underspecified behavior lurks at almost every binary operation7 and can have subtle effects in larger
systems. To evaluate our verification approach, we use an extreme case of underspecification, inves-
tigating the C program8 in Fig. 7 containing a function whose result heavily depends on unspecified
evaluation order. The function in question is declared as int one_to_fib(int n) and should calculate
a number between 1 and the nth Fibonacci number. The base cases are for inputs 1 and 2 (as well as
all non-positive inputs), which return 1; as well as for input 3, which returns either 1 or 2 in the same
manner as the program in Figure 1. Otherwise, one_to_fib(n) returns the sum of one_to_fib(n-2) and
one_to_fib(n-1) with a potential decrement of 1 in the function pred_or_id ensuring that 1 is always
a potential result, as otherwise {1, . . . ,Fib(n−1)}+{1, . . . ,Fib(n−2)} = {2, . . . ,Fib(n)}.

Verification of this program is a challenging task due to the extensive non-determinism. In [37] the
extracted model for this program was exhaustively checked for inputs up to 5, validating that all possible
outputs (and no outputs outside this range) could be produced. Later experiments with an enhanced

7Underspecified behavior also lurks at many function calls.
8Adapted from an idea on Derek Jones’s The Shape of Code blog at:

shape-of-code.coding-guidelines.com/2011/06/18/fibonacci-and-jit-compilers/

shape-of-code.coding-guidelines.com/2011/06/18/fibonacci-and-jit-compilers/
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1 //@ ABS def Int fib(Int n) = if n <= 2 then 1
2 //@ else fib(n−1) + fib(n−2);
3

4 /*@ strong global invariant x == 0 || x == 1; @*/ int x;

5

6 //@ ensures \result == val;
7 int id_set_x(const int val)

8 { x=1; return val; }

9 //@ ensures \result == 1 || \result == 2;
10 int one_or_two(void) {

11 x=0;

12 return x + id_set_x(1);

13 }

14 //@ ensures \result == val − 1 || \result == val;
15 int pred_or_id(const int val) {

16 x=0;

17 return val - x + id_set_x(0);

18 }

19 //@ ensures \result >= 1 && \result <= fib(n);
20 int one_to_fib(const int n) {

21 if (n > 3)

22 return one_to_fib(n-2)

23 + pred_or_id(one_to_fib(n-1));

24 else if (n == 3) return one_or_two();

25 else return 1; }

Figure 7: Calculate a number between 1 and the nth Fibonacci number in C

model extraction process partially validated models for inputs up to 10. In this work we verify that no
outputs outside of the range are produced for any (valid) inputs.9 The annotated extracted model for
this C program can be found in the technical report. The ABS function definition inside the ACSL-style
specification in line 2 is copied verbatim into the model, the helper methods for + (used in lines 10, 15
and 23) and - (line 15) receive precise specifications, the strong global invariant on x at line 4 produces
specifications throughout the model (Global interface and class, plus indirect getter and setter methods
of other interfaces), while the call methods and their indirect callers are specified with translations of
the contracts for the matching functions. As the program does not contain a main method and is not
executable, so the model it produces is therefore also not executable: the main block in the extracted
model is empty. As we are focused on proving a property of one_to_fib in general, rather than for a
specific actual call, this non-executability is not a problem. This shows an additional strength of our
approach, in that we can analyze library calls in isolation, rather than only being able to analyze a
complete program. Crowbar can close all proof obligations of the extracted model automatically. Note
that we prove the following for all inputs to one_to_fib.

Theorem 1. The extracted model is safe with respect to its specification.

In particular, the proof cannot be closed if we change the specification to express that one_to_fib
returns a value from a smaller range.

9The semantics of the program are underspecified but not undefined.
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Deadlock Freedom. Running Crowbar performs a simple analysis for structurally deadlock-free meth-
ods and returns all methods for which it cannot deduce it. For the extracted model it returns 9 such
methods. These are the methods that take futures as parameters, which is not supported by the deadlock
analysis in Crowbar, and methods depending on these methods. However, all futures that are passed as
parameters are always futures of free methods. Thus we can state the following lemma, which is proven
in the technical report.

Lemma 1. The extracted model is deadlock free for every extractable main block.

Applying State-of-the-Art Tools. As detailed in Sec. 1, other automatic tools cannot handle the exam-
ple correctly. They either fix an evaluation order and can (wrongly) prove a stronger result, i.e., that the
result is always the nth Fibonacci number (Frama-C, RV-match), do not support specification of global
invariants of ACSL (Frama-C) or do not support verification at all(Cerberus). We do not compare our
approach explicitly with the theory presented by Frumin et al. [17], which does treat underspecifica-
tion correctly, but not for C and requires manual translation and manual specification of the translated
program in the target formalism and an interactive proof.

6 Conclusion

We have demonstrated a novel approach combining model extraction with deductive verification of a
distributed active objects model in order to verify C programs with underspecified behavior by reducing
the non-determinism of underspecification to non-determinism of parallelism. We have extended the
C2ABS tool—which already gives C a formal semantics in terms of Active Objects— to automatically
translate a large subset of ACSL specifications into BPL specifications and implemented the Crowbar

tool based on [26] in order to verify the specified model and analyze it for deadlock freedom. Using
a complex case study that exemplifies the challenges for verification of underspecified programs we
showed that our approach of model extraction and verification is fully automatic. We reused a standard
logic and deadlock analysis for ABS and did not need special amendments for underspecified behavior
after the extraction.

Future Work. For formalized parallelization of C code, we plan to integrate a formal, logic-based
dependences analysis [10] and to consider further cases of underspecification of a larger fragment of C,
e.g., in list initializers. The newest version of C2ABS uses different model extraction strategies [38] and
we will investigate using Crowbar to verify these models as well. In cases where the input C program
is not completely specified, we envisage generating the missing object invariants and method contracts
automatically via counter-example guided refinement techniques [12] using the failed Crowbar proofs.

Finally, it is worth investigating how our model extraction approach compares to an explicit handling
of underspecifiation by branching for every possible evaluation order.
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[19] Chris Hathhorn, Chucky Ellison & Grigore Roşu (2015): Defining the Undefinedness of C. In: Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’15),
ACM, pp. 336–345, doi:10.1145/2813885.2737979.

[20] Ludovic Henrio, Cosimo Laneve & Vincenzo Mastandrea (2017): Analysis of Synchronisations in Stateful
Active Objects. In Nadia Polikarpova & Steve Schneider, editors: Integrated Formal Methods, Springer
International Publishing, Cham, pp. 195–210, doi:10.1007/978-3-319-66845-1 13.

https://runtimeverification.com/match/
https://github.com/kframework/c-semantics
http://kframework.org/
https://cerberus.cl.cam.ac.uk/
https://coq.inria.fr/
https://doi.org/10.1145/872734.806932
https://frama-c.com/acsl.html
https://frama-c.com/acsl.html
https://doi.org/10.1145/3122848
https://doi.org/10.1007/978-3-030-34968-4_5
https://frama-c.com/download/frama-c-eva-manual.pdf
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-642-33826-7_16
http://www.envisage-project.eu
http://www.envisage-project.eu
https://doi.org/10.1007/s00165-014-0322-y
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1007/978-3-030-17184-1_3
https://doi.org/10.1007/978-3-030-61470-6_8
https://doi.org/10.1145/2813885.2737979
https://doi.org/10.1007/978-3-319-66845-1_13


16 The Right Kind of Non-Determinism

[21] Carl Hewitt, Peter Bishop & Richard Steiger (1973): A universal modular ACTOR formalism for artificial
intelligence. In: IJCAI’73, Morgan Kaufmann Publishers Inc., pp. 235–245. Available at http://dl.acm.
org/citation.cfm?id=1624775.1624804.

[22] Gerard J. Holzmann & Margaret H. Smith (2002): An Automated Verification Method for Distributed
Systems Software Based on Model Extraction. IEEE Trans. Software Eng. 28(4), pp. 364–377,
doi:10.1109/TSE.2002.995426.

[23] ISO (1999): ISO C Standard 1999. Available at http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1124.pdf. ISO/IEC 9899:1999 draft.
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