
B. Bogaerts, E. Erdem, P. Fodor, A. Formisano,
G. Ianni, D. Inclezan, G. Vidal, A. Villanueva,
M. De Vos, F. Yang (Eds.): International
Conference on Logic Programming 2019 (ICLP’19).
EPTCS 306, 2019, pp. 71–84, doi:10.4204/EPTCS.306.14

c© S. Ghosh & C. R. Ramakrishnan
This work is licensed under the
Creative Commons Attribution License.

Value of Information in Probabilistic Logic Programs∗

Sarthak Ghosh C. R. Ramakrishnan
Department of Computer Science

Stony Brook University
Stony Brook, NY 11794, USA

saghosh@cs.stonybrook.edu cram@cs.stonybrook.edu

In medical decision making, we have to choose among several expensive diagnostic tests such that the
certainty about a patients health is maximized while remaining within the bounds of resources like
time and money. The expected increase in certainty in the patient’s condition due to performing a test
is called the value of information (VoI) for that test. In general, VoI relates to acquiring additional in-
formation to improve decision-making based on probabilistic reasoning in an uncertain system. This
paper presents a framework for acquiring information based on VoI in uncertain systems modeled
as Probabilistic Logic Programs (PLPs). Optimal decision-making in uncertain systems modeled as
PLPs have already been studied before. But, acquiring additional information to further improve the
results of making the optimal decision has remained open in this context.

We model decision-making in an uncertain system with a PLP and a set of top-level queries,
with a set of utility measures over the distributions of these queries. The PLP is annotated with a
set of atoms labeled as “observable”; in the medical diagnosis example, the observable atoms will be
results of diagnostic tests. Each observable atom has an associated cost. This setting of optimally
selecting observations based on VoI is more general than that considered by any prior work. Given
a limited budget, optimally choosing observable atoms based on VoI is intractable in general. We
give a greedy algorithm for constructing a “conditional plan” of observations: a schedule where the
selection of what atom to observe next depends on earlier observations. We show that, preempting
the algorithm anytime before completion provides a usable result, the result improves over time, and,
in the absence of a well-defined budget, converges to the optimal solution.

1 Introduction

Background. Probabilistic Logic Programs (PLPs) have been proposed as an expressive mechanism
to model and reason about systems combining logical and statistical knowledge. Programming lan-
guages and systems studied under the framework of PLP include PRISM [21], Problog [2], PITA [20]
and Problog2 [6]. These languages have similar declarative semantics based on the distribution seman-
tics [22]. At a high level, programs in these languages specify independent probabilistic choices among
facts or rule instances, analogous to those in ICL [18]. The joint distribution among these choices yields
a distribution over non-probabilistic logic programs (also known as worlds in the literature). A distribu-
tion over definite logic programs induces a distribution over their least models; the probability of a query
answer is the probability of the set of all least models that have the answer.

The Driving Problem. In this paper, we consider the problem of data acquisition in systems specified
as PLPs. For instance, a PLP encoding of a medical diagnostic system may specify rules for potential
diagnoses based on symptoms and test results, with distributions specified over the rules, as well as
symptom and test results. Consider a case where we know only the symptoms presented by a patient,

∗This work was supported in part by NSF Grant IIS-1447549.

http://dx.doi.org/10.4204/EPTCS.306.14
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

72 VoI in PLPs

and want to know what tests to perform that will increase our confidence in the ultimate diagnosis.
These tests may be expensive, and a natural question here is which tests yield data that best influence
the decisions, while fitting within an overall budget. The expected increase in the quality of decisions
enabled by the new data due to a test is called the value of information (VoI) for that test.

Technical Approach. The VoI optimization problem has been studied in the past in restricted contexts
of influence diagrams and probabilistic graphical models. In this paper, we pose this optimization prob-
lem in the more expressive context of PLPs. Without loss of generality, our technical development uses
ProbLog as the underlying specification language for the combined logical/statistical system. We use a
simple sensor placement problem, described below, and the corresponding ProbLog program, in Fig. 1,
as a running example to illustrate our technical approach.

Example 1 (Monitoring the Temperature) There is a building with three rooms whose respective in-
door temperatures are modeled by three random variables, T1, T2, and T3; each Ti is modeled by predicates
room(i, T) in the ProbLog program in Fig. 1. The reading of each sensor can either be ‘hi’, indicating
high temperature, or ‘lo’, indicating low temperature. The sensors are used to adjust the heating inside
the building such that the indoor temperature never drops too low. If at any point of time, the reading of
any one sensor is ‘lo’, the heating needs to be increased (predicate heater_on in Fig. 1).

Let the random variables T1, T2, and T3 form a Bayesian network where T2 is the child of T1, and T3
is the child of T2. Let the probability distributions associated with this Bayesian network be as follows:

Pr(T1 = lo) = 0.5
Pr(T2 = lo|T1 = lo) = Pr(T3 = lo|T2 = lo) = 0.7
Pr(T2 = lo|T1 = hi) = Pr(T3 = lo|T2 = hi) = 0.3

These dependencies and distributions are encoded in the ProbLog program by the (probabilistic) facts
defining room(i, T). In this program, query probability(heat_on) (= 0.755) gives the likelihood
that at least one room has low temperature, but under the condition that we have not measured any room’s
temperature.

1: % Heater should be on if any room’s temp is low.
2: heat_on:-room(1,lo); room(2,lo); room(3,lo).

3: % Room 1’s temp with Pr(t1 = l) = 0.5
4: 0.5::room(1,lo).

5: room(1,hi):-not room(1,lo).

6: % Similar definitions of temps of rooms 2 and 3

Figure 1: ProbLog program fragment for the sensor placement problem.

Entropy of a distribution reflects the uncertainty in our knowledge of the actual state of a probabilistic
system. Given a set of random variables S, and any set of realizations s of the elements in S, the expected
entropy of S is defined as:

H(S) =−∑s Pr(s) log2 Pr(s)
The expected entropy over the values of heat_on is 0.8.

We can make a better estimate of whether to turn the heat on or not if we measure one or more rooms’
temperature(s). Among all random variables in a program, we may be able to obtain the valuation (i.e.
measure) of only a subset. We mark such variables as observable. The act of observing may incur a
cost that is independent of the outcome. We annotate observable variables and their respective costs for

S. Ghosh & C. R. Ramakrishnan 73

observation by adding special observable/2 facts to the program. For instance, in the sensor placement
problem, if each room permits placement of a sensor, and observing each sensor consumes one unit of
energy, then the added facts are:

observable(room(1, _), 1).

observable(room(2, _), 1).

observable(room(3, _), 1).

Now, consider the case where the building’s green certification allows only enough energy for two
observations (i.e., total cost of two energy units). The expected entropy over the values of heat_on
under the various choices of sensors are as follows:

H(heat on|T1,T2) = H(heat on,T1,T2)−H(T1,T2) = 0.31

H(heat on|T1,T3) = H(heat on,T1,T3)−H(T1,T3) = 0.18

H(heat on|T2,T3) = H(heat on,T2,T3)−H(T2,T3) = 0.31

So, we should choose to measure the temperatures in rooms 1 and 3. Measuring temperatures of specific
rooms by placing sensors in them results in additional information about the temperature situation inside
the building, reflected by the expected entropy of 0.8 in the uninformed case reducing in all three cases.
In this example, the reduction in expected entropy is the VoI of the corresponding set of random variables.
We choose to place sensors in rooms 1 and 3 since the VoI of the set {T1,T3} is the highest at 0.62. 2

The Value of Information. In general, VoI is defined in terms of a utility function. The VoI of
a set of variables is defined as the increase in the expected utility of the system due to observation
of these variables. However, the observations themselves are expensive. A central problem in such
settings is to determine the variables to observe such that the increase in the expected utility of the
system is maximized [11, 16]. In temperature monitoring, we may have to schedule a sensor in a way
that simultaneously minimizes uncertainty in temperature and energy expenditure [4]; in medical expert
systems, we have to choose among several expensive diagnostic tests to become most certain about a
patient’s health while minimizing costs [25]; in active learning of partially hidden Markov models, we
have to label a subset of the hidden states that simultaneously optimizes predictive power of the model
and the cost of annotation [23]. This general setting of choosing observations in an uncertain system was
first introduced in [10].

Krause and Guestrin generalized the notion of utilities to reward functions, and studied the problem of
optimizing VoI in probabilistic graphical models [13]. They showed that the problem is wildly intractable
in general, and gave polynomial time solutions for chain graphical models. They considered two settings
of subset selection, where we select the variables to observe a priori; and conditional planning, where we
interleave variable selection and observation, with the variables chosen later conditioned on the outcomes
of variables observed earlier. A more detailed description of related work appears in Section 5.

A Greedy Approach to VoI Optimization. Given a ProbLog program, a set of observable/2 facts,
and a total budget, we proceed in a greedy manner. At each step, we select a single observation that has
the highest VoI. We build a solution by recursively solving the optimization problem, removing the se-
lected observation from further consideration, and under a suitably reduced budget, until we exhaust
observations or budget. When the subproblems are conditioned on the outcomes of earlier observations,
we get a decision tree, or a conditional observation plan.

74 VoI in PLPs

Contributions. The main contributions of this paper are two fold. First, by considering systems spec-
ified as PLPs, our setting of optimally selecting observations based on VoI is more general than that
considered by any prior work. The earlier works were limited to influence diagrams or probabilistic
graphical models, both of which have static and explicit specification of conditional dependencies of
variables. Secondly, we show that when the optimization problem is considered without a limiting bud-
get, our algorithm can be used as an anytime algorithm. That is, preempting the algorithm anytime before
completion provides a usable result, the results improve over time, and converge to the optimal solution.

The rest of the paper is organized as follows. We begin with a brief recap of ProbLog and its seman-
tics in Section 2. In Section 3 we describe the basis for VoI optimization in the setting of PLPs. The
greedy algorithm for selecting observations based on VoI is described in Section 4. We discuss related
work in Section 5 and conclude with a discussion of future work in Section 6.

2 ProbLog and Distribution Semantics

Notational Conventions. The technical development in this paper assumes familiarity with traditional
logic programming concepts and terminology, including variables, terms, substitutions, ground and non-
ground terms, atomic formulas, clauses, Herbrand models, etc. See [17]. We use “clauses” interchange-
ably with rules and facts. We also use familiar notation, such as using symbols θ , σ for denoting
substitutions, and using p/n notation to denote an n-ary predicate p. 2

We present a brief, high-level overview of ProbLog [2, 12], a probabilistic extension of Prolog. A
ProbLog theory T consists of a set of labeled facts F , and a set of definite clauses BK that represent
the background knowledge. The facts pi :: Fi in F are annotated with a probability pi which states that
Fiθ is true with probability pi for all substitutions θ grounding Fi. These random variables are assumed
to be mutually independent. A ProbLog theory describes a probability distribution over the set of Prolog
programs L = FL ∪BK , where FL ⊆FΘ and FΘ denotes the set of all possible ground instances
of facts in F . If fi denotes a possible grounding of any Fi in F , then

Pr(L |T) = ∏(fi∈FL) pi ∏(fi∈FΘ\FL)(1− pi)

The success probability of a query q is then
Pr(q|T) = ∑L Pr(q|L)Pr(L |T)

Here Pr(q|L) is 1 if there is a substitution θ such that L entails qθ , and 0 otherwise. Note that
each FL ⊆ FΘ can be extended into a possible world by computing the least Herbrand model of
L = FL ∪BK . Thus, T defines a probability distribution over a set of least Herbrand models M .
From this perspective, the probability of the query q succeeding is the sum of the probabilities of the
least models in M where at least one grounding qθ is included. This design choice was first introduced
as the distribution semantics in another probabilistic extension of Prolog, PRISM [21, 22].

Example 2 (Tuberculosis Outbreak) The program in Figure 2 models how tuberculosis spreads in a
population of 4. A person can develop tuberculosis on their own (line 7), with likelihood 0.1 (line 2). A
person can also develop tuberculosis if they are friends with someone who has the condition (line 8), with
likelihood 0.4 (line 3). It is possible to diagnose tuberculosis by performing an x-ray of the chest (line
10): the likelihoods of a positive diagnosis in the absence and presence of tuberculosis are respectively
0.3 (line 4) and 0.9 (line 5). Note that although the diagnosis is a dependent random process, dependent
on the presence or absence of tuberculosis, it is modeled as two independent random processes, x_-
ray(0) and x_ray(1), to maintain consistency with the assumptions of ProbLog. There is an epidemic
of tuberculosis if at least 3 persons have the condition (lines 11-12). 2

S. Ghosh & C. R. Ramakrishnan 75

1: % F:

2: 0.1::tb_prior(X):- person(X).

3: 0.4::tr(X,Y):- person(X), person(Y).

4: 0.3::x_ray(X,0).

5: 0.9::x_ray(X,1).

6: % BK :

7: tb(X,1):- tb_prior(X).

8: tb(X,1):- friend(X,Y), tr(Y,X), tb(Y,1).

9: tb(X,0):- not(tb(X,1)).

10: diagnosis(X):- tb(X,D), x_ray(X,D).

11: epidemic:- findall(X,tb(X,1),E),

12: length(E,N), N>2.

13: person(1).

14: person(2).

15: person(3).

16: person(4).

17: friend(1, 2).

18: friend(2, 1).

19: friend(2, 3).

20: friend(3, 2).

21: friend(3, 4).

22: friend(4, 3).

Figure 2: ProbLog program modeling the spread of tuberculosis among a population.

3 VoI Under Distribution Semantics

We start off with an example of how VoI fits into the PLP setting.

Example 3 (Is there an Epidemic?) In Example 2, we need to become more sure about whether, or
not a tuberculosis epidemic has broken out. We can perform a chest x-ray on each person to gain more
information about the epidemic situation. From a VoI perspective, the utility of the system is the expected
entropy over the truth values of epidemic, and the outcomes of the x-rays are observations. There is a
deadline for declaring an epidemic that allows us only enough time to track down and perform an x-ray
on only one person. So, we track down person 2 and perform the x-ray on them since it gives us the
highest VoI of 0.08: the initial expected entropy of 0.45 comes down to 0.37. 2

As in Example 3, it generally makes sense to define VoI in the PLP setting in terms of a PLP and a
query (epidemic in Example 3): we gather information to answer the query most effectively. So, it also
makes sense to define utility as some function of the probability distribution over the possible groundings,
or truth values of the query (expected entropy in Example 3). However, the distribution semantics of
ProbLog is defined with respect to the associated least Herbrand models, not the groundings of a query.
Hence, a probability distribution may not even exist for the groundings of a query. For example, given
the query q(X), there are 2 least models where X is simultaneously 0 and 1 in the following ProbLog
theory:

0.5::q(0).

0.5::q(1).

q(1):-not(q(0)).

q(0):-not(q(1)).

76 VoI in PLPs

There are, of course, ProbLog theories and queries where probability distributions exist over groundings.
However, in order to make the following discussion more general, we only consider ground queries in
the rest of the paper.

Before formally defining utility and VoI in ProbLog theories, we define some key concepts in Defi-
nitions 1 through 5.

Definition 1 (Observable) Let T be a ProbLog theory, M be the set of associated least Herbrand
models, and t be an atomic formula in T . Let tθ be an arbitrary instance of t. Let σi denote a
substitution for tθ such that tθσi is ground. Let Mi be the subset of M where all least models include
tθσi. Then tθ is an observable in T if

• 6 ∃σi such that Mi=M ,

• ∃σi such that Mi 6= /0, and

• whenever Mi1∩Mi2 6= /0, σi1 = σi2 .

Observables are the set of atomic formulae whose groundings can be used to distinguish between
models in a program’s semantics. For instance, in Example 1, heat_on, as well as room(1, X),
room(2, X), etc. are all observables. Their ground instances hold in some models and not others.
Multiple instances of the same atomic formula can be considered observables in the same theory T . For
instance, in the same example, room(1,X) as well as room(1,hi) are both observable. It is, however,
not possible for a fact in T to be an observable, like person(1) in Figure 2, since it will hold in every
least model. It is also not possible for an instance of an atomic formula in T , that is not a part of any
least model in M , to be considered an observable, like tb(5, D), or diagnosis(5) in Figure 2.

Definition 2 (Realization) Let T be a ProbLog theory, M be the set of associated least Herbrand
models, and t be an atomic formula in T . Let tθ be an instance of t which is an observable in T . If tθ

is ground, either tθ , or ¬tθ is a realization for tθ . Otherwise, if tθσi is ground, and Mi is the subset
of M where all least models include tθσi, tθσi is a realization for tθ if Mi 6= /0.

When an observable is viewed as a random variable, its realization is the corresponding valuation.
The restriction on what ground instance of tθ in the above definition can be considered as its realization
is reasonable: if there are no least models in M that includes a given ground instance of tθ , then that
instance will never manifest in reality.

Definition 3 (Observation) Let T be a ProbLog theory, M be the set of associated least models, and
t be an atomic formula in T . Let tθ be an arbitrary instance of t, and tθ be an observable in T . Then
observation of tθ is an operation that creates a new theory T ′ by adding a realization of tθ to T as
evidence.

If an observable is ground, its observation leads to the creation of a new theory based on its
truth value. For example in Figure 2, observation of diagnosis(2) leads to T ′ being either
T ∪ {evidence(diagnosis(2), true)}, or T ∪ {evidence(diagnosis(2), false)}. Again,
if the observable is not ground, if there are g possible realizations, its observation will lead to the cre-
ation of one among g possible new theories. For example, in Figure 2, observation of tb(1, D) leads to
T ′ being either T ∪{evidence(tb(1, 0), true)}, or T ∪{evidence(tb(1,1), true)}. The
new theory will be associated with all the least models in M that include the evidence.

Observations consume resources: in Example 1, the resource was energy, in Example 3, the resource
was time. So, the definition of an observable is incomplete without the detail of the amount of resources

S. Ghosh & C. R. Ramakrishnan 77

consumed by selecting it for observation. Also, there can be observables which are not actually observ-
able in reality. For example, in Example 2, neither the actual health condition of a person (tb/2), nor the
presence of an epidemic (epidemic/0) can be directly known. We can only know about them through
performing x-rays (diagnosis/1). So, there must be some mention in the ProbLog theory about what
observables can be selected for observation. We propose that the user specify what observables can actu-
ally be selected for observation, and the associated cost of observation, as observable/2 facts defined
as follows:

Definition 4 (observable/2) Let T be a ProbLog theory, and p be a k-ary predicate symbol in T .
Let tθ be an observable in T with p/k as its root symbol. Then to specify that tθ can be considered for
observation, the following fact is a part of T

observable(p(α1, α2, . . ., αk), γ)

where,

• each αi is either a ground term or “ ” (an anonymous variable),

• p(α1, α2, . . ., αk), is a renaming of tθ , and

• γ is a positive real number representing the cost of observing tθ .

In Example 3, to specify that we can only observe the results of x-rays, and that each x-ray costs 1,
we add the following to the program in Figure 2:

observable(diagnosis(1), 1).
observable(diagnosis(2), 1).
observable(diagnosis(3), 1).
observable(diagnosis(4), 1).

An important point to note is that cost in Definition 4 is consistent with previous works on VoI where
costs are associated with individual variables in the system [13, 7]. However, in our PLP setting, observa-
tion of one observable does not limit the evidence gathered to that observable. For example, in Figure 2,
on observation of tb(2, 1), we know what the observation for tb(2, _) will be. So, in order to make
sense of costs, the ProbLog theory should be modeled such that observations are independent. For exam-
ple, in Figure 2, adding both observable(tb(2, _), cost) and observable(tb(2, 1), cost)

to the program would be inconsistent with reality, and a bad design choice. It should be noted that we
intend the list of observable/2 facts to remain consistent across the various theories created through
observations. We use the list as a look-up table to determine whether an observable in any particular
theory can be selected for observation.

In this paper, when optimizing the selection of observables based on VoI, we sequentially select the
observables, letting our choice depend on previous observations [14]. This approach is different from
that described in Example 1, where a subset of observables is chosen in one go. The former setting is
referred to as conditional planning, and the latter as subset selection [13]. Conditional planning can
be thought of as a sophisticated version of subset selection. So, in a conditional plan, we consider an
observable in the context of all the observations that have been made thus far. The effects of observations
are captured by scenarios, defined below.

Definition 5 (Scenario) Let T be a ProbLog theory, and A be the set of all observables in T that are
specified as observable/2 facts. Let subset O of A be chosen for observation, and o denote a set of
realizations for the elements in O . Then T is said to be the scenario S{}, and T ∪ o is said to be the
scenario So.

78 VoI in PLPs

Thus, scenarios are created by observations. The specific scenario created depends on the reality in
which the observations are made, where realities are defined as follows.

Definition 6 (Reality) Let T be a ProbLog theory, A be the set of all observables in T that are speci-
fied as observable/2 facts. A reality Ra is a set of realizations a for the elements in A . If any element
in A is chosen for observation in reality Ra, its realization will be as in a.

So, any reality may be a part of multiple least models, but any least model includes only one reality,
ensuring that a probability distribution exists over realities as well.

In ProbLog, we define utility for sets of observables for a query q in a baseline scenario Sb. Since
we will not know the realizations before actually making the observations, expectation is taken over all
possible sets of realizations. The formal definition is as follows.

Definition 7 (Value of Information of Observables) Let T be a ProbLog theory, q be a query, A be
all observables in T specified as observable/2 facts, O be any subset of A , and o denote any set of
realizations for elements in O . The VoI of O with respect to q in a scenario Sb is then defined as

VoI(O,q,Sb) = ∑o Pr(o)Utility(q,Sb∪o)−Utility(q,Sb),
where Utility(q,Ss) is the utility function defined on the probability distribution over the truth values of
q in scenario Ss.

Based on the intended use of the ProbLog theory, the Utility function can be defined in a number
of different ways. Interesting notions of the Utility function can be found in [14]. We present here two
possible definitions for Utility.

(a) Reduce Uncertainty: This definition is useful when the goal is to reduce the uncertainty around
whether, or not the query q is true, and is specified as

Utility(q,Ss) = Pr(q|s) logPr(q|s)+Pr(not(q)|s) logPr(not(q)|s).
The utility here is the negation of the entropy associated with the distribution over the truth values
of q. So, VoI of O in this case will be the reduction in expected entropy. We use this definition in
Example 3.

(b) Choose Better Action: This definition is useful when we have to choose from a set of actions, α ,
whose utilities depend on the truth value of the query q. Given a function U that defines a mapping
from an action in α , and a truth value of q, to a real number, it is specified as

Utility(q,Ss) = maxa∈α [Pr(q|s)U(a,q)+Pr(not(q)|s)U(a,not(q))].
This definition is related to utility nodes in influence diagrams [11], and the principle of maximum
expected utility from decision theory [10]. VoI of O , in this case, will be the increase in maximum
expected utility.

In addition to VoI for observables, we can also define VoI of entire conditional observation plans as
follows.

Definition 8 (Value of Information of Observation Plans) Let T be a ProbLog theory, q be a query,
A be all observables in T specified as observable/2 facts, and a denote any set of realizations for
elements in A . Let π denote any observation plan where elements from A are chosen sequentially,
based on previous observations. Let π(Ra) denote the set of realizations from observations made by
plan π in reality Ra. The VoI of the plan π with respect to q is then defined as

VoI(π,q) = ∑Ra Pr(Ra)Utility(q,Sπ(Ra))−Utility(q,S{}).

We describe algorithms for optimizing choice of observables based on VoI in a PLP setting in the
next section.

S. Ghosh & C. R. Ramakrishnan 79

Input: initial scenario: S{}, query: q, budget: B
Output: observation plan: π ′

1: root node,WL← dt node(S{},B),queue()
2: enqueue(WL,root node)
3: while WL 6= /0 do
4: node← dequeued(WL)
5: Sn,Bn← scenario[node],budget[node]
6: An← all observables in Sn

7: Cn← argmaxC∈An,cost(C)≤Bn
VoI({C },q,Sn)

8: if Cn 6= NIL and VoI({Cn},q,Sn)> 0 then
9: choice[node]← Cn

10: for each realization cn of Cn do
11: new node← dt node(Sn∪{cn},Bn−cost(Cn))

12: next[node][cn]← new node
13: enqueue(WL,new node)
14: return root node

Figure 3: Greedy algorithm for optimizing VoI in a ProbLog program.

4 Greedy Optimization of VoI

Based on Definition 8, given a limit B on the sum of the costs of observations (also called a budget), we
would ideally want an optimal conditional observation plans π∗ where

π∗ = argmaxπ∈ΠB
VoI(π,q)

Here, ΠB denotes the set of all those conditional observation plans where, in no reality, the sum of costs
of observations made exceed the budget B. But optimizing VoI in any uncertain system has been shown
to be extremely hard [14, 1]. Although non-myopic (non-greedy) optimization algorithms have been
proposed for restricted classes of probabilistic graphical models [13, 14, 7], majority of optimization
approaches are myopic (greedy) [27, 5]. Since the ProbLog programs we consider are not restricted to
modeling particular types of graphical models, we propose an algorithm that, instead of π∗, creates a
plan π ′ by greedily choosing each of its steps based on Definition 7.

Figure 3 shows the outline of the algorithm, which takes the initial scenario S{}, the query q, and the
budget B as inputs, and offers the observation plan π ′ as the output. The plan π ′ is computed as a greedy
decision tree where each node has the following attributes:

− scenario: The scenario associated with the node.

− budget: The resources available for observations in scenario.

− choice: The observable to be chosen in scenario.

− next: The list of children of the node.

A decision tree node is created by the function dt node. We initially start off with the tree having
just the root node. The scenario associated with the root node is S{}, and the budget associated with it
is the initial budget B. While building the tree, we maintain a list of leaves in a queue WL. The queue
WL initially only has the root node. In each step involved in expanding the tree, the first leaf node, node,
in WL is dequeued (line 4). The scenario associated with node has the set of observations n (following

80 VoI in PLPs

Definition 5), and An denotes all the observables in Sn that are specified by the observable/2 facts
(lines 5-6). Of all the observables in An, Cn is chosen if its cost (denoted cost(Cn)) is less than the
available budget Bn, and the its VoI is maximum (line 7). The choice Cn will, of course, be NIL if An

is empty, or if no choices satisfy the budget constraint. If there is a choice, and the gain in utility is
non-zero, the choice of observable is recorded for node, and its children are created and enqueued into
WL (lines 8-13). The decision tree is created in a breadth-first order, and leaves in the final decision tree
satisfy at least one of the following conditions:

(1) Absence of Observables: There are no observables in the associated scenario that are specified
by the observable/2 facts.

(2) Insufficient Budget: There are observables available in the associated scenario that are specified
by the observable/2 facts, but the available budget is insufficient for observing any of them.

(3) No Gain in Utility: There are observables available in the associated scenario that are specified
by the observable/2 facts, as well as sufficient budget, but all of them have zero VoI.

Definition 9 (Decision Tree Node Utility) Let q be the query, and node be a decision tree node with
scenario Ss. Then the utility of node is defined as Utility(q,Ss).

The following definition is derived from Definitions 8 and 9, and helps us to understand how to
interpret the decision tree from the perspective of VoI.

Definition 10 (Value of Information of Decision Trees) Let DT (i) denote the partial decision tree
created by the algorithm in Figure 3 after the i-th iteration, where i ≥ 0, and DT (0) is the partial
decision tree with only the root node. The VoI of DT (i) is then the difference between the expected utility
of the leaf nodes, and the utility of the root node of DT (i).

Every decision tree DT (i), where i ≥ 0, corresponds to a partial plan π ′(i) whose VoI is the VoI of
DT (i). The VoI of the final decision tree is the VoI of the complete observation plan π ′. If the tree was
created non-greedily with complete lookahead, the VoI of the final tree would be the VoI of the optimal
plan π∗.

Example 4 (Conditional Epidemic Monitoring Plan) Figure 4 shows the decision tree (observation
plan) created by the algorithm in Figure 3 when the program is the one from Example 2 with
observable/2 facts described in Section 3, the query is epidemic, and the budget (B) is 2. The
observable chosen at a node is shown in the non-shaded part, and the budget available is shown in the
shaded part. For each node, the quantity below it shows its utility defined as the negated entropy of the
distribution over the truth values of epidemic. All the leaves in this tree satisfy only condition (2). The
VoI of the final tree, and the plan it represents, is 0.081. 2

Complexity. The worst-case time complexity of the algorithm is O(Ncin f dN+1), where N is the num-
ber of observables in a program that are specified by observable/2 facts, d is the maximum number
of realizations for any such observable, and cin f is the cost of a single probabilistic inference: the de-
cision tree, in the worst case, has O(dN) non-leaf nodes, and each node involves O(Ncin f d) worth of
computation.

S. Ghosh & C. R. Ramakrishnan 81

Figure 4: Decision tree created by the algorithm in Figure 3 for the program in Figure 2.

An Anytime Algorithm. Following Definition 7, given a scenario Ss, and a query q, Utility(q,Ss)
does not depend on the order in which the observations in s materialized. This property has an important
consequence. If there is no budget (B = ∞), we will always end up with a plan that will be the optimal
one, π∗, since the leaves would satisfy conditions (1) and (3), but not condition (2). Also, the VoI of
DT (i2) is strictly greater than the VoI of DT (i1), whenever i2 > i1. Moreover, after each extension of
the tree, we get a partial plan whose VoI is strictly greater than all the previous ones.

Now, even our greedy algorithm can be considerably expensive. The preceding observations become
relevant when, instead of a formal budget B, we have a restriction on the time available to come up with
a plan. Under such a scenario, the algorithm behaves like an anytime algorithm: each iteration leads to
a plan with strictly greater VoI, and if it runs till completion, we end up with a plan with optimal VoI.
Keeping in line with another anytime algorithm in the VoI domain [9], we may even make WL in Figure
3 a priority queue with different definitions of priority: having a priority queue allows us to extend the
tree in a custom order, enabling us to greedily expand parts of the plan that would lead to the greatest
increase in VoI within the given time limit.

5 Discussion

VoI, as a concept, was presented by Howard [10] in the context of decision theory. Krause and
Guestrin [13] presented a more general notion of VoI based on reward functions defined on probabil-
ity distributions of variables in the system. Also, VoI has so far been studied in either the context of
influence diagrams [11, 5], or probabilistic graphical models [13, 14, 7]. This work presents a frame-
work for incorporating the broad definition of VoI introduced in [13] into PLPs, which can model a wide
range of probabilistic systems including both influence diagrams and probabilistic graphical models. In
other words, this work presents VoI in a context that is broader than anything considered before.

Van den Broeck et al [26] studied optimal decision making in uncertain systems modeled in a
ProbLog extension called DTProbLog. They consider actions which have utilities that depend on the
least Herbrand model, and choose actions that result in the maximum expected utility. Through Defini-
tion (b) of utility in Section 3, we propose how to acquire information such that the maximum expected
utility is optimized. One contribution of this work can be viewed as providing an ‘add-on’ to the func-
tionality provided in DTProbLog. For example, in Example 2, if there is an action declare_epidemic,
DTProbLog would decide on whether, or not the action should be taken based on only the program given

82 VoI in PLPs

in Figure 2. Using our ‘add-on’, the most informative x-rays would be performed, and the corresponding
evidence/2 (ProbLog built-in) facts would be added to the program in Figure 2, before the decision is
made.

Planning with sensing actions and incomplete information has been studied before in a logic pro-
gramming framework by Tu et al [24]. If observing variables are thought of as sensing actions, this work
seemingly also deals with a similar problem. However, they are very different. In planning under incom-
plete information, sensing is guided entirely by satisfying the specified goal with no restrictions on what
can be sensed, and the resources available for sensing. In optimization of VoI, sensing is guided by ac-
quiring the most information and there are restrictions on what can be sensed, and possibly the resources
available for sensing. Gathering information in our framework can be viewed as adding evidence/2

facts to a ProbLog theory. So, in a way, observations are ‘abducted’ into the theory. However, unlike in
abductive logic programming [3], our ‘abduction’ results in additional information being obtained, not a
goal being explained through already available information.

Quinlan first proposed optimizing VoI through myopic (greedy) decision trees [19]. Many subsequent
works have also proposed greedy approaches to optimizing VoI [27, 5, 15]. Krause and Guestrin showed
that the VoI optimization problem even in very restricted graphical models is extremely hard, belonging
to complexity classes at least as hard as NPPP-complete [14]. Efficient VoI optimization algorithms were
described in [13] and [7], but their efficiency is restricted to just chain-like graphical models. So, given
the hardness of the domain and the broadness of our context, the simplistic greedy algorithm in Figure
3 is a good starting point, and its anytime nature in the absence of budgets is meaningful. The algorithm
provides a very broad VoI optimization framework. For example, instead of using the definitions of utility
in Section 3 along with a budget, we can simply use the same-decision probability [1] as the combined
selection and stopping criteria.

6 Conclusions and Future Work

We have presented a framework for incorporating a broad notion of VoI in the general setting of PLPs.
Following initial approaches to VoI in other contexts, such as influence diagrams [27] and graphical
models [8], we have presented a greedy approach for selecting observations based on VoI in systems
modeled as PLPs. The optimal algorithms of [13] are highly efficient for chain graphical models, but
cannot be applied to any other kinds of models. The optimal algorithms of [7] are applicable to general
dynamic Bayesian networks, while being more efficient than the algorithms of [13] for chain models.
PLPs provide an expressive framework where we can model much more than just probabilistic graphical
models. Our eventual goal is to come up with optimal algorithms for PLPs that, like the algorithms in [7],
naturally achieve efficiency on PLPs that encode chain models. We expect this will involve exposing the
conditional dependence between random variables in the PLP. We believe that the explanation graphs
used in inference contain adequate information for exposing these dependencies. Although relatively
few, there are approximation algorithms that offer a priori [15] and a posteriori [7] approximation bounds.
We would like to explore whether such approximation algorithms are possible in the context of PLPs.

References

[1] Suming Chen, Arthur Choi & Adnan Darwiche (2014): Algorithms and Applications for the Same-Decision
Probability. Journal of Artificial Intelligence Research 49, pp. 601–633, doi:10.1613/jair.4218.

http://dx.doi.org/10.1613/jair.4218

S. Ghosh & C. R. Ramakrishnan 83

[2] L. De Raedt, A. Kimmig & H. Toivonen (2007): ProbLog: A probabilistic Prolog and its application in link
discovery. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007),
pp. 2462–2467.

[3] Marc Denecker & Antonis Kakas (2000): Special issue: abductive logic programming. The Journal of Logic
Programming 44(1), pp. 1 – 4, doi:10.1016/s0743-1066(99)00078-3.

[4] A. Deshpande, C. Guestrin, S. Madden, S. Hellerstein & W. Hong (2004): Model-driven Data Acquisition in
Sensor Networks. In: VLDB, doi:10.1016/b978-012088469-8.50053-x.

[5] S. Dittmer & F. Jensen (1997): Myopic Value of Information in Influence Diagrams. In: UAI, pp. 142–149.

[6] Anton Dries, Angelika Kimmig, Wannes Meert, Joris Renkens, Guy Van den Broeck, Jonas Vlasselaer &
Luc De Raedt (2015): ProbLog2: Probabilistic Logic Programming. In: Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD, pp. 312–315, doi:10.1007/978-3-319-23461-
8 37.

[7] S. Ghosh & C. R. Ramakrishnan (2017): Optimal Value of Information in Dynamic Bayesian Networks. In:
2017 International Conference on Tools with Artificial Intelligence, doi:10.1109/ictai.2017.00015.

[8] D. Heckerman, E. Horvitz & B. Middleton (1993): An Approximate Nonmyopic Computation for Value
of Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, pp. 292–298,
doi:10.1109/34.204912.

[9] M. C. Horsch & D. L. Poole (1998): An Anytime Algorithm for Decision Making under Uncertainty. In:
UAI.

[10] R. A. Howard (1966): Information Value Theory. IEEE Transactions on Systems Science and Cybernetics
2(1), pp. 22–26, doi:10.1109/tssc.1966.300074.

[11] R. A. Howard & J. Matheson (1984): Influence Diagrams. In: Readings on the Principles and
Applications of Decision Analysis II, Strategic Decision Group, Menlo Park, Calif., pp. 719–762,
doi:10.1287/deca.1050.0020.

[12] A Kimmig, V Santos Costa, R Rocha, B Demoen, & L De Raedt (2008): On the Efficient Execution of
ProbLog Programs. In: Proceedings of the 24th International Conference on Logic Programming (ICLP
2008), doi:10.1007/978-3-540-89982-2 22.

[13] A. Krause & C. Guestrin (2005): Optimal Nonmyopic Value of Information in Graphical Models - Efficient
Algorithms and Theoretical Limits. In: Proc. of IJCAI.

[14] A. Krause & C. Guestrin (2009): Optimal Value of Information in Graphical Models. Journal of Artificial
Intelligence Research 35, pp. 557–591, doi:10.1613/jair.2737.

[15] A. Krause & C. Guestrin (2012): Near-optimal Nonmyopic Value of Information in Graphical Models. CoRR
abs/1207.1394.

[16] V. S. Mookerjee & M. V. Mannino (1997): Sequential Decision Models for Expert System Optimization.
IEEE Transactions on Knowledge and Data Engineering 9(5), pp. 675–687, doi:10.1109/69.634747.

[17] Ulf Nilsson & Jan Maluszynski (1995): Logic, Programming and Prolog (2ed). John Wiley & Sons Ltd.
Available at http://www.ida.liu.se/~ulfni/lpp.

[18] D. Poole (2008): The Independent Choice Logic and Beyond. In: Probabilistic ILP, pp. 222–243,
doi:10.1007/978-3-540-78652-8 8.

[19] J. R. Quinlan (1986): Induction of Decision Trees. Machine Learning 1, pp. 81–106,
doi:10.1007/bf00116251.

[20] Fabrizio Riguzzi & Terrance Swift (2011): The PITA system: Tabling and answer subsumption for
reasoning under uncertainty. Theory and Practice of Logic Programming 11(4-5), pp. 433–449,
doi:10.1017/s147106841100010x.

[21] T. Sato & Y. Kameya (1997): PRISM: a language for symbolic statistical modeling. In: Proceedings of the
15th International Joint Conference on Artificial Intelligence, pp. 1330–1335.

http://dx.doi.org/10.1016/s0743-1066(99)00078-3
http://dx.doi.org/10.1016/b978-012088469-8.50053-x
http://dx.doi.org/10.1007/978-3-319-23461-8_37
http://dx.doi.org/10.1007/978-3-319-23461-8_37
http://dx.doi.org/10.1109/ictai.2017.00015
http://dx.doi.org/10.1109/34.204912
http://dx.doi.org/10.1109/tssc.1966.300074
http://dx.doi.org/10.1287/deca.1050.0020
http://dx.doi.org/10.1007/978-3-540-89982-2_22
http://dx.doi.org/10.1613/jair.2737
http://dx.doi.org/10.1109/69.634747
http://www.ida.liu.se/~ulfni/lpp
http://dx.doi.org/10.1007/978-3-540-78652-8_8
http://dx.doi.org/10.1007/bf00116251
http://dx.doi.org/10.1017/s147106841100010x

84 VoI in PLPs

[22] T. Sato & Y. Kameya (2001): Parameter learning of logic programs for symbolic-statistical modeling. Journal
of Artificial Intelligence Research 15, pp. 391–454, doi:10.1613/jair.912.

[23] T Scheffer & S Wrobel (2001): Active Learning of Partially Hidden Markov Models. In: Proceedings of the
ECML/PKDD Workshop on Instance Selection.

[24] Phan Huy Tu, Tran Cao Son & Chitta Baral (2007): Reasoning and Planning with Sensing Actions, Incom-
plete Information, and Static Causal Laws Using Answer Set Programming. Theory Pract. Log. Program.
7(4), pp. 377–450, doi:10.1017/s1471068406002948.

[25] P. D. Turney (1995): Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree
Induction Algorithm. Journal of Artificial Intelligence Research 2, pp. 369–409, doi:10.1613/jair.120.

[26] Guy Van den Broeck, Ingo Thon, Martijn van Otterlo & Luc De Raedt (2010): DTProbLog: A Decision-
theoretic Probabilistic Prolog. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intel-
ligence, AAAI’10, AAAI Press, pp. 1217–1222. Available at http://dl.acm.org/citation.cfm?id=
2898607.2898801.

[27] L. van der Gaag & M. Wessels (1993): Selective Evidence Gathering for Diagnostic Belief Networks. AISB
Quarterly 86, pp. 23–84.

http://dx.doi.org/10.1613/jair.912
http://dx.doi.org/10.1017/s1471068406002948
http://dx.doi.org/10.1613/jair.120
http://dl.acm.org/citation.cfm?id=2898607.2898801
http://dl.acm.org/citation.cfm?id=2898607.2898801

	1 Introduction
	2 ProbLog and Distribution Semantics
	3 VoI Under Distribution Semantics
	4 Greedy Optimization of VoI
	5 Discussion
	6 Conclusions and Future Work

