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We present an approach to representing large sets of mutual exclusions, also known as mutexes or
mutex constraints. These are the types of constraints that specify the exclusion of some properties,
events, processes, and so on. They are ubiquitous in many areas of applications. The size of these
constraints for a given problem can be overwhelming enough to present a bottleneck for the solving
efficiency of the underlying solver. In this paper, we propose a novel graph-theoretic technique based
on multicliques for a compact representation of mutex constraints and apply it to domain-independent
planning in ASP. As computing a minimum multiclique covering from a mutex graph is NP-hard, we
propose an efficient approximation algorithm for multiclique covering and show experimentally that
it generates substantially smaller grounding size for mutex constraints in ASP than the previously
known work in SAT.

1 Introduction

Mutual exclusion (mutex) can be traced back to concurrency control, which refers to the condition that
prevents simultaneous accesses to a shared resource. In knowledge representation, they specify the
constraints that some properties cannot hold at the same time. For example, an object cannot be at
different locations at the same time. These constraints frequently occur in applications from model-
checking problems in computer-aided verification [2], computer vision [12, 17], graph algorithms [11],
and AI planning [14].

The goal of this paper is to develop a graph-theoretic technique for compactly encoding large sets
of mutex constraints and apply it to planning in ASP. We do his by focusing on domain-independent AI
planning as started out by SATPlan [10]. That is, we will first obtain an ASP planner by a straightforward
translation from SATPlan and then study how to encode mutex constraints compactly for the planner.

In SAT/ASP planning, mutex constraints are specified by formulas/rules that, for any state (which
involves a time step, also called a layer in this paper), the actions with conflicting preconditions or
effects, and the fluents that are inferred to be conflicting, are mutually exclusive. A naive encoding
of these constraints can certainly generate enough rules to overwhelm the underlying solver for large
planning instances. For example, in SAT planning these constraints can be expressed by 2-literal clauses
(a 2-literal clause is of the form l1∨ l2 where l1 and l2 are literals), which, according to [14], constitute
about 50-95% of the formulas, and sometimes they used so much memory that they could not fit in a
32-bit address space.

As shown in [14], significant space-savings can be gained by considering the way in which we encode
mutex constraints. We may view the set of mutex constraints on fluents as an undirected graph, called
a mutex graph, where each fluent is a vertex and each constraint is an edge. When a solver selects one
fluent to be true at a given layer, it infers by unit-propagation that each fluent joined directly by an edge
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with the selection must be false. Thus, the set of fluents which are true at a given layer constitutes an
independent set on the mutex graph.1

Rintanen [14] shows that there exist other smaller encodings besides the naive approach of listing
out every individual binary constraint and implies that since these encodings are smaller, they must be
superior. In their experiments, they use instances of the AIRPORTS domain from an IPC planning
competition. This domain is notable because of the vast number of mutex constraints it generates. The
larger instances of this problem emit complex mutex graphs which can overwhelm the underlying SAT
solver if encoded naively (in a one-constraint-per-edge fashion).

Rintanen further shows that the mutex graphs in these planning problems (even in benchmark AIR-
PORTS) tend to be highly structured and that in SAT it is possible to cover the mutex graph (somewhat
more compactly) with cliques (complete subgraphs) or with bicliques (complete bipartite subgraphs). A
biclique can be expressed in SAT using only one auxiliary variable and one binary clause per assign-
ment. Rintanen demonstrates that cliques can be expressed using only a logarithmic set of bicliques. He
concludes that the best way to express a mutex graph in SAT is with a biclique edge-covering.

In this paper, we show that for ASP, cardinality constraints give us more power than is available in
SAT and indeed we can directly encode a mutex graph by its clique covering (without the extra cost
of a logarithmic factor), but further we can eliminate the choice of whether to use cliques or bicliques
entirely and instead cover the graph with multicliques (complete multi-partite subgraphs) which is a
generalization of both. Indeed, we find that with multicliques, the number of clauses (namely ASP rules)
and literals required to encode mutex constraints can be further reduced over Rintanen’s results.

The next section provides an ASP planner as the context of dealing with mutex constraints. We also
review the definitions of cliques/bicliques and comment on the complexity and representation issues.
Section 3 then presents an approximation algorithm for multiclique covering and Section 4 shows how to
construct action mutex constraints simultaneously. In Section 5 we present experimental results. Section
6 comments on related work and Section 7 concludes the paper with final remarks.

The ASP encodings in this paper are constructed to run on CLINGO and follow the ASP-Core-2
Standard [4] except that (i) we will use ; to separate rule body atoms since the more conventional comma
sign , is overloaded and has a different meaning in more complex rules (CLINGO supports both), and (ii)
the disjunctive head of a rule may be written by a conditional literal. The work reported here has been
used in a recent construction of a cost-optimal planner in ASP [18].

2 Preliminaries

2.1 STRIPS Planning in ASP

We adopt a direct translation of 5 rules of SATPlan [10] into ASP and call the resulting planner ASPPlan.

rule 1. holds(F,K) :- goal(F); finalStep(K).

rule 2. happens(A,K-1) : add(A,F),validAct(A,K-1) :- holds(F,K); K > 0.

rule 3. holds(F,K) :- pre(A,F); happens(A,K); validFluent(F,K).

rule 4. :- mutexAct(A,B); happens(A,K); happens(B,K).

rule 5. :- mutex(F,G); holds(F,K); holds(G,K).

1An independent set on a graph is a set of vertices where no two vertices in the set share an edge [16]; equivalently this is a
clique in the complement graph.



142 An Approximation Algorithm for Multiclique Covering

where validAct(A,K) means that action A can occur at time K and validFluent(F,K) means fluent F can
be true at time K.2 Time steps used in constructing a plan are also called layers.

Rule 1 says that goals hold at the final layer. In rule 2, if a fluent holds at layer K, the disjunction
of actions that have that fluent as an effect hold at layer K− 1. The next rule says that actions at each
layer imply their preconditions. The last two rules are mutex constraints: in rule 4, actions with (directly)
conflicting preconditions or effects are mutually exclusive, and in rule 5, the fluents that are inferred to
be mutually exclusive are encoded as constraints.

Following SATPlan, we add to our plan “preserving” actions for each fluent. The goal is to simulate
the frame axioms by using the existing machinery for having an action add a fluent that gets used some
steps later. These preserving actions can be specified as:

action(preserve(F)) :- fluent(F).

pre(preserve(F),F) :- fluent(F).

add(preserve(F),F) :- fluent(F).

where each fluent F has a corresponding preserving action denoted by term preserve(F). Preserving
actions can be easily distinguished from regular actions. Now that an action occurs at time K indicates
that its add-effect F will hold at time K +1.

Note that the reason why rule 5 of ASPPlan prevents fluents from being deleted before they’re used
is a bit subtle. In order for a fluent to hold, it must occur in conjunction with a preserving action at each
time step it’s held for. A preserving action has that fluent as a precondition and so would be mutex with
any action that has it as a delete effect. This means that deleting actions cannot occur as long as that
fluent is held (by rule 4).3

Like SATPlan, we run this planner by solving at some initial makespan K, where K is the first layer
at which validFluent(F,K) holds for all goal(F), and if it is UNSAT, we increment f inalStep by 1 until
we find a plan.

This is a straightforward and unsurprising encoding in every respect, but has a somewhat surprising
consequence as compared to SATPlan. Because ASP models are stable, for any fluent F , holds(F,K)
can only be true if there exists some action which requires its truth as per rule 3. Similarly for actions
as per rule 2. Furthermore, since rule 2 is disjunctive at every step, the set of actions which occurs is a
minimal set required to support the fluents at the subsequent step. This conforms exactly to the approach
to planning by Blum and Furst [3]: First build the planning graph, then start from the goal-state planning
backwards, at each step selecting a minimal set of actions necessary to add all the preconditions for the
current set of actions. That is, in this ASP translation, the neededness-analysis as carried out in [15] is
accomplished automatically during grounding or during the search for stable models.

Smart Encoding of Action Mutexes: Let us first consider action mutex constraints as expressed by
Rule 4 of ASPPlan, which can blow up in size when grounded because nearly any two actions acting on
the same fluent can be considered directly conflicting. For example, assume a planning problem in which
there is a crane which we must use to load boxes onto freighters and there are many boxes and many
freighters available but only one crane. Then we will have one such constraint for every two actions of

2Blum and Furst [3] give a handy way to identify for each action and each fluent, what is the first layer at which this ac-
tion/fluent might occur by building the planning graph. Note that validAct/2 and validFluent/2 as well as predicates mutexAct/2
and mutex/2 are all extracted from the planning graph.

3As a further note, when PDDL (planning domain definition language) without any extensions is defined, goals can only
be positive and actions can only have positive preconditions. There is a :negative-preconditions extension to PDDL, but
we didn’t use it. Any problem which uses :negative-preconditions can be trivially adapted to avoid using it by adding a fluent
:not-F for every fluent :F and then adding a corresponding add-effect wherever there’s a delete-effect and vice versa.
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the form, load(Crate,Freighter), for any crate and any freighter. As there is already a quadratic number
of actions in the problem description size (crates× f reighters), the number of mutex constraints over
pairs of actions is quartic in the initial (non-ground) problem description size.

We would like to avoid such an explosion by introducing new predicates to keep the problem size
down. We will only consider two actions to be mutex if one deletes the other’s precondition. But we will
take extra steps to ensure that no add-effect is later used if the same fluent is also deleted at that step.
Here is the revised encoding of rule 4.

used_preserved(F,K) :- happens(A,K); pre(A,F); not del(A,F).

deleted_unused(F,K) :- happens(A,K); del(A,F); not pre(A,F).

:- {used_preserved(F,K); deleted_unused(F,K);

happens(A,K) : pre(A,F), del(A,F)} > 1; valid_at(F,K).

deleted(F,K) :- happens(A,K); del(A,F).

:- holds(F,K); deleted(F,K-1).

Effectively, we are splitting the ways in which we care that an action A can relate to a fluent F into
three different cases: (i) A has F as a precondition, but not a delete-effect; (ii) A has F as a delete-effect,
but not a precondition; and (iii) A has F as both a precondition and a delete-effect.

By explicitly creating two new predicates for properties (i) and (ii), we have packed this restriction
into one big cardinality constraint. Further, we must account for conflicting effects, so we define one
more predicate (deleted/2) which encapsulates the union of all actions from properties 2 and 3 (those
that delete F) and assert that F cannot hold at this step if any of those actions occurred in the previous
one.4

2.2 Cliques and Bicliques

We review the definitions of cliques and bicliques and comment on their possible encodings in SAT.
Let G = (V,E) be an undirected graph. A clique is a subgraph (C,E ′) of G such that C ⊆ V and

E ′= {(v,u)∈ E |v,u∈C,u 6= v}. A biclique is a subgraph (C,C′,E ′) of G such that C,C′⊆V , C∩C′= /0,
and E ′ = {(u,v) ∈ E |u ∈C,v ∈C′}.

That is, cliques are complete subgraphs of a graph and bicliques are complete bipartite subgraphs of
a graph. Deciding if a graph has a clique of size n is known to be NP-complete [6, 9]. This is also the
case for bicliques under several size measures [6, 13, 19]. There are approximation algorithms for the
computation of cliques and bicliques, with approximation guarantees [7], or without [14].

In SAT, given n fluents, besides the naive O(n2) size representation, cliques can be represented in
size O(n) using O(n) many auxiliary variables, or in size O(n logn) using only O(logn) many auxiliary
variables. Bicliques enjoy a more compact representation: if C and C′ form a biclique, then |C| × |C′|
many binary constraints can be represented by |C|+ |C′| many 2-literal clauses using only one auxiliary
variable [14]. The idea is that for any literals l ∈C and l′ ∈C′, mutex constraints of the form l ∨ l′ can
all be represented using one new variable, say x, by ¬l→ x and x→ l′.

4There is a minor difference between the definition of mutex as given in [3], which appears to be overly restrictive, and the
definition we’re using. Whereas graphplan treats any two actions as mutex if they have conflicting effects (one adds a fluent
which the other deletes), we only consider them to be mutex if they have conflicting effects and the add-effect is used at that
layer. So we allow actions to occur simultaneously with conflicting effects as long as the relevant fluent doesn’t hold afterwards.
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3 An Approximation Algorithm for Multiclique Covering

In this section, we formulate a polynomial-time, approximation algorithm for multiclique covering. First,
let us have a formal definition of multiclique.

Definition 3.1 Let G = (V,E) be an undirected graph. A multiclique of G is a subgraph (C1, . . . ,Ck,E ′)
of G, such that C1∪ ·· ·∪Ck ⊆ V , Ci∩C j = /0 for all 1 ≤ i, j ≤ k where i 6= j, and E ′ = {(u,v) ∈ E |u ∈
Ci,v ∈C j, i 6= j}.

We call each Ci (1≤ i≤ k) above a partition.

Proposition 3.1 A multiclique is a graph whose complement is a cluster graph, i.e., a set of disjoint
cliques.

The claim is easy to verify. Consider any graph G which is a multiclique by definition. In the
complement graph Gc, every partition is a clique. Further, since any two vertices u and v must have an
edge if they belong to separate partitions in G, it follows that there are no edges between partitions in Gc,
therefore, the only edges in Gc belong to cliques. Similarly, if Gc is a cluster-graph, then the connected
components form the partitions in G as a multiclique.

Given a mutex graph, a naive encoding of mutex constraints in ASP is to list each edge between two
vertices by a 2-literal constraint. With a multiclique covering, mutex constraints in a mutex graph can be
encoded compactly.

Given a graph G = (V,E), the goal of multiclique covering is to produce a sequence of multicliques
Π = (S1, . . . ,Sn) for some n, where each Si is a multiclique subgraph of G, for all j > i, S j contains
at least one edge not in Si, and the union of edges in Sk (1 ≤ k ≤ n) is E. In the multiclique covering
Π, Si and S j may share some vertices. In general, to cover all mutex constraints in a mutex graph,
the edges covered in different multicliques in Π need not be non-overlapping. In our algorithm, we do
allow overlapping if it leads to more compact representation. In summary, as the edges in a mutex graph
represent constraints, multiclique covering is to cover the edges of the mutex graph where the edges are
spread out in multicliques that are constructed.

For each multiclique constructed, we can encode a constraint graph in ASP as:

% Covering is given by inPartition(F,P) if fluent F belongs to partition P,

% and inMulticlique(P,M) if partition P belongs to multiclique M.

% p(P,K): P is a partition at layer K.

partitionHolds(P,K) :- holds(F,K); inPartition(F,P).

:- {p(P,K): partitionHolds(P,K),inMulticlique(P,M)} > 1;

multiclique(M); layer(K).

Here we have a cardinality constraint expressing the rule that among all partitions P of multiclique
M, at most one holds at layer K. Furthermore, if any fluent F holds at layer K, so does its partition P.

Additionally, we can avoid some unnecessary rules by handling singleton partitions specially. A
singleton partition can be packed directly into the cardinality constraint rather than introduced through
an auxiliary atom:

:- {partitionHolds(P,K):inMulticlique(P,M);

holds(F,K):singletonPartitionOf(F,M)} > 1;

multiclique(M); layer(K).

Now, our ASPPlan given in Section 2.1 is updated by replacing Rule 5 therein with the above rules.
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Algorithm 1 Multiclique Covering
1: procedure FIND COVER(g :: Graph)→ Set MultiClique
2: var uncovered← g.edges :: Set Edge
3: var multicliques←{} :: Set MultiClique
4: while uncovered.nonempty do
5: new multiclique← NEXT MULTICLIQUE()
6: multicliques← multicliques∪{new multiclique}
7: uncovered← uncovered \ EDGES COVERED BY(new multiclique)
8: end while
9: return multicliques

10: end procedure

Hence, given a planning instance, if we can construct a multiclique covering from its mutex graph,
we can use ASP to encode these constraints compactly. Now let us find an algorithm for this task.

In general, finding a minimum multiclique covering (using as few multicliques as possible) is NP-
hard. To see this, consider the problem of finding a minimum multiclique covering on a bipartite graph.
It’s easy to see that a multiclique on a bipartite graph is a biclique. Thus the minimum multiclique
covering of a bipartite graph is the minimum biclique covering. The size of the minimum biclique
covering of a bipartite graph is also known as its bipartite dimension. Finding the bipartite dimension of
a graph is known to be NP-hard [1]. Thus, finding a minimum multiclique cover is also NP-hard.

Nonetheless, we can still use approximation algorithms similar to those used in [7]. One critical
observation is that under the restriction that a multiclique must use exactly a particular set of vertices,
there is always only one optimal way to partition those vertices into a multiclique to cover a maximal set
of edges: If there is a path between two vertices v and w in the complement of the induced graph, then
they must belong to the same partition. If there is no path, then we might as well put them in separate
partitions. Therefore, the best partition is the one which makes a partition for each connected component
in the complement of the induced graph.

Let us use an example to illustrate. Consider the mutex graph G = (V,E) on the left of the figure
below and its complement graph Gc on the right. The connected components of Gc give us a multiclique
{{a,b,d},{c},{e}}, which covers almost all edges in E except edge (a,b). So edge (a,b) ∈ E will have
to be captured in another multiclique.

a e

b c d

a e

b c d

Figure 1: An example mutex graph and its complement.

Our algorithm is given in Algorithm 1, with supporting functions given in Algorithm 2. The algo-
rithm is greedy, simple, and polynomial-time. We track the set of uncovered edges and tack multicliques
on one at a time, greedily building each multiclique in such a way so as to maximize the difference
φ1−φ2, where φ1 is the number of literals in the naive encoding and φ2 is the number of literals in our
ASP encoding of the corresponding multiclique. A difference indicates an encoding reduction.
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Algorithm 2 Multiclique Covering Helper Functions
1: type MCPartition = Set Vertex
2: type MultiClique = Set MCPartition
3: function MAKE MULTICLIQUE(vs :: Set Vertex)→MultiClique
4: return g.induced subgraph(vs).complement().connected components()
5: end function
6: function EDGES COVERED BY(mc :: MultiClique)→ Edge
7: return {(x,y) | p ∈ mc,q ∈ mc, p 6= q,x ∈ p,y ∈ q}
8: end function
9: function COUNT UNCOVERED INCIDENT EDGES(x :: Vertex)→ N

10: |(g.incident edges(x)∩uncovered)|
11: end function
12: procedure DEFAULTS FOR(vs :: Set Vertex)→MCPartition
13: candidates←

⋂
{g.neighbors(v) | v ∈ vs} :: Set Vertex

14: return {c | c ∈ candidates, |g.incident edges(c)∩uncovered| ≥ 2}
15: end procedure
16: procedure SCORE(vs :: Set Vertex)→ Z
17: multiclique :: MultiClique
18: multiclique← MAKE MULTICLIQUE(vs)∪DEFAULTS FOR(vs)
19: newly covered :: Set Edge
20: newly covered← EDGES COVERED BY(multiclique)∩uncovered
21: complexity cost :: Z

22: complexity cost← ∑
pmulticlique

{
1 if |p|= 1
2∗ |p|+1 if |p|> 1

23: return 2∗ |newly covered|− complexity cost
24: end procedure
25: procedure NEXT MULTICLIQUE→MultiClique
26: f irst vertex :: Vertex
27: f irst vertex← argmaxg.vertices(λw. COUNT UNCOVERED INCIDENT EDGES(w))
28: var vertex set←{ f irst vertex} :: Set Vertex
29: repeat
30: next :: Vertex
31: next← argmaxg.vertices(λw. SCORE(vertex set ∪{w}))
32: improved← SCORE(vertex set ∪{next})> SCORE(vertex set)
33: if improved then
34: vertex set← vertex set ∪{next}
35: end if
36: until improved
37: return MAKE MULTICLIQUE(vertex set ∪DEFAULTS FOR(vertex set))
38: end procedure

For more details, in Algorithm 1, the variable multicliques is empty to start with. Then it iteratively
adds one new multiclique at a time until all edges are covered.
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In the helper function NEXT MULTICLIQUE in Algorithm 2, we select the first vertex by finding the
one incident to the most uncovered edges. This is accomplished at Line 27 (line numbers below all refer
to Algorithm 2), where we use a lambda function which is applied to each vertex for the parameter w.
We then repeatedly select each subsequent vertex to greedily maximize the size difference mentioned
above under the assumption that we will finish by adding on a “default partition” of vertices, until no
improvement can be generated (lines 29-36 of Algorithm 2). The default partition consists of all vertices
which have an edge to every vertex we have selected so far including at least two edges not yet covered
(lines 12-15).5

Given a set of vertices vs, the function MAKE MULTICLIQUE(vs) generates a multiclique, where the
partitions are obtained by finding the connected components of the complement graph induced from vs,
along with the covered edges (lines 3-5).

Note that, instead of removing edges from the graph once they’ve been assigned to a multiclique, we
keep a separate record of “uncovered” edges which still remain to be assigned. In this way the same edge
may be covered twice by different multicliques if that helps minimize the encoding (cf. line 27).

Theorem 3.1 Given a mutex graph G = (V,E), the algorithm FIND COVER terminates after a number
of execution steps in polynomial time in the size of G, and after termination, a sequence of multicliques
{(V1,E1), . . . ,(Vn,En)} is generated such that V1∪·· ·∪Vn ⊆V and E1∪·· ·∪En = E.

Proof: First, we verify that each (Vi,Ei) (1≤ i≤ n) is a multiclique. Vi is returned as a set of vertices
by NEXT MULTICLIQUE and partitioned by MAKE MULTICLIQUE into C1, . . .Ck satisfying the following
statement: for any i 6= j, v ∈ Ci and v′ ∈ C j iff there is no path between v and v′ in the complement of
the graph induced from Vi iff there is an edge between v and v′ in the given mutex graph. Hence, each
vertex in any partition is connected to every vertex in a different partition. Then, to obtain a multiclique,
we only need to let Ei be the set of edges that connect vertices of different partitions.

The algorithm terminates since each E j covers at least one of the uncovered edges. The first vertex is
selected such that it maximizes the number of uncovered edges to which it’s incident, so as long as there
are uncovered edges, we’re guaranteed to select a first vertex which is incident to at least one of them.
Trivially we can extend this to a multiclique which covers an uncovered edge by selecting the vertex on
the other side of any one of them for a score of at least zero. Since the score of the multiclique is only
allowed to improve from there and the score measures the number of uncovered edges we’ve covered, it
must be the case that every multiclique will cover at least one new uncovered edge (otherwise its score
would be negative).

The claim on polynomial time holds because the number of multicliques is bounded by |E| and there
are at most |E| calls to NEXT MULTICLIQUE; further, it can be easily checked that the computation of
each such call takes polynomial time. �

Let’s take a look at how this behaves on an example graph. We’ll start with a mutex graph for a ferry
crossing problem in which we have three islands, a ferry and a car. The ferry can be at any of the three
islands and it can have just moved or be in the process of loading. The car can be on the ferry or at one
of the three islands. If loading then the car is not currently on the ferry. Figure 2 shows what the mutex
graph for the problem looks like.

5If there is only one, there will be no savings in encoding size, as it would require the same number of literals/rules to
include a vertex in a partition.
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Figure 2: Mutex graph for the ferry problem.

Now let’s run our multiclique cover algorithm on it. We get:

% Multiclique 0 has all singleton parts

:- {holds(just_moved(ferry,island_a),T);

holds(just_moved(ferry,island_b),T);

holds(just_moved(ferry, island_c),T);

holds(loading(ferry),T)

} > 1; step(T).

% Multiclique 1 has all singleton parts

:- {holds(car_at(island_a),T);

holds(car_at(island_b),T);

holds(car_at(island_c),T);

holds(on_ferry(car),T)

} > 1; step(T).

% Multiclique 2 has three non-singleton partitions

partitionHolds(part(2,0),T) :- holds(ferry_at(island_a),T).

partitionHolds(part(2,0),T) :- holds(just_moved(ferry,island_a),T).

partitionHolds(part(2,1),T) :- holds(ferry_at(island_b),T).

partitionHolds(part(2,1),T) :- holds(just_moved(ferry,island_b),T).

partitionHolds(part(2,2),T) :- holds(ferry_at(island_c),T).

partitionHolds(part(2,2),T) :- holds(just_moved(ferry,island_c),T).
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:- {partitionHolds(part(2,0),T);

partitionHolds(part(2,1),T);

partitionHolds(part(2,2),T)} > 1; step(T).

% Multiclique 3 has two singleton parts and so is just a normal

% mutex constraint.

:- holds(loading(ferry),T); holds(on_ferry(car),T).

In total we have (per-layer) a grounded 10 rules with 25 literals. Had we used the naive encoding it
would have been 22 rules with 44 literals so we can see this encoding is quite a bit more compact.

To give a better picture, in Figure 3 we color each edge with the multiclique to which it belongs.
Note that three of the edges ended up in two distinct multicliques and so are duplicated in the image:

Figure 3: Colored multiclique covering for the ferry problem.

4 Eventual Fluent Mutex Constraints

In Section 2.1 we found a way for the ASP solver to avoid explicitly dealing with action mutex con-
straints and so were able to save on grounded encoding space. But we still have a problem because
the algorithm presented by Blum and Furst [3] for generating fluent mutex constraints in the first place
requires simultaneously constructing action mutex constraints.

Indeed, Rintanen [14] reports being unable to run experiments on the largest AIRPORTS instances
from IPC-2004 because the action mutex constraints used so much memory they wouldn’t fit in a 32-bit
address space.
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In this section, we find a way to circumvent this problem and were able to generate mutex constraints
on the very largest (AIRPORTS-50) instance while using only about a gigabyte of memory.

Mutex constraints as defined in [3] are “per-layer”. You determine the set of mutex constraints at
each layer by looking at what actions, fluents and mutex constraints were in the previous layer. Two
actions are mutex if they are directly mutex or have any mutex preconditions. Two fluents are mutex if
all respective pairs of causing actions are mutex. However, suppose we only care to discover and encode
which fluents are always mutex in the sense that for every layer up to an arbitrarily large makespan they
cannot both be true.

One way to obtain this set is to build the planning graph outward until the set of mutex constraints
stabilizes. That is, we can stop once we find two consecutive layers at which the set of mutex constraints
doesn’t change. But this would still require tracking action mutex constraints for all pairs of actions.

The key insight is that fluents which are always mutex will be so in sequential planning (where
exactly one action happens at each layer) as well as in parallel planning. A parallel plan is just a way
of compressing a sequential plan into fewer steps so the set of pairs of things which can be true at some
point will be the same regardless of how we express it.

Since a sequential plan can be expressed as a parallel plan where at most one non-preserving action
happens at each layer, we can run the mutex generation algorithm under the assumption that all non-
preserving actions are mutex with each other. Then we only need to explicitly keep track of which
actions are mutex with each of the preserving actions. There are generally significantly fewer preserving
actions than total actions. When the set of mutex fluent-pairs stabilizes, it should come out the same as
if we had obtained these pairs by building the planning graph normally and waiting for the mutex fluents
to stabilize.

5 Experiments

We implemented the multiclique generation algorithm in Haskell, representing a fluent or action as an
Int and a collection of mutex constraints as an IntMapIntSet. Both IntMap and IntSet come from the
containers package. A partition of a multiclique was represented as an IntSet, a multiclique as a list of
partitions, and a multiclique covering as a list of multicliques.

We ran this algorithm on the same instances as Rintanen (as well as on the AIRPORTS-50 instance,
the largest problem in the set) and found a significant improvement over his results. Note that these
edge-counts do not take into account neededness. That is, they cover many fluents and actions which
are irrelevant to the goal of the problem and are guaranteed not to be explored by the solver. When we
accounted for neededness we found the graphs got much smaller (approximately 5-fold). But we chose
not to utilize this so that our results would be better comparable to Rintanen’s.

In Table 5, “Edges” is the number of edges in the mutex graph for each instance. “CL” is the number
of grounded clauses (rules) we used to encode this graph. These clauses are a mix of binary constraints
and “at most 1” cardinality constraints. Because not all the clauses are binary, we are compelled to give
the sum number of literals among all the constraints. This is the “Lit” column.

During our experiments, after a look at a couple of example instances, it became immediately clear
to us that the majority of edges belong to the first few multicliques found. After that the number of edges
covered per clause drops off rapidly. Thus, if we are willing to forget a small percentage of the edges, we
can reduce the number of clauses necessary to encode the graph much further. For each instance, we reran
the multiclique generation algorithm terminating it as soon as it had covered 90% of the total number of
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Table 1: Multiclique Reduction for AIRPORTS (Abbreviated AP)

Instance Edges CL Lit Edges* CL* Lit* R-Lit
AP-21 181884 7531 16437 166229 2336 4783 26382
AP-22 275515 11310 25014 249173 3464 7104 42776
AP-23 371062 14969 33100 336209 4806 9929 63552
AP-24 373188 15353 33894 337385 4907 10103 60814
AP-25 467653 18834 41821 421181 6208 12816 83438
AP-26 566948 22507 50252 511401 8025 16625 100494
AP-27 571298 22777 50801 514978 8155 16890 107442
AP-28 669336 26488 59201 602737 9941 20616 132120
AP-36 324835 9870 21502 297160 3084 6306 37744
AP-37 490408 14826 32921 442256 4266 8696 61362
AP-38 487033 14678 32793 438457 4263 8682 58928
AP-39 654787 20501 45166 598421 6352 12965 89294
AP-40 656469 20486 45150 599396 6351 12956 87744
AP-41 653096 20241 44709 588884 5846 11914 84628
AP-50 2613736 76180 171944 2353222 34538 71644 -

edges.6 The resulting numbers of edges covered, clauses, and literals required are given respectively by
the columns “Edges*”, “CL*”, and “Lit*”. “R-Lit” gives the number of literals required for Rintanen’s
biclique encoding. It’s twice the number of constraints he reports [14] since all his constraints are binary
clauses (having exactly two literals).

It is worth mentioning that our implementation of multiclique covering has been employed in a cost-
optimal planner in ASP [18]. That is, all the experiment results reported in [18] for that planner used this
implementation for the representation of mutex constraints, where every plan produced by the planner
was validated by the Strathclyde Planning Group plan verifier VAL [8].

6 Related Work

In [14], an algorithm called IDENTIFY-BICLIQUE is presented. Given a graph G = (V,E), the algorithm
starts with the trivial biclique /0, V , and repeatedly adds nodes to the first part. Nodes from the second
part are removed if there is no edge between them and the new node in the first part. The nodes are
chosen to maximize the size reduction. The algorithm terminates when the size reduction is no longer
possible.

Our algorithm on multiclique covering is a natural extension of the IDENTIFY-BICLIQUE algorithm
with some key differences.

• We’re generating multicliques rather than bicliques so there can be more than two partitions. In
contrast with Rintanen’s explicit construction of two partitions, which is possible and convenient
because of the limit on two, we generate partitions for a multiclique based on a graph-theoretic
property.

• As commented earlier, instead of removing edges from the graph once they’ve been assigned to

6In our coding for the experiments, similar to edges, the uncovered edges are just represented by another IntMapIntSet.
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a multiclique, we keep a separate record of “uncovered” edges which still remain to be assigned.
The multiple uses of the same covered edges can sometimes further minimize the encoding in ASP.

• Instead of optimizing for |Clauses in naive encoding|− |Clauses in our encoding|, we’re optimiz-
ing for |Literals in naive encoding|− |Literals in our encoding|.7

Although in this paper we have focused on reducing grounding size for ASP planning, our algorithm
can be applied to other applications in other knowledge representation languages. We note that in some
logic-based knowledge representation languages, such as SAT, encoding multicliques may not be as
convenient and compact as can be done in ASP though. This gives ASP a major advantage.

The grounding bottleneck for constraints has been tackled in the literature with different approaches,
e.g., by Cuteri et al. [5], where mutex constraints can be added on demand. A comparison with our
approach merits a further investigation.

7 Conclusion and Final Remarks

Mutex constraints can significantly contribute to the overall grounding size of a planning problem. These
constraints can be represented by a mutex graph where vertices are fluents and edges represent exclusive-
ness. In this paper, we address this problem by proposing an algorithm for a multiclique covering from
a given mutex graph. As computing a minimum multiclique covering from a mutex graph is NP-hard,
we propose an intuitive, approximation algorithm and show experimentally that it generates substantially
smaller grounding size for mutex constraints in ASP than the previously known work in SAT.

Like [14], our approximation algorithm does not provide any approximation guarantees. A question
of interest is whether such a guarantee can be formulated and proved.

The benchmark used in the experiments reported in this paper is limited to the AIRPORT problem.
Experiments using more benchmarks are needed. Following Rintanen [14], our goal is to seek smaller
grounding sizes, under the assumption that smaller grounding sizes are better. This assumption may not
hold true in general in all cases, and needs to be tested out by more experiments.
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