
B. Bogaerts, E. Erdem, P. Fodor, A. Formisano,

G. Ianni, D. Inclezan, G. Vidal, A. Villanueva,

M. De Vos, F. Yang (Eds.): International

Conference on Logic Programming 2019 (ICLP’19).

EPTCS 306, 2019, pp. 266–272, doi:10.4204/EPTCS.306.31

c© F. Aguado et al.

This work is licensed under the

Creative Commons Attribution License.

A Rule-Based System for Explainable Donor-Patient

Matching in Liver Transplantation

Felicidad Aguado1

aguado@udc.es

Pedro Cabalar1

cabalar@udc.es

Jorge Fandinno2

jorgefandinno@gmail.com

Brais Muñiz1

brais.mcastro@udc.es

Gilberto Pérez1

gperez@udc.es

Francisco Suárez3

francisco.suarez.lopez@sergas.es

1 IRLab, CITIC Research Center
University of A Coruña, SPAIN

2 University of Potsdam, GERMANY

3 Digestive Service, Complexo Hospitalario Universitario de A Coruña (CHUAC)
Instituto de Investigación Biomédica de A Coruña (INIBIC),

University of A Coruña, SPAIN

In this paper we present web-liver, a rule-based system for decision support in the medical do-

main, focusing on its application in a liver transplantation unit for implementing policies for donor-

patient matching. The rule-based system is built on top of an interpreter for logic programs with

partial functions, called lppf, that extends the paradigm of Answer Set Programming (ASP) adding

two main features: (1) the inclusion of partial functions and (2) the computation of causal explana-

tions for the obtained solutions. The final goal of web-liver is assisting the medical experts in the

design of new donor-patient matching policies that take into account not only the patient severity but

also the transplantation utility. As an example, we illustrate the tool behaviour with a set of rules that

implement the utility index called SOFT.

1 Introduction

One of the current problems in decision support from Artificial Intelligence systems is the lack of ex-

planations. When a system is making decisions in critical contexts and those decisions may have an

impact on people’s life like in the medical or legal domains, then explanations turn to be crucial, espe-

cially if we expect that a domain expert relies on the obtained answers. One of these situations from the

medical domain where explanations have a crucial role is the process of donor-patient matching in an

organ transplantation unit. This process starts when a new organ is received and consists in selecting a

patient among those included in a waiting list for transplantation. The transplantation unit is expected

to follow an objective policy that takes into account medical parameters and is experimentally supported

by the existing records, but more importantly, this decision must be easily reproducible and explicable in

a comprehensible way for other agents potentially involved, since it may have life-critical consequences

at personal, medical and legal levels. Typically, this decision is taken in terms of a set of numerical

weights (the impact of weights variation is studied in [7]). Although different classification systems

based on Artificial Neural Networks (ANNs) are being proposed (see for instance [2] for the case of liver

transplantation) their decisions rely on a black box whose behaviour is not explicable in human terms.

In this paper, we present a rule interpreter, web-liver, designed for assisting the medical experts

in the donor-patient matching of a liver transplantation unit, using the case scenario from the Digestive

http://dx.doi.org/10.4204/EPTCS.306.31
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

F. Aguado et al. 267

Service in the Corunna University Hospital Center (CHUAC), Spain. The final goal of this tool is pro-

viding a rule editor and interpreter that the experts can interactively use to test different policies (sets of

rules), checking not only their accuracy but also the explanations provided for the obtained decisions.

The most accepted criterion used for donor-patient matching is a measure of the patient’s clinical sever-

ity (the Model for End staging Liver Disease, or MELD index [9]) but this does not take into account

other factors such as the “utility” of the transplantation (a prediction of potential success), which may

obviously depend on the donor’s data as well. The medical experts are interested in designing a set of

rules that take into account these different factors, combining both experimental data (possibly through

rule learning) and explicit representation based on domain knowledge. The purpose of web-liver is

providing a friendly environment where the physicians may try different sets of rules and test their impact

in terms of the conclusions that the system provides and the explanations associated to those conclusions.

To illustrate the behaviour of web-liverwe have started by implementing a policy based on the utility

index called Survival Outcome Following liver Transplantation (SOFT) [10]. Implementing the SOFT

index was useful in the requirement analysis sessions to obtain guidelines and specifications from the

experts when developing the web-liver behaviour and interface. But, at the same time, it was also

interesting to check the results of the SOFT index on the available data. Our dataset consists of the 76

transplant cases from years 2009 and 2010, although we are currently working to expand it. For each case

we have variables from both the recipient and the donor as well as from the transplantation itself. The

tool web-liver provides a web interface (written in python) for a logic programming interpreter

called lppf (Logic Programs with Partial Functions [3]), an extension of Answer Set Programming

(ASP) [1] with two additional features: (1) partial functions; and (2) computation of explanations for the

(functional) answer sets.

The rest of the paper is organised as follows. First, we informally describe the lppf interpreter and

its input language. Then, we describe the web-liver system using the computation of the SOFT index

as a running example. Finally, we briefly comment about related work and conclude the paper.

2 Logic Programs with Partial Functions

To describe the syntax of lppf we assume some familiarity with ASP. The main addition with respect

to ASP rules is the possibility of using partial functions so each function may have assigned some value

in an answer set. This value can be Boolean or from another type, and can be directly assigned in rule

heads using the explicit assignment operator := or the assignment ˆ= of default values. As an example,

the rules:

punish(P) :- drive(P), alcohol(P)>50.

punish(P) :- resist(P).

sentence(P) ˆ= innocent :- person(P).

sentence(P) := prison :- punish(P).

specify that either driving with an alcohol ratio greater than 50 or resisting to authority can be punished,

that a default sentence is innocent and that being punished implies a prison sentence. Given the

input data

person(gabriel). person(clare).

drive(gabriel). drive(clare).

alcohol(gabriel):=60. alcohol(clare):=0.

resist(gabriel). ˜resist(clare).

(˜ denotes explicit negation) we obtain the conclusions:

268 A Rule-Based System for Explainable Donor-Patient Matching

Answer:1

punish(gabriel).

sentence(gabriel)=prison.

sentence(clare)=innocent.

that, as a main feature of lppf can be justified by additional explanations. For instance, if we ask lppf

to explain the conclusion sentence(gabriel)=prisonwe get:

*sentence(gabriel) = prison

|-- punish(gabriel)

| |-- alcohol(gabriel) = 60

| |-- drive(gabriel)

*sentence(gabriel) = prison

|-- punish(gabriel)

| |-- resist(gabriel)

Since, in a larger program, these default explanations may easily become too verbose, lppf provides

several mechanisms to personalize explanations, both in their content and format to be displayed. A first

possibility is labeling those rules that we actually want to be traced in explanation trees (forgetting about

the rest). Labeling can be done using a label function or a textual description in natural language. As an

example of text labels, the following version of the example:

drive(gabriel).

alcohol(gabriel):=60.

resist(gabriel).

"%P has driven drunk" ::

punish(P) :- drive(P), alcohol(P)>50.

"%P has resisted to authority" ::

punish(P) :- resist(P).

"%P has been sentenced to %_Value" ::

sentence(P) := prison :- punish(P).

would produce the next explanations for the conclusion sentence(gabriel)=prison:

* gabriel has been sentenced to prison

|-- gabriel has driven drunk

* gabriel has been sentenced to prison

|-- gabriel has resisted to authority

which are much more readable and can be personalized depending on the target user, her profile or her

native language. It is also possible to label rules in groups rather than individually. For instance, the

expression:

#label r :: resist(P).

has the effect of labeling with the same label r every rule whose head function is resist(P). Apart

from labeling, we can also decide which conclusions must be included in an explanation query. This is

done using a special type of rule like in the example below:

#explain sentence(P) :- sentence(P)=prison, alcohol(P)>55, ˜resist(P).

This is asking lppf to show the explanations for those facts for function sentence(P) that satisfy

the conditions in the body.

F. Aguado et al. 269

3 The liverLP and web-liver systems

In order to test the use of lppf for donor-patient matching in the transplantation domain, we have

created a decision support system that computes the SOFT index over our data. The set of lppf

rules for this task receives the name of liverLP and is divided into four modules: facts.lppf,

constraints.lppf, rules_value.lppf and liver_calc.lppf. Module facts.lppf

stores all the input data collected from the Hospital transplantation records, including donor data, recip-

ient data and also surgery data. As an example, we show part of the input data for case number 686:

transplant(686).

age(686):=59. bmi(686):=21.

p_trans(686):=0. ˜ab_surgery(686).

albumin_fl(686):=400. ˜dialysis(686).

icu(686). ˜hospital(686).

meld(686):=7. ˜l_sup(686).

˜enceph(686). ˜p_thromb(686).

˜ascites(686). alive(686).

˜portal_bleed(686). donor_age(686):=63.

˜vascular_acc(686). creatinine_fl(686):=120.

cold_ischemia(686):=340.

Using the same input data, the medical experts will try different policies for donor-patient matching.

In the particular case of the SOFT index policy, these rules are organized as a set of categories. Each

category has an associated weight, which will be added to the total score of a transplant if it meets the

conditions of that rule. Also, these rules are divided into two groups: P-SOFT rules and SOFT rules. P-

SOFT rules are those applicable before the donor allocation and SOFT rules are the rules only applicable

when a donor has been already allocated. In the rules_value.lppfmodule all the SOFT categories

and their associated risk values are specified. We show some examples below:

psoft_risk(age_60):=4.

psoft_risk(bmi6_35):=2.

psoft_risk(one_previous_transplant):=9.

psoft_risk(two_previous_transpant):=14.

...

soft_risk(portal_bleed_48h_pretransplant):= 6.

soft_risk(donor_age2_gt_60):= 3.

soft_risk(donor_cerebral_vascular_accident):= 2.

soft_risk(donor_creatinine_15):= 2.

soft_risk(donor_age2_10_20):= -2.

...

The weight of each category is then added depending on the SOFT conditions for each specific risk, as

illustrated below for a pair of cases from the following fragment of constraints.lppf:

psoft(bmi6_35,P):= psoft_risk(bmi6_35) :- bmi(P)>35.

soft(donor_age2_10_20,P) := soft_risk(donor_age2_10_20) :-

donor_age(P) = Age, Age >= 10, Age <= 20.

This means that the bmi weight (2) must be added if bmi(P) is above 35, and the donor’s age risk (-2)

is added if the donor’s age is between 10 and 20. Both psoft and soft functions are assigned a zero

270 A Rule-Based System for Explainable Donor-Patient Matching

default value for the cases that do not meet the conditions of a particular category. Module liver_-

calc.lppf computes the sum of the weights for all risk values in the functions psoft_cal(P) and

soft_cal(P). Then, a discrete risk level is associated depending on the interval in which those values

are included:

soft_level(P) := low :- soft_cal(P)=X, X<=5.

soft_level(P) := low_moderate :- soft_cal(P)=X, 6<=X, X<=15.

soft_level(P) := high_moderate :- soft_cal(P)=X, 16<=X, X<=35.

soft_level(P) := high :- soft_cal(P)=X, 36<=X, X<=40.

soft_level(P) := futile :- soft_cal(P)=X, 40<X.

We also provide textual descriptions to build readable explanations:

#label "Risk level of %P is %_Value because SOFT score is %X" :: soft_level(P) :-

soft_cal(P)=X.

#explain soft_level(P).

This is used to generate textual explanations of the following form:

Answer:1

* Risk level of 686 is low because SOFT score is 0

|-- Activated rules:

| |-- cold_ischemia_0_6h [-3]

| |-- donor_age2_gt_60 [3]

(. . .)

* Risk level of 763 is high_moderate because SOFT score is 22

|-- Activated rules:

| |-- donor_cerebral_vascular_accident [2]

| |-- psoft [20]

| | |-- intensive_care_unit_pretransplant [6]

| | |-- life_support_pretransplant [9]

| | |-- portal_vein_thrombosis [5]

76 ocurrences explained.

1 solution

Although the liverlp system is convenient for fast prototyping, it is far from being directly usable by

medical specialists who are not familiar with logic programming languages. For this reason, we have

built the web-liver system, a web application written in python that allows creating and manipulating

rules through a web interface, and testing their behaviour on the records data, displaying the obtained

conclusions and their explanations in a more visual way. Its functionality is divided in three modules:

classifiers, results and transplants. The first one, classifiers, allows the user to

create, modify and delete different rule groups which are called classifiers (being the SOFT classifier

one among them). The user can add, delete and configure the set of rules of each classifier. For each rule,

she can change its lppf label, its value and its conditions set (the rule body). An example from the rule

edition window is shown below:

F. Aguado et al. 271

This will automatically generate the lppf code:

"donor age between 10 and 20" :: rule(P):=-2 :- donor_age(P)>=10,

donor_age(P)<=20.

The tool allows creating new classifiers or copying them from previously existing ones, so that, for

instance, it is easy to create a small modification of the SOFT index, adding or changing some of its

rules and/or weights. Once the user selects a classifier, web-liver will build, solve and show the

explanations for the conclusions obtained from the existing data base. Apart from textual explanations

as the ones shown before, web-liver also allows generation of graphs like the one in the following

picture:

These graphs are grouped in an HTML report that can be additionally filtered in the web interface.

Finally, the transplantsmodule allows the user to explore the transplantation cases data one by one

and check the results of applying a classifier to a concrete case.

4 Related work and conclusions

We have built a support tool for editing rules, interpreting them and explaining their results in an environ-

ment for donor-patient matching in liver transplantation. The selection of a set rules and their adequacy

from a medical perspective is out of the scope of the current paper. The final goal is obtaining an ex-

plainable classifier that can be designed as a combination of expert knowledge or learning methods (for

272 A Rule-Based System for Explainable Donor-Patient Matching

instance to adjust the classifier weights) using ANNs as in [2] or random forest tress as in [8]. From

a logic programming perspective, the explanation features from lppf are based on [4] but there exist

other approaches for justification of ASP programs (see [6] for a recent survey). Similarly, the functional

extension of ASP is based on [3] since, although other functional extensions exist, it is the only one

allowing free nesting of functional terms, a feature that can be freely used in any lppf rule. For future

work, we plan to keep extending the lppf language with new aggregate functions and with causal lit-

erals [5] that would allow rule conditions that test if an atom has been a cause of another atom. For the

liverLP system, our plans include extending the dataset and applying (symbolic) learning algorithms

or integration with public online medical ontologies.

References

[1] Gerhard Brewka, Thomas Eiter & Miroslaw Truszczynski (2011): Answer set programming at a glance.

Communications of the ACM 54(12), pp. 92–103, doi:10.1145/2043174.2043195.

[2] Javier Briceo, Manuel Cruz-Ramrez, Martn Prieto, Miguel Navasa, Jorge Urbina, Rafael Orti, Miguel-ngel

Gmez-Bravo, Alejandra Otero, Evaristo Varo, Santiago Tome, Gerardo Clemente, Rafael Baares, Rafael

Brcena, Valentin Cuervas-Mons, Guillermo Solrzano, Carmen Vinaixa, Angel Rubn, Jordi Colmenero, An-

dres Valdivieso & Manuel Garca (2014): Use of Artificial Intelligence as an Innovative Donor-Recipient

Matching Model for Liver Transplantation: Results from a Multicenter Spanish Study. Journal of hepatology

J Hepatol. 2014 Nov;, pp. 1020–8, doi:10.1016/j.jhep.2014.05.039.

[3] Pedro Cabalar (2011): Functional answer set programming. Theory and Practice of Logic Programming

11(2-3), pp. 203–233, doi:10.1007/978-3-642-04238-6_51.

[4] Pedro Cabalar, Jorge Fandinno & Michael Fink (2014): Causal Graph Justifications of Logic Programs.

Theory and Practice of Logic Programming 14(4-5), pp. 603–618, doi:10.1007/s10472-006-9028-z.

[5] Jorge Fandinno (2016): Deriving conclusions from non-monotonic cause-effect relations. Theory and Prac-

tice of Logic Programming 16(5-6), pp. 670–687, doi:10.1017/S1471068408003633.

[6] Jorge Fandinno & Claudia Schulz (2019): Answering the ”why” in answer set programming - A survey of

explanation approaches. Theory and Practice of Logic Programming 19(2), pp. 114–203, doi:10.1007/

978-3-642-40564-8_45.

[7] Rachel Freedman, Jana Schaich Borg, Walter Sinnott-Armstrong, John P. Dickerson & Vincent Conitzer

(2018): Adapting a Kidney Exchange Algorithm to Align with Human Values. In: Proceedings of the 2018

AAAI/ACM Conference on AI, Ethics, and Society, AIES ’18, pp. 115–115, doi:10.1145/3278721.

3278727.

[8] Lawrence Lau, Yamuna Kankanige, Benjamin Rubinstein, Robert Jones, Christopher Christophi, Vijayara-

gavan Muralidharan & James Bailey (2016): Machine-Learning Algorithms Predict Graft Failure Following

Liver Transplantation. Transplantation 101, p. 1, doi:10.1097/TP.0000000000001600.

[9] Michael Malinchoc, Patrick S. Kamath, Fredric D. Gordon, Craig J. Peine, Jeffrey Rank & Pieter C.J. ter

Borg: A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts.

Hepatology 31(4), pp. 864–871, doi:10.1053/he.2000.5852.

[10] Division of Abdominal Organ Transplantation from Columbia University College of Physicians & Surgeons

(2008): Survival outcomes following liver transplantation (SOFT) score: a novel method to predict patient

survival following liver transplantation. doi:10.1111/j.1600-6143.2008.02400.x.

http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1016/j.jhep.2014.05.039
http://dx.doi.org/10.1007/978-3-642-04238-6_51
http://dx.doi.org/10.1007/s10472-006-9028-z
http://dx.doi.org/10.1017/S1471068408003633
http://dx.doi.org/10.1007/978-3-642-40564-8_45
http://dx.doi.org/10.1007/978-3-642-40564-8_45
http://dx.doi.org/10.1145/3278721.3278727
http://dx.doi.org/10.1145/3278721.3278727
http://dx.doi.org/10.1097/TP.0000000000001600
http://dx.doi.org/10.1053/he.2000.5852
http://dx.doi.org/10.1111/j.1600-6143.2008.02400.x

	1 Introduction
	2 Logic Programs with Partial Functions
	3 The liverLP and web-liver systems
	4 Related work and conclusions

