
B. Bogaerts, E. Erdem, P. Fodor, A. Formisano,
G. Ianni, D. Inclezan, G. Vidal, A. Villanueva,
M. De Vos, F. Yang (Eds.): International
Conference on Logic Programming 2019 (ICLP’19).
EPTCS 306, 2019, pp. 280–294, doi:10.4204/EPTCS.306.33

c© V.D. Nguyen, T. C. Son & E. Pontelli
This work is licensed under the
Creative Commons Attribution License.

Natural Language Generation for Non-Expert Users

Van Duc Nguyen Tran Cao Son Enrico Pontelli
New Mexico State University

Las Cruces, New Mexico, USA
vnguyen|tson|epontell@cs.nmsu.edu

Motivated by the difficulty in presenting computational results—especially when the results are a
collection of atoms in a logical language—to users, who are not proficient in computer programming
and/or the logical representation of the results, we propose a system for automatic generation of
natural language descriptions for applications targeting mainstream users. Differently from many
earlier systems with the same aim, the proposed system does not employ templates for the generation
task. It assumes that there exist some natural language sentences in the application domain and uses
this repository for the natural language description. It does not require, however, a large corpus as it
is often required in machine learning approaches. The systems consist of two main components. The
first one aims at analyzing the sentences and constructs a Grammatical Framework (GF) for given
sentences and is implemented using the Stanford parser and an answer set program. The second
component is for sentence construction and relies on GF Library. The paper includes two use cases
to demostrate the capability of the system. As the sentence construction is done via GF, the paper
includes a use case evaluation showing that the proposed system could also be utilized in addressing
a challenge to create an abstract Wikipedia, which is recently discussed in the BlueSky session of the
2018 International Semantic Web Conference.

1 Introduction

Natural language generation (NLG) has been one of the key topics of research in natural language pro-
cessing, which was highlighted by the huge body of work on NLG surveyed in [21, 7]. With the advances
of several devices capable of understanding spoken language and conducting conversation with human
(e.g., Google Home, Amazon Echo) and the shrinking gap created by the digital devices, it is not difficult
to foresee that the market and application areas of NLG systems will continue to grow, especially in ap-
plications whose users are non-experts. In such application, a user often asks for certain information and
waits for the answer and a NLG module would return the answer in spoken language instead of text such
as in question-answering systems1 or recommendation systems2. The NLG system in these two applica-
tions uses templates to generate the answers in natural language for the users. A more advanced NLG
system in this direction is described in [16], which works with ontologies annotated using the Attempto
language and can generate a natural language description for workflows created by the systems built
in the Phylotastic project3. The applications targeted by these systems are significantly different from
NLG systems, whose main purpose is to generate high-quality natural language description of objects or
reports, such as those reported in the recent AAAI conference [12, 6, 15].

The present paper is motivated by the need to generate natural language description of computational
results to non-expert users such as those developed in the Phylotastic project. In this project, the users
are experts in evolutionary biology but are none experts in ontologies and web services. When a user

1E.g., the Ergo system: http://coherentknowledge.com
2http://gem.med.yale.edu/ergo/default.htm
3The Phylotastic project: http://phylotastic.org

http://dx.doi.org/10.4204/EPTCS.306.33
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://coherentknowledge.com
http://gem.med.yale.edu/ergo/default.htm
http://phylotastic.org

V.D. Nguyen, T. C. Son & E. Pontelli 281

places a request, he/she will receive a workflow consisting of web services, whose inputs and outputs
are specified by instances of classes in the ontologies working with web services, as well as the ordering
and relationships between the services. To assist the user in understanding the workflow, a natural lan-
guage description of the workflow is generated. In order to accomplish the task, the NLG system in the
Phylotastic project proposes to annotate elements of the ontologies using Attempto, a simple subset of
English with precisely defined syntax and semantics.

In this paper, we propose a system that addresses the limitation of the system discussed in the Phy-
lotastic project [16]. Specifically, we assume that the annotations given in an ontology are natural lan-
guage sentences. This is a reasonable assumption given that the developers of an ontology are usually
those who have intimate knowledge about entities described in the ontology and often have some sort of
comments about classes, objects, and instances of the ontology. We then show that the system is very
flexible and can be used for the same purpose with new ontologies.

The rest of the paper is organized as follows. Section 2 briefly reviews the basics of Grammatical
Framework (GF)[19]. Section 3 describes the main modules of the system. Section 4 includes two use
cases of the system using an available ontologies against in the context of reasoning about ontologies.
Specifically, it compares with the system used in the Phylotastic project and an ontology about people.
This section also contains a use case that highlights the versatility of the proposed system by addressing
a challenge to create an abstract Wikipedia [23]. Related works are discussed in Section 5. Section 6
concludes the paper.

2 Background: Grammatical Framework

The Grammatical Framework (GF) [19] is a system used for working with grammars. The GF Resource
Grammar Library (RGL)4 covering syntax of various languages is the standard library for GF. A GF
program has two main parts. The first part is the Abstract syntax which defines what meanings can be
expressed by a grammar. The abstract syntax defines categories (i.e., types of meaning) and functions
(i.e., meaning-building components). An example of an abstract syntax:

Listing 1: Abstract syntax
abstract People = {

flags startcat = Message ;
cat Message ; People ; Action ; Entity ;
fun simple_sent : People -> Action -> Entity -> Message ;

Bill : People; Play : Action; Soccer : Entity ; }

Here, Message, People, Action and Entity are types of meanings. startcat flag states that
Message is the default start category for parsing and generation. simple_sent is a function accepting
3 parameters, of type People, Action, Entity. This function returns a meaning of Message category.
Intuitively, each function in the abstract syntax represents a rule in a grammar. The combination of rules
used to construct a meaning type can be seen as a syntax tree.

The second part is composed of one or more concrete syntax specifications. Each concrete syntax
defines the representation of meanings in each output language. For example, to demostrate the idea
that one meaning can be represented by different concrete syntaxes, we create two concrete syntaxes
for two different languages: English and Italian. To translate a sentence to different languages, we only
need to provide the strings representing each word in corresponding languages. The GF libraries will take

4https://www.grammaticalframework.org/lib/doc/synopsis/index.html

https://www.grammaticalframework.org/lib/doc/synopsis/index.html

282 Natural Language Generation for Non-Expert Users

responsibility to concatenate the provided strings according to the language grammar to create a complete
sentence, which is the representations of the meaning, in the targeted language. The corresponding
concrete syntaxes that map functions in the abstract grammar above to strings in English and in Italian
is:

Listing 2: Concrete English and Italian syntaxes
concrete PeopleEng of People =
open SyntaxEng, ParadigmsEng, ConstructorsEng in {
lincat

Message = Cl ; People = NP ; Action = V2 ; Entity = NP ;
lin

simple_sent People Action Entity = mkCl People (mkVP Action Entity) ;
Bill = mkNP Bill_N; Play = play_V2; Soccer = mkNP soccer_N;

oper

Bill_N = mkN "Bill" "Bill"; play_V2 = mkV2 "play";
soccer_N = mkN "soccer"; }

concrete PeopleIta of People =
open SyntaxIta, ParadigmsIta, ConstructorsIta in {
lincat

Message = Cl ; People = NP ; Action = V2 ; Entity = NP ;
lin

simple_sent People Action Entity = mkCl People (mkVP Action Entity) ;
Bill = mkNP Bill_N; Play = play_V2; Soccer = mkNP soccer_N ;

oper

Bill_N = mkN "Bill"; play_V2 = mkV2 "giocare";
soccer_N = mkN "calcio" ; }

In these concrete syntaxes, the linearization type definition (lincat) states that Message, People,
Action and Entity are type Cl (clause), NP (noun phrase), V2 (two-place verb), and NP respectively.
Linearization definitions (lin) indicate what strings are assigned to each of the meanings defined in the
abstract syntax. To reduce same string declaration, the operator (oper) section defines some placeholders
for strings that can be used in linearization. The mkNP, mkN, mkV2, etc. are standard constructors from
ConstructorsEng/Jpn library which returns an object of the type NP, N or V2 respectively.

GF has been used in a variety of applications, such as query-answering systems, voice communi-
cation, language learning, text analysis and translation, natural language generation [20, 2], automatic
translation5.

The translation from English to Italian can be performed as follows in the GF API:

parse -lang=PeopleEng "Bill plays soccer" | linearize -lang=PeopleIta
Bill gioca calcio

The above command line produces a syntax tree of the sentence “Bill plays soccer” then turn that tree
into a PeopleIta sentence (in Italian) which is displayed in the second line. Figure 1 shows the meaning
in the abstract syntax is represented in Japanese and in Italian, i.e. the two strings represent the same
meaning.

5 The MOLTO project: http://www.molto-project.eu

http://www.molto-project.eu

V.D. Nguyen, T. C. Son & E. Pontelli 283

Figure 1: Google translation for the Japanese sentence generated by GF. The two sentences in English and in
Italian are the two representations of the meaning encoded in the abstract syntax.

3 Method

To generate a sentence, we need a sentence structure and vocabularies. Our system is developed to
emulate the process of a person learning a new language and has to make guesses to understand new
sentences from time to time. For example, someone, who understands the sentence “Bill plays a game”
would not fully understand the sentence “Bill plays a popular board game” without knowing the meaning
of “popular” and “board game” but could infer that the latter sentence indicates that its subject plays a
type of game.

Sentence
structure

recognition

Sentence
components
recognition

GF grammar
encoder

Dependency tree
POS tag

Sentence

GF grammar
exporter

Paragraph

GF abstract and
concrete syntax

Figure 2: System Overview

The overall design of our system is given in Figure 2. Given a paragraph, our system produces a
GF program (a pair of an abstract and a concrete syntax), which can be used for sentence generation.
The system consists of two components, understanding sentences and generating GF grammar. The first
component is divided into two sub-components, one for recognizing the sentence structure and one for
recognizing the sentence components. The second component consists of a GF grammar encoder and
a GF grammar exporter. The encoder is responsible for generating a GF grammar for each sentence,
while the exporter aggregates the grammars generated from the encoder, and produces a comprehensive
grammar for the whole paragraph.

284 Natural Language Generation for Non-Expert Users

3.1 Sentence Structure Recognition

The sentence structure recognition process involves 2 modules: natural language processing (NLP) mod-
ule and logical reasoning on result from NLP module. In this paper, we make use of the Stanford Parser
tools6 described in [4, 17, 22, 14, 10]

The NLP module tokenizes the input free text to produce a dependency-based parse tree 7 and part-
of-speech tag (POS tag). The dependency-based parse tree and the POS tag are then transform into an
answer set program (ASP) [8] which contains only facts. Table 1 shows the transformation of the result
of NLP module into an ASP program for the sentence “Bill plays a game”. In this table, nsubj, det, dobj
and punct denote relations in the dependency-based parse tree, and mean nominal subject, determiner,
direct object and punctuation respectively. Full description of all relations in a dependency-based parse
tree can be found in the Universal Dependency website8. The second set of notations are the POS tag
PRP, VBP, DT and NN corresponding to pronoun, verb, determiner and noun. Readers can find the full
list of POS tag in Penn Treebank Project9.

NLP result ASP program

Dependency
tree

nsubj(plays-2,Bill-1)
ROOT(.-0,plays-2)

det(game-4,a-3)
dobj(plays-2,game-4)

punct(plays-2,.-5)

nsubj(2,1).
det(4,3).

dobj(2,4).
punct(2,5).

POS tag

(Bill, PRP)
(plays, VBP)

(a, DT)
(game, NN)

(., .)

pos tag(1,prp).
pos tag(2,vbp).
pos tag(3,dt).
pos tag(4,nn).

pos tag(5,punct).

Table 1: Transformation from NLP result to asp program

From the collection of the dependency atoms from the dependency-based parse tree, we determine
the structure of a sentence using an ASP program, called Π1 (Listing 3).

Listing 3: Program Π1

structure(1,1) :- nsubj(V,S).
structure(2,2) :- nsubj(V,S), dobj(V,O).
structure(3,3) :- nsubj(V1,S), xcomp(V1,V2), dobj(V2,O).
structure(4,2) :- nsubj(O,S), cop(O,TOBE).
structure(5,2) :- nsubjpass(V,S), auxpass(V,TOBE).

Each of the rule above can be read as if the right-hand side is true then the left-hand side must be true.
These rules define five possible structures10 of a sentence represented by the atom structure(x,y). x and
y in the atom structure(x,y) denote the type of the structure and the number of dependency relations

6https://nlp.stanford.edu/software/lex-parser.shtml
7https://en.wikipedia.org/wiki/Parse tree
8http://universaldependencies.org/
9https://www.ling.upenn.edu/courses/Fall 2003/ling001/penn treebank pos.html

10 These are the types of structures that we have implemented in our prototype. Adding additional types will allow us to
generate more complicated sentences. This is left for our next work.

https://nlp.stanford.edu/software/lex-parser.shtml
https://en.wikipedia.org/wiki/Parse_tree
http://universaldependencies.org/
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

V.D. Nguyen, T. C. Son & E. Pontelli 285

applied to activate the rule generating this atom, respectively. We refer to y as the i-value of the structure.
For example, structure(1,1) will be recognized if the nsubj relation is in the dependency-based parse
tree; structure(3,3) needs 3 dependency relations to be actived: nsubj, xcomp and dobj. We often use
structure #x to indicate a structure of type x.

Together with the collection of the atoms encoding the relations in the dependency-based parse tree,
Π1 generates several atoms of the form structure(x,y) for a sentence. Among all these atoms, an atom
with the highest i-value represents the structure constructed using the highest number of dependency
relations. And hence, that structure is the most informative structure that is recoginized for the sentence.
Observe that structure(1,1) is the most simplified structure of any sentence.

3.2 Sentence Components Recognition

The goal of this step is to identify the relationship between elements of a sentence structure and chunks of
words in a sentence from the POS tags and the dependency-based parse tree. For example, the sentence
“Bill plays a game” is encoded by a structure #2 and we expect that Bill, plays, and game correspond to
the subject, verb, and object, respectively.

We begin with recognizing the main words (components) that play the most important roles in the
sentence based on a given sentence structure. This is achieved by program Π2 (Listing 4). The first four
rules of Π2 determine the main subject and verb of the sentence whose structure is #1, #2, #3, or #5.
Structure #4 requires a special treatment since the components following tobe can be of different forms.
For instance, in “Cathy is gorgeous,” the part after tobe is an adjective, but in “Cathy is a beautiful girl,”
the part after tobe is a noun, though, with adjective beautiful. This is done using the four last rules of Π2.

Listing 4: Program Π2

2 { sub(S); verb(V) } :- nsubj(V,S).
3 { sub(S); obj(O); verb(V) } :- nsubj(V,S), dobj(V,O).
2 { sub(S); verb(V) } :- nsubjpass(V,S), auxpass(V,TOBE).
4 { sub(S); obj(O); verb_1(V1); verb_2(V2) }

:- nsubj(V1,S), xcomp(V1,V2), dobj(V2,O).
2 { sub(S); adj(O) } :- nsubj(O,S), pos_tag(O,jj).
2 { sub(S); obj(O) } :- nsubj(O,S), pos_tag(O,nn).
2 { sub(S); obj(O) } :- nsubj(O,S), pos_tag(O,nns).
2 { sub(S); obj(O) } :- nsubj(O,S), pos_tag(O,cd).

The result of program Π2 is an one-to-one mapping of some of the words in the sentence into the
importaint components of a sentence, called main components, i.e. subject, object and verb. The mapping
is constructed by using the core arguments in Universal Dependency Relations 11. Since not every word
in the sentence is in a core argument relation, there are some words in the sentence that are not in
the domain of the mapping that Π2 produces. We denote these words are complement components.
To identify these words, we encode the Non-core dependents and Nominal dependents from Universal
Dependency Relations into the set of rules in program Π3.

Program Π3 (Listing 5), together with the atoms extracted from the dependency-based parse tree such
as compound(P,N) (N is compound noun at the position P in the sentence), amod(P,J) (J is an adjective
modifier), etc., is used to identify the complement components of the main components computed by Π2
while maintaining the structure of the sentence created by Π1. For example, a complement of a noun
could be another noun (as “board” in “board game”), or an adjective (as “popular” in “popular board
game”), or a preposition (as “for adults” in “board game for adults”).

11https://universaldependencies.org/u/dep/

https://universaldependencies.org/u/dep/

286 Natural Language Generation for Non-Expert Users

Structure GF rules
#1 NP → VP → Cl
#2 NP → V2 → NP → Cl
#3 NP → VV → V2 → NP → Cl
#4 NP → AP → Cl and NP → NP → Cl
#5 NP → passiveVP → Cl

Table 2: GF Rules Assigned to Each Structure

Listing 5: Program Π3

noun_compound(N) :- compound(pos,N).
adj_mod(JJ) :- amod(pos,JJ).
noun_conjunction(N) :- conj(pos,N).
preposition(COMP,IN) :- nmod(pos,COMP), case(COMP,IN).
adverbial_modifier(ADV) :- advmod(pos,ADV).

The input of Program Π3 is the position (pos) of the word in the sentence. Program Π3 is called whenever
there is a new complement component discovered. That way of recursive calls is to identify the maximal
chunk of the words that support the main components of the sentence. The result of this module is a list
of vocabularies for the next steps.

3.3 GF Grammar Encoder

The goal of the encoder is to identify appropriate GF rules for the construction of a GF grammar of a
sentence given its structure and its components identified in the previous two modules. This is necessary
since a sentence can be encoded in GF by more than one set of rules; for example, the sentence “Bill
wants to play a game” can be encoded by the rules

Bill → NP, want → VV, play → V2, game → NP
and one of the sets of GF rules in the table below:

V2 → NP → VP V2 → NP → VP
NP → VV → VP → Cl VV → VP → VP

NP → VP → Cl

In GF, NP, VV, V2, VP, and Cl stand for noun phrase, verb-phrase-complement verb, two-place verb,
verb phrase and clause, respectively. Note that although the set of GF grammatical rules can be used to
construct a constituency-based parse tree 12, the reverse direction is not always true. To the best of our
knowledge, there exists no algorithm for converting a constituency-based parse tree to a set GF grammar
rules. We therefore need to identify the GF rules for each sentence structure.

In our system, a GF rule is assigned to a structure initially (Table 2). Each rule in Table 2 represents
the first level of the constituency-based parse tree. It acts as the coordinator for all other succeeding
rules.

Given the seed components identified in Section 3.2 and the above GF rules, a GF grammar for
each sentence can be constructed. However, this grammar can only be used to generate fairly simple
sentences. For example, for the sentence “Bill plays a popular board game with his close friends.”, a GF
grammar for structure #2 can be constructed, which can only generate the sentence “Bill plays game.”

12Constituency parsing aims to extract a constituency-based parse tree from a sentence that represents its syntactic structure
http://nlpprogress.com/english/constituency parsing.html

http://nlpprogress.com/english/constituency_parsing.html

V.D. Nguyen, T. C. Son & E. Pontelli 287

For noun components
N → N → CN CN: common noun
N → NP NP: noun phrase
AP → CN → CN AP: adjectival phrase
CN → NP
NP → Adv → NP Adv: verb-phrase-modifying adverb
NP → NP → ListNP
NP → ListNP → ListNP
Conj → ListNP → NP Conj: conjunction

For verb components
VP → Adv → VP

For adjective components
A → AP A: adjective
AdA → AP → AP AdA: adjective-modifying adverb

Table 3: Extended GF Rules

because it does not contain any complement components identified in Section 3.2. Therefore, we assgin
a set of GF rules for the construction of each parameter in the GF rules in Table 2. The set of GF rules
has to follow two conventions. The first one is after applying the set of rules to some components of the
sentence, the type of the production is one of the type in Table 2, e.g. NP, V P, Cl, V 2, The second
convention is that the GF encoder will select the rules as the order from top to bottom in Table 3. Note
that the encoder always has information of what type of input and output for the rule it is looking for.

For instance, we have “game” is the object (main components), and we know that we have to con-
struct “game” in the result GF grammar to be a NP (noun phrase). Program Π2 identifies that there are
two complement components for the word “game”, which are “board” and “popular”, a noun and an
adjective respectively. The GF encoder then select the set of rules: N → N → CN and A → AP to create
the common noun “board game” and the adjective phrase first. The next rule is AP → CN → CN. The
last rule to be applied is CN → NP. The selection is easily decided since the input and the output of the
rules are pre-determined, and there is no ambiguity in the selection process.

The encoder uses the GF rules and the components identified by the previous subsections to produce
different constructors for different components of a sentence. A part of the output of the GF encoder for
the object “game” is

Game = mkNP (mkNP popular_board_game_CN) (ConstructorsEng.mkAdv
with_Prep (mkNP close_friend_CN)) ;

The encoder will also create the operators that will be included in the oper section of the GF grammar
for supporting the new constructor. For example, the following operators will be generated for serving
the Game constructor above:

popular_A = mkA "popular" ;
popular_AP = mkAP popular_A ;
popular_board_game_CN = mkCN popular_AP board_game_N ;
board_game_N = mkN "board game" "board games" ;
close_A = mkA "close" ;
close_AP = mkAP close_A ;
close_friend_CN = mkCN close_AP friend_N ;
friend_N = mkN "friend" "friends" ;

288 Natural Language Generation for Non-Expert Users

3.4 GF Grammar Exporter

The GF Grammar Exporter has the simplest job among all modules in the system. It creates a GF program
for a paragraph using the GF grammars created for the sentences of the paragraph. By taking the union
of all respective elements of each grammar for each sentence, i.e., categories, functions, linearizations
and operators, the Grammar Exporter will group them into the set of categories (respectively, categories,
functions, linearizations, operators) of the final grammar.

4 Experiments

We describe our method of generating natural language in two applications. The first application is
to generate a natural language description for workflow created by the system built in the Phylotastic
project described in [16]. Instead of requiring that the ontologies are annotated using Attempto, we use
natural language sentences to annotate the ontologies. To test the feasibility of the approach, we also
conduct another use case with the second ontology, that is entirely different from the ontologies used in
the Phylotastic project. The ontology13 is about people and includes descriptions for certain class.

The second application targets the challenge of creating an abstract Wikipedia from the BlueSky
session of 2018 International Semantic Web Conference [23]. We create an intermediate representation
that can be used to translate the original article in English to another language. In this use case, we
translate the intermediate representation back to English and measure how the translated version stacks
up again the original one. We assess the generation quality automatically with BLEU-3 and ROUGE-L
(F measure). BLEU [18] and ROUGE [11] algorithms are chosen to evaluate our generator since the
central idea of both metrixes is “the closer a machine translation is to a professional human translation,
the better it is”, thus, they are well-aligned with our use cases’ purpose. In short, the higher BLUE and
ROUGE score are, the more similar the hypothesis text and the reference text is. In our use case, the
hypothesis for BLEU and ROUGE is the generated English content from the intermediate representation,
and the reference text is the original text from Wikipedia.

4.1 NLG for Annotated Ontologies

As described in [16], the author’s system retrieves a set of atoms from an ASP program such as those in
Listing 6 where phylotastic FindScientificNamesFromWeb GET was shortened to service, propagates the
atoms, and constructs a set of sentences having similar structure to the sentence “The input of phylotastic
FindScientificNamesFromWeb GET is a web link. Its outputs are a set of species names and a set of
scientific names”. In this sentence, phylotastic FindScientificNamesFromWeb GET is the name of the
service involved in the workflow of the Phylotastic project. All of the arguments of the atoms above are
the names of classes and instances from Phylotastic ontology.

Listing 6: Sample Set of Atoms
input(service, web_link). typeof(web_link, url).
output(service, species_names). typeof(species_names, names).
output(service, scientific_names). typeof(scientific_names, names).

We replace the original Attempto annotations with the natural language annotations as in Table 4 and
test with our system.

13Bookmarked URIs in Protege 5.5.0 Build beta-9 or http://owl.man.ac.uk/2006/07/sssw/people

http://owl.man.ac.uk/2006/07/sssw/people

V.D. Nguyen, T. C. Son & E. Pontelli 289

Atom Annotation
input(service,

web link). The input of service is a web link

output(service,
species names). The output of service is species names

typeof(web link, url). The type of web link is url

Table 4: Atoms from Phylotastic project and its annotation

Tuple Text
(Kevin,has pet,Flossie) Kevin has pets Flossie.
(Flossie,rdf:type,cow) Flossie is cow.

(Mick,reads,Daily Mirror) Mick reads Daily Mirror.

Table 5: Sample outputs for the people ontology.

With the same set of atoms as in Listing 6, our system generates the following description “In-
put of phylotastic FindScientificNamesFromWeb GET is web link. Type of web link is url. Output of
phylotastic FindScientificNamesFromWeb GET is scientific names. Output of phylotastic FindScientific-
NamesFromWeb GET is species names. Type of scientific names is names. Type of species name is
names.”.

We also test our system with the people ontology as noted above. We extract all comments about
people and replace compound sentences with simple sentences, e.g., “Mick is male and drives a white
van” is replaced by the two sentences “Mick is male” and “Mick drives a white van.” to create a
collection of sample sentences. We then use our system to generate a GF program which is used to
generate sentences for RDF tuples. Sample outputs for some tuples are in Table 5. This shows that for
targeted applications, our system could do a reasonable job.

4.2 Intermediate Representation for Wiki Pages

Since our system creates a GF program for a set of sentences, it could be used as an intermediate repre-
sentation of a paragraph. This intermediate representation could be used by GF for automatic translation
as GF is well-suited for cross-languages translation. On the other hand, we need to assess whether the
intermediate representation is meaningful. This use case aims at checking the adequacy of the repre-
sentation. To do so, we generate the English sentences from the GF program and evaluate the quality
of these sentences against the original ones. We randomly select 5 articles from 3 Wikipedia portals:
People, Mathematics and Food & Drink.

With the small set of rules introducing in this paper to recognize sentence structure, there would be
very limited 4-gram in the generated text appearing in original Wikipedia corpus. Therefore, we use
BLEU-3 with equal weight distribution instead of BLEU-4 to assess the generated content. Table 6
shows the summary of the number of assessable sentences from our system. Out of 62 sentences from
3 portals, the system cannot determine the structure 2 sentences in Mathematics due to their complexity.
This low number of failure shows that our 5 proposed sentence structures effectively act as a lower bound
on sentence recognition module.

In terms of quality, Table 7 shows the average of BLEU and ROUGE score for each portal. Note
that the average BLUE score is calculated only on BLEU assessable sentences, while average ROUGE

290 Natural Language Generation for Non-Expert Users

People Mathematics Food & drink
#sentences 15 24 23
#sentences
recognized 15 22 23

BLEU
assessable 10 15 11

Table 6: BLEU assessable sentences

People Mathematics Food & drink
BLEU 39.1 33.4 52.2

ROUGE-1 20 17.9 14.6
ROUGE-2 6.7 6.7 5.5
ROUGE-L 11.4 10.5 8.13

Table 7: BLUE and ROUGE score

score is calculated on the sentences whose structure can be recognized and encoded by our system. We
note that the BLEU or ROUGE score might not be sufficiently high for a good quality translation. We
believe that two reasons contribute to this low score. First, the present system uses fairly simple sentence
structures. Second, it does not consider the use of relative clauses to enrich the sentences. This feature
will be added to the next version of the system.

Table 8 summarizes the result of this use case. On the left are the paragraphs extracted from the
Wikipedia page about Rice14 in Food & Drink, Decimal15 in Mathematics, and about Alieu Ebrima
Cham Joof16 from People. As we can see, the main points of the paragraphs are maintained.

5 Related Works

The systems developed in [5, 13, 12] use statistical generation method to produce descriptions of tables
or explanation and recommendation from users’ reviews of an item. All three systems are capable of
generating high quality descriptions and/or explanations. In comparing to these systems, our system does
not use the statistical generation method. Instead, we use Grammatical Framework for the generation
task. A key difference between these systems and our system lies in the requirement of a large corpus of
text in a specific domain for training and generation of these systems. Our system can work with very
limited data and a wide range of domains.

Another method for generating natural language explanation for an question-answering system is
proposed in [9, 6]. [9] ([9]) describes a system that can give reasonable and supportive evidence to the
answer to a question asked to an image, while [6] ([6]) generates explanations for scheduling problem
using argumentation. [24] ([24]) use ASP to develop a system answering questions in the do-it-yourself
domain. These papers use templates to generate answers. The generated GF program generated by our
system, that is used for the NLG task, is automatically created from a provided input.

14https://en.wikipedia.org/wiki/Rice
15https://en.wikipedia.org/wiki/Decimal
16https://en.wikipedia.org/wiki/Alieu Ebrima Cham Joof

https://en.wikipedia.org/wiki/Rice
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Alieu_Ebrima_Cham_Joof

V.D. Nguyen, T. C. Son & E. Pontelli 291

Rice
Rice is the seed of the grass species Oryza sativa (Asian rice) or
Oryza glaberrima (African rice).

Rice is seed of grass species Oryza
sativa

As a cereal grain, it is the most widely consumed staple food for
a large part of the world’s human population, especially in Asia.

it is widely consumed staple food for
large part of human population of
world in Asia

It is the agricultural commodity with the third-highest worldwide
production (rice, 741.5 million tonnes in 2014), after sugarcane
(1.9 billion tonnes) and maize (1.0 billion tonnes).

It is agricultural commodity with third-
highest worldwide production after
sugarcane

Decimal
The decimal numeral system is the standard system for denoting
integer and non-integer numbers.

decimal numeral system is standard
system.

It is the extension to non-integer numbers of the Hindu Arabic
numeral system.

It is extension to non-integer number of
Hindu-Arabic numeral system.

The way of denoting numbers in the decimal system is often
referred to as decimal notation.

way is referred to decimal notation.

Alieu Ebrima Cham Joof
Alieu Ebrima Cham Joof (22 October 1924 2̆013 2 April 2011)
commonly known as Cham Joof or Alhaji Cham Joof, (pen
name: Alh. A.E. Cham Joof) was a Gambian historian, politi-
cian, author, trade unionist, broadcaster, radio programme direc-
tor, scout master, Pan-Africanist, lecturer, columnist, activist and
an African nationalist.

Cham Joof is politician, author, union-
ist, broadcaster, radio programme di-
rector, scout master, Pan-Africanist,
lecturer, columnist, activist, African
nationalist and Gambian historian.

He advocated for the Gambia’s independence during the colonial
era.

He advocates for independence of
Gambia during colonial era.

Table 8: Original sentences extracted from Wikipedia and corresponding generated sentences

292 Natural Language Generation for Non-Expert Users

The sophisticated system presented by [15] translates both question and the given natural language
text to logical representation, and uses logical reasoning to produce the answer. Our system is similar to
their system in that both employ recent developments of NLP into solving NLG problems.

6 Conclusions and Future Work

We propose a system implemented using answer set programming (ASP) and Grammatical Framework
(GF), for automatic generation of natural language descriptions in applications targeting mainstream
users. The system does not require a large corpus for the generation task and can be used in different
types of applications.

In the first type of applications, the system can work with annotated ontologies to translate a set of
atoms—representing the answer to a query to the ontology—to a set of sentences. To do so, the system
extracts the annotations related to the atoms in the answer and creates a GF program that is then used to
generate natural language description of the given set of atoms. In the second type of applications, the
system receives a paragraph of text and generates an intermediate representation—as a GF program—
for the paragraph, which can be used for different purpose such as cross-translation, addressing a need
identified in [23] .

Our use cases with different ontologies and Wikipedia portals provide encouraging results. They also
point to possible improvements that we plan to introduce to the next version of the system. We will focus
on processing relative clauses and enriching the set of sentence structures, especially for compound and
complex sentences.

References

[1] (2019): The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019.
AAAI Press. Available at https://www.aaai.org/Library/AAAI/aaai19contents.php.

[2] Hakan Burden & Rogardt Heldal (2011): Natural Language Generation from Class Diagrams. In: Proceed-
ings of the 8th International Workshop on Model-Driven Engineering, Verification and Validation (MoDeVVa
2011), Wellington, New Zealand, ACM, doi:10.1145/2095654.2095665.

[3] Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard,
Joseph Mariani, Hélène Mazo, Asunción Moreno, Jan Odijk & Stelios Piperidis, editors (2016): Pro-
ceedings of the Tenth International Conference on Language Resources and Evaluation LREC 2016, Por-
torož, Slovenia, May 23-28, 2016. European Language Resources Association (ELRA). Available at
http://www.lrec-conf.org/lrec2016.

[4] Danqi Chen & Christopher Manning (2014): A fast and accurate dependency parser using neural networks.
In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp.
740–750, doi:10.3115/v1/D14-1082.

[5] Felipe Costa, Sixun Ouyang, Peter Dolog & Aonghus Lawlor (2018): Automatic Generation of Natural
Language Explanations. In: Proceedings of the 23rd International Conference on Intelligent User Interfaces
Companion, ACM, p. 57, doi:10.1145/3180308.3180366.

[6] Kristijonas Cyras, Dimitrios Letsios, Ruth Misener & Francesca Toni (2019): Argumentation for Explainable
Scheduling. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on

https://www.aaai.org/Library/AAAI/aaai19contents.php
http://dx.doi.org/10.1145/2095654.2095665
http://www.lrec-conf.org/lrec2016
http://dx.doi.org/10.3115/v1/D14-1082
http://dx.doi.org/10.1145/3180308.3180366

V.D. Nguyen, T. C. Son & E. Pontelli 293

Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019. [1], pp. 2752–2759. Available at https://aaai.org/ojs/index.php/AAAI/article/view/4126.

[7] Albert Gatt & Emiel Krahmer (2018): Survey of the State of the Art in Natural Language Generation: Core
tasks, applications and evaluation. J. Artif. Intell. Res. 61, pp. 65–170, doi:10.1613/jair.5477.

[8] Michael Gelfond & Vladimir Lifschitz (1990): Logic Programs with Classical Negation. In David H. D.
Warren & Péter Szeredi, editors: Logic Programming, Proceedings of the Seventh International Conference,
Jerusalem, Israel, June 18-20, 1990, MIT Press, pp. 579–597.

[9] Shalini Ghosh, Giedrius Burachas, Arijit Ray & Avi Ziskind (2019): Generating Natural Language Expla-
nations for Visual Question Answering using Scene Graphs and Visual Attention. CoRR abs/1902.05715.
Available at http://arxiv.org/abs/1902.05715.

[10] Dan Klein & Christopher D. Manning (2002): Fast Exact Inference with a Factored Model for Natural
Language Parsing. In Suzanna Becker, Sebastian Thrun & Klaus Obermayer, editors: Advances in Neural
Information Processing Systems 15 [Neural Information Processing Systems, NIPS 2002, December 9-14,
2002, Vancouver, British Columbia, Canada], MIT Press, pp. 3–10. Available at http://papers.nips.cc/paper/
2325-fast-exact-inference-with-a-factored-model-for-natural-language-parsing.

[11] Chin-Yew Lin & Eduard H. Hovy (2003): Automatic Evaluation of Summaries Using N-gram Co-
occurrence Statistics. In Marti A. Hearst & Mari Ostendorf, editors: Human Language Technology Con-
ference of the North American Chapter of the Association for Computational Linguistics, HLT-NAACL
2003, Edmonton, Canada, May 27 - June 1, 2003, The Association for Computational Linguistics,
doi:10.3115/1073445.1073465. Available at http://aclweb.org/anthology/N/N03/N03-1020.pdf.

[12] Tianyu Liu, Fuli Luo, Qiaolin Xia, Shuming Ma, Baobao Chang & Zhifang Sui (2019): Hierarchical Encoder
with Auxiliary Supervision for Neural Table-to-Text Generation: Learning Better Representation for Tables.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative
Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. [1],
pp. 6786–6793. Available at https://aaai.org/ojs/index.php/AAAI/article/view/4653.

[13] Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang & Zhifang Sui (2018): Table-to-Text Generation by
Structure-Aware Seq2seq Learning. In Sheila A. McIlraith & Kilian Q. Weinberger, editors: Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, AAAI Press, pp. 4881–4888.
Available at https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16599.

[14] Marie-Catherine de Marneffe, Bill MacCartney & Christopher D. Manning (2006): Generating Typed De-
pendency Parses from Phrase Structure Parses. In Nicoletta Calzolari, Khalid Choukri, Aldo Gangemi,
Bente Maegaard, Joseph Mariani, Jan Odijk & Daniel Tapias, editors: Proceedings of the Fifth International
Conference on Language Resources and Evaluation, LREC 2006, Genoa, Italy, May 22-28, 2006., European
Language Resources Association (ELRA), pp. 449–454. Available at http://www.lrec-conf.org/proceedings/
lrec2006/pdf/440 pdf.pdf.

[15] Arindam Mitra, Peter Clark, Oyvind Tafjord & Chitta Baral (2019): Declarative Question Answering over
Knowledge Bases Containing Natural Language Text with Answer Set Programming. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. [1], pp. 3003–3010. Avail-
able at https://aaai.org/ojs/index.php/AAAI/article/view/4157.

[16] Van Nguyen, Tran Cao Son & Enrico Pontelli (2019): Natural Language Generation from Ontologies. In:
Practical Aspects of Declarative Languages - 21th International Symposium, PADL 2019, Lisbon, Portugal,
January 14-15, 2019, Proceedings, pp. 64–81, doi:10.1007/978-3-030-05998-9 5.

[17] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan T. McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty & Daniel Zeman

https://aaai.org/ojs/index.php/AAAI/article/view/4126
http://dx.doi.org/10.1613/jair.5477
http://arxiv.org/abs/1902.05715
http://papers.nips.cc/paper/2325-fast-exact-inference-with-a-factored-model-for-natural-language-parsing
http://papers.nips.cc/paper/2325-fast-exact-inference-with-a-factored-model-for-natural-language-parsing
http://dx.doi.org/10.3115/1073445.1073465
http://aclweb.org/anthology/N/N03/N03-1020.pdf
https://aaai.org/ojs/index.php/AAAI/article/view/4653
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16599
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
https://aaai.org/ojs/index.php/AAAI/article/view/4157
http://dx.doi.org/10.1007/978-3-030-05998-9_5

294 Natural Language Generation for Non-Expert Users

(2016): Universal Dependencies v1: A Multilingual Treebank Collection. In Calzolari et al. [3]. Available at
http://www.lrec-conf.org/proceedings/lrec2016/summaries/348.html.

[18] Kishore Papineni, Salim Roukos, Todd Ward & Wei-Jing Zhu (2002): Bleu: a Method for Automatic
Evaluation of Machine Translation. In: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA., ACL, pp. 311–318. Available at
http://www.aclweb.org/anthology/P02-1040.pdf.

[19] Aarne Ranta (2004): Grammatical Framework. J. Funct. Program. 14(2), pp. 145–189,
doi:10.1017/S0956796803004738.

[20] Aarne Ranta (2011): Grammatical Framework - Programming with Multilingual Grammars. CSLI Studies
in Computational Linguistics, Cambridge University Press. Available at http://cslipublications.stanford.edu/
site/9781575866277.shtml.

[21] Ehud Reiter & Robert Dale (1997): Building applied natural language generation systems. Natural Language
Engineering 3(1), pp. 57–87, doi:10.1017/S1351324997001502.

[22] Sebastian Schuster & Christopher D. Manning (2016): Enhanced English Universal Dependencies: An Im-
proved Representation for Natural Language Understanding Tasks. In Calzolari et al. [3]. Available at
http://www.lrec-conf.org/proceedings/lrec2016/summaries/779.html.

[23] Denny Vrandecic (2018): Capturing Meaning: Toward an Abstract Wikipedia. In Marieke van Erp, Medha
Atre, Vanessa López, Kavitha Srinivas & Carolina Fortuna, editors: Proceedings of the ISWC 2018 Posters
& Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th International Semantic Web
Conference (ISWC 2018), Monterey, USA, October 8th - to - 12th, 2018., CEUR Workshop Proceedings
2180, CEUR-WS.org. Available at http://ceur-ws.org/Vol-2180/ISWC 2018 Outrageous Ideas paper 6.pdf.

[24] Yi Wang, Joohyung Lee & Doo Soon Kim (2017): A Logic Based Approach to Answering Questions about
Alternatives in DIY Domains. In Satinder P. Singh & Shaul Markovitch, editors: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA.,
AAAI Press, pp. 4753–4759. Available at http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/14974.

http://www.lrec-conf.org/proceedings/lrec2016/summaries/348.html
http://www.aclweb.org/anthology/P02-1040.pdf
http://dx.doi.org/10.1017/S0956796803004738
http://cslipublications.stanford.edu/site/9781575866277.shtml
http://cslipublications.stanford.edu/site/9781575866277.shtml
http://dx.doi.org/10.1017/S1351324997001502
http://www.lrec-conf.org/proceedings/lrec2016/summaries/779.html
http://ceur-ws.org/Vol-2180/ISWC_2018_Outrageous_Ideas_paper_6.pdf
http://aaai.org/ocs/index.php/IAAI/IAAI17/paper/view/14974

	1 Introduction
	2 Background: Grammatical Framework
	3 Method
	3.1 Sentence Structure Recognition
	3.2 Sentence Components Recognition
	3.3 GF Grammar Encoder
	3.4 GF Grammar Exporter

	4 Experiments
	4.1 NLG for Annotated Ontologies
	4.2 Intermediate Representation for Wiki Pages

	5 Related Works
	6 Conclusions and Future Work

