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In this article we present an implementation of nonmonotonic reasoning in an embedded system.
As a part of an autonomous motor-glider, it simulates piloting decisions of an airplane. A real pilot
must take care not only about the information arising from the cockpit (airspeed, altitude, variometer,
compass. . . ) but also from outside the cabin. Throughout a flight, a pilot is constantly in communi-
cation with the control tower to follow orders, because there is an airspace regulation to respect. In
addition, if the control tower sends orders while the pilot has an emergency, he may have to violate
these orders and airspace regulations to solve his problem (e.g. emergency landing). On the other
hand, climate changes constantly (wind, snow, hail. . . ) and can affect the sensors. All these cases
easily lead to contradictions. Switching to reasoning under uncertainty, a pilot must make decisions
to carry out a flight. The objective of this implementation is to validate a nonmonotonic model which
allows to solve the question of incomplete and contradictory information. We formalize the problem
using default logic, a nonmonotonic logic which allows to find fixed-points in the face of contradic-
tions. For the implementation, the Prolog language is used in an embedded computer running at 1
GHz single core with 512 Mb of RAM and 0.8 watts of energy consumption.

1 Introduction

In this article we present an implementation of the calculation of extensions of a default theory in an
embedded computer . The practical case is about rules of piloting an airplane. This is a complex human
activity in terms of management of the rules of legislation, control tower, environment, risks. . . A pilot
needs to manage these rules, plus taking into account informations from the cockpit that changes every
time. A cockpit is composed of six instruments such as airspeed, altimeter, compass, variometer, turn
bank and artificial horizon. All this gives the states of the airplane to the pilot. In order to tackle the
possible contradictions in these changing informations, we use default logic [8], a nonmonotonic way
of reasoning which is a manner to represent the way of human reasoning [2, 5, 6]. Especially, default
logic gains the benefits of an interpretive semantics [1, 4, 10]. The practical interest of this paper is
to implement the computation of extensions of a default theory with minimum requirements of energy
consumption and effective time of computation. One of the most studied logic programming language in
theoretical and practical terms is Prolog [3, 11]. Logic programming is a programming paradigm which
is based on facts and rules describing a problem in a particular domain. For this implementation Prolog is
used. Prolog uses a kind of default assumption when treating negation: for instance, if a negative literal
cannot be proved to be true, then it is assumed to be false. Prolog is based on a fragment of first-order
logic (FOL) where rules are in the form of clauses: H :− B1,B2, · · · ,Bn. with H as the head, the symbol
:− as “if” and B1,B2, · · · ,Bn as the body. Facts are clauses without body: H1. The motivation of this

1Prolog is based on Horn clauses. A Horn clause is a clause with at most one positive literal, this is a subset of FOL.
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implementation is to have Prolog running in a microcomputer to be able to calculate extensions. Later,
this can be incorporate in a mobile system such as a motor-glider to simulate the decisions of the pilot.

1.1 Classical Logic

Logic is a particular way of thinking, that focus on the formal principles of inference, and hence on
consequences from given axioms. Formal systems, e.g., propositional, predicate, modal. . . logics are
symbolic constructions in a particular language which allows to express different ways to deal with a
conclusion [9]. The language of propositional logic is defined as the least set of expressions satisfying:
> (true) and ⊥ (false) are formulas, and if A and B are formulas, so are ¬A (not A), A∧B (A and B),
A∨B (A or B) and A→ B (A implies B). A proposition can be any sentences, e.g., “It’s a sunny day”,
“Robert can pilot his airplane”. Propositional variables are denoted by a, b, c. . . The sentence “It’s a
sunny day” could be represented by A, and the other sentence “Robert can pilot his airplane” by B. It
can be composed to create complex sentences, e.g., “It’s a sunny day and Robert can pilot his airplane”,
resulting: A∧B. First-Order Logic (FOL) or predicate logic is an extension of propositional logic that
includes universal and existential quantifiers, respectively ∀ and ∃, over individuals. Predicates are used
to denote properties over individuals e.g. P(x), Q(x,y), . . . As such, FOL is very expressive, and a very
convenient way to formalize sentences. For instance, we can formalize the next sentence: “all airplanes
land on wheels”, with the following rule:

∀y,Airplane(y)→ Land on wheels(y) (1)

But we also know that some floatplanes are airplanes that do not land on wheels and some airplanes use
skis to land on ice or snow. So, we have the following rules:

∀y,Ski airplane(y)→ Airplane(y) (2)

∀y,Ski airplane(y)→¬Land on wheels(y) (3)

We can see that formalizations (1) and (3) are contradictory. This is because the inference in classical
logic is monotonic. This property is very important in the world of mathematics, because it allows
to describe lemmas previously demonstrated. But this property cannot be applied in situation where
uncertain, incomplete information or exceptions have to be considered. In such situations, we would
expect that by adding new information or set of formulas to a model, the set of consequences of this model
might be reduced. Since the property of monotony is: A ` w then A∪B ` w, the problem leads directly
to the general representation of common sense reasoning. By moving to a nonmonotonic framework, we
can carry out the principle of explosion and nevertheless reach a conclusion.

1.2 Default Logic

Default logic is one of the best known formalization for commonsense reasoning, founded by Raymond
Reiter. This kind of formalization allows to infer arguments based on partial and/or contradictory in-
formation as premises [7]. A default theory is a pair ∆ = (D,W ), where D is a set of defaults and W
is a set of formulas in FOL. A default d is: A(X):B(X)

C(X) , where A(X),B(X),C(X) are well-formed for-
mulas. A(X) are the prerequisites, B(X) are the justifications and C(X) are the consequences. Where
X = (x1,x2,x3, . . . ,xn) is a vector of (non-quantified) free variables. Intuitively a default means,“if A(X)
is true, and there is no evidence that B(X) might be false, then C(X) can be true”. The use of defaults
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implies the generation of sets containing the consequences of these defaults. Such set are called exten-
sions. An extension can be seen as a set of beliefs of acceptable alternatives. Formally, an extension of
a default theory ∆ is a smallest fixed-point E for which the following property holds: If d is a default of
D, whose the prerequisite is in E, and the negation of its justification is not in E, then the consequent of
d is in E [7].
Definition 1.1. Let ∆ = (D,W ), an extension E of ∆ is define:

• E =
⋃

∞
i=0 Ei with:

• E0 =W and,

• for i > 0; Ei+1 = T h(Ei)∪{C(X) | A(X):B(X)
C(X) ∈ D, A(X) ∈ Ei,¬B(X) 6∈ E}

Here T h(Ei) is the set of formulas derived from Ei. A special case concerns normal default theo-
ries, having only defaults of the form: A(X):C(X)

C(X) . The main characteristic of such default theories is
that at least one extension is always guaranteed. The original version of the definition of an exten-
sion is difficult to compute in practice, since the condition ¬B 6∈ E assumes that E is known, while
E is not yet calculated. In the case of normal defaults, we simply check that E is an extension of
∆ by replacing ¬B(X) 6∈ E by ¬C(X) 6∈ Ei. Regarding the rules (1) and (3), we can generalize the
sentence “all airplanes land on wheels” by “generally, airplanes land on wheels”. Having a default
theory that is composed of D = {Airplanes(y):Land on wheels(y)

Land on wheels(y) }, and a knowledge about airplanes: W =

{Floatplane(y)→ Airplane(y),Floatplane(y)→¬Land on wheels(y)}. Using D, we can note that the
prerequisite Airplane(y) is true and the justification Land on wheels(y) is inconsistent with W , because
of Floatplane(y)→¬Land on wheels(y), then we can not conclude that floatplanes land on wheels.
But we know that some floatplanes have wheels, formally, W ∪{Floatplane wheels(y)→ Airplane(y)}.
With this a new information, the prerequisite of D is true and the justification is consistent, then we can
conclude that there are floatplanes that have wheels and land on wheels.

2 Embedded Computer

We use an embedded computer which is based on an ARM processor (Figure 1, embedded computer
running Linux Debian). This microcomputer supports three serial protocols communications as SPI,
I2C and UART, 40 digital input/output pins. . . Different sensors are connected to the microcomputer:
a gyroscope which measures the rotations, an accelerometer that measures static and dynamic forces.
Eventually, a magnetometer allows to estimate the direction by detecting the magnetic flux on earth.
These three sensors can give all the information linked to a real cockpit. The embedded computer has an
operating system (OS) based on Linux Debian. Running at 1 GHz single core CPU, 512 MB of RAM
and an energy consumption of 0.8 Watts. Plus, SWI-prolog version 7.7.18 (32 bits) was installed
into it. An algorithm for calculating extensions of a default theory was implemented (Algorithm 1). This
algorithm is coded in Prolog language and the compilation is done thanks to SWI-Prolog installed.

2.1 Routine of Computation

Facts and rules follow a particular syntax. This syntax represents a normal default d = A:C
C with a weight-

ing: cl(text,δ ,A,C,ω). Where text could be a comment describing the clause, δ could be a real fact
“hrd” or default “def”, A and C are the prerequisite and consequent respectively, and finally ω is a
weighing as a priority. Real facts with no weighting are facts sampled at some moment and they are
represented as following:
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Figure 1: Embedded computer running Linux Debian

Algorithm 1 Calculation of extensions
Require: E = /0

procedure EXTENSION(E = ∪N
i=0Ei)

Initialization
Computation of Extension(E):
while there is a default A(X):C(X)

C(X) that has not yet been inspected do
Select the default D
Verify A(X) holds
Verify C(X) is consistent with W
Add C(X) to W

end while
Backtracking(deleting C(X) added to W)
Computation of Extension(E)

end procedure

c l ( ‘ ‘ t e x t ’ ’ , hrd , [ ] , g l i d e r ( a i r s p e e d l o w ) , [ ] ) .
c l ( ‘ ‘ t e x t ’ ’ , hrd , [ ] , g l i d e r ( p i t c h s t a b l e ) , [ ] ) .
c l ( ‘ ‘ t e x t ’ ’ , hrd , [ ] , g l i d e r ( r o l l s t a b l e ) , [ ] ) .
c l ( ‘ ‘ t e x t ’ ’ , hrd , [ ] , g l i d e r ( a l t i m e t e r l o w ) , [ ] ) .
c l ( ‘ ‘ t e x t ’ ’ , hrd , [ ] , g l i d e r ( v a r i o m e t e r z e r o ) , [ ] ) .

These facts are describing the states of an airplane, in our case a glider, having no inclination nor rotation,
low airspeed and low altitude, and no vertical speed. We can assume here that the glider has no motion
because of the states of the airplane. Due to limited space to write, we will take the following notation;
g for glider, var zero for zero vertical speed, pch stb for no inclination, rll stb for no rotation, and auth
for control tower authorization. In the same sense, defaults are represented as following:

c l ( ’ ’ , def , [ g ( v a r z e r o ) , g ( p c h s t b ) , g ( r l l s t b ) , a u t h ] , p i l o t ( motor ) , [ ] ) .

Consider a default representing (g(var zero)∧g(pch stb)∧g(rll stb)∧auth):pilot(motor)
pilot(motor) , where the prerequisite is the

information from the cockpit and authorization. In this example, if the context makes the default true
and there are no contradictions with the conclusion, we jump to the conclusion: pilot(motor)2. This is

2Due to the lack of space, we do not describe decision making combined with the weighting in this example.
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intuitively the way our Prolog program finds the solutions. Our system manages 113 rules which are as
follows:

1 p =0 ,0 hrd : −> g l i d e r ( a i r s p e e d l o w )
2 p =0 ,0 hrd : −> g l i d e r ( r o l l s t a b l e )
3 p =0 ,0 hrd : −> g l i d e r ( a l t i m e t e r l o w )
4 p =0 ,0 hrd : −> g l i d e r ( v a r i o m e t e r l o w )
5 p =0 ,0 hrd : −> g l i d e r ( l a n d )
6 p =0 ,0 d e f : g l i d e r ( a i r s p e e d z e r o ) , g l i d e r ( a l t i m e t e r z e r o ) , −> g l i d e r ( r e s t )
7 p =0 ,0 d e f : g l i d e r ( a i r s p e d d z e r o ) , g l i d e r (−motor ) , −> g l i d e r ( r e s t )
. . .
63 p =0 ,0 d e f : g l i d e r ( l a n d i n g ) , −> g l i d e r ( r e s t p )
64 p =0 ,0 d e f : g l i d e r ( r e s t p ) , −> p i l o t ( y o k e p n )
. . .
110 p =0 ,0 hrd : p i l o t ( y o k e p n ) , −> −p i l o t ( y o k e p u l l )
111 p =0 ,0 hrd : p i l o t ( y o k e p u l l ) , −> −p i l o t ( y o k e p n )
112 p =0 ,0 hrd : p i l o t ( y o k e p u l l ) , −> −p i l o t ( yoke push )
113 p =0 ,0 hrd : p i l o t ( yoke push ) , −> −p i l o t ( y o k e p u l l )

Figure 2: Our system with 113 rules of piloting.

2.2 Example and Results

Considering the facts G, we consult our Prolog program to know if in this context, we could take-off. . .

G : g(pitch stable),g(roll stable),g(motor o f f ),g(low alt),g(low airspeed)

From Algorithm 1 programmed in Prolog, 5 different extensions are obtained. Table 1 summarizes the
computed extensions with the defaults involved in each extension. The formalization of defaults are

Extensions d16 d17 d18 d19 d20 d21

E0 � � �
E1 � � �
E2 � � �
E3 � � �
E4 � � �

Table 1: Extensions and defaults calculated

shown in Table 2.
From G the best extension we can choose is E3 because it has the good combinations of the actions

{pilot(yoke pull), pilot(yoke roll neutral), pilot(motor)} to reach the goal: take-off. Since the exten-
sion E0 has: {pilot(yoke roll neutral), pilot(yoke pitch neutral), pilot(motor)}, the result is a straight
flight that is not the goal, it would probably be a solution to be able to have more speed and later take-off.
The extension E1 has: {pilot(yoke roll neutral), pilot(yoke pitch neutral),¬pilot(motor)}, there is no
movement on the glider because the engine is off.

The E2 extension has: {pilot(yoke roll neutral), pilot(yoke push),¬pilot(motor)}, same result as
the previous extension, no movement because the engine is off. And finally, the E4 extension has:
{pilot(yoke pull), pilot(yoke pitch neutral),¬pilot(motor)}, same result as the previous extension, no
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d16 =
g(roll stable) : pilot(yoke roll neutral)

pilot(yoke roll neutral)
d17 =

g(pitch stable) : pilot(yoke pull)
pilot(yoke pull)

d18 =
g(low alt) : pilot(yoke roll neutral)

pilot(yoke roll neutral)
d19 =

g(low alt) : pilot(yoke push)
pilot(yoke push)

d20 =
g(low alt) : pilot(motor)

pilot(motor)
d21 =

g(low alt) : ¬pilot(motor)
¬pilot(motor)

Table 2: Extensions calculated for this example.

movement because the engine is off. To study the case where there are the maximum number of so-
lutions, we change the facts G and we obtain 13 extensions, Figure 3, with the same 113 rules. As
additional information the computation of the extensions is taking 1.514 seconds. As the facts change,

EXTENSION : TRUE LITERALS : g l i d e r ( a i r s p e e d l o w ) , g l i d e r ( a l t i m e t e r l o w ) ,
g l i d e r ( descend ) , g l i d e r ( f i n a l a p p r o a c h ) , g l i d e r ( f i n a l a p p r o a c h p ) ,
g l i d e r ( l a n d ) , g l i d e r ( l a n d i n g ) , g l i d e r ( r e s t ) , g l i d e r ( r e s t p ) , g l i d e r (
r o l l s t a b l e ) , g l i d e r ( v a r i o m e t e r d o w n ) , p i l o t ( y o k e p n ) , p i l o t ( y o k e r n ) ,

p i l o t (−motor )
DEFAULTS USED : [ 6 6 , 6 5 , 6 4 , 5 7 , 3 3 , 3 1 , 3 0 , 2 7 , 9 ]
. . .

EXTENSION : TRUE LITERALS : g l i d e r ( a i r s p e e d l o w ) , g l i d e r ( a l t i m e t e r l o w ) ,
g l i d e r ( l a n d ) , g l i d e r ( l a n d i n g ) , g l i d e r ( r o l l s t a b l e ) , g l i d e r ( t a k e o f f ) ,
g l i d e r ( t a k e o f f p ) , g l i d e r ( v a r i o m e t e r d o w n ) , p i l o t ( motor ) , p i l o t ( y o k e p n
) , p i l o t ( y o k e r n )

DEFAULT USED : [ 7 0 , 6 9 , 6 8 , 3 6 , 3 1 , 1 3 ]
. . .

EXTENSION : TRUE LITERALS : g l i d e r ( a i r s p e e d l o w ) , g l i d e r ( a l t i m e t e r l o w ) ,
g l i d e r ( c l i m b p ) , g l i d e r ( l a n d ) , g l i d e r ( l a n d i n g ) , g l i d e r ( l a n d i n g p ) ,
g l i d e r ( r o l l s t a b l e ) , g l i d e r ( t a k e o f f ) , g l i d e r ( v a r i o m e t e r d o w n ) , p i l o t (
moto r 2 ) , p i l o t ( y o k e p u l l ) , p i l o t ( y o k e r n )

DEFAULT USED : [ 9 0 , 7 2 , 7 1 , 6 2 , 3 7 , 3 1 , 1 3 ]

Figure 3: Computation of extensions: 113 instanced clauses, 5 elementary facts, and 13 extensions.
Computation in 168,334 inferences, 1.478 CPU in 1.514 seconds (98% CPU, 113881 Lips).

the calculation time of the extensions, Table 3, will be variable. That is, if we have few facts, Prolog will
make more logical inferences per second (Lips) to prove the consistency of the rules. However, if we
have more facts, Prolog will make fewer inferences (Lips) to prove the rules.

Facts Extensions Instanced clauses CPU Lips
7 13 115 95% 114,131
5 13 113 98% 117,176
4 10 112 97% 130,098

Table 3: Comparative table on the results obtained from three different situations.
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3 Conclusion

We successfully installed “SWI-prolog version 7.7.18” in an embedded computer. Also nonmono-
tonic reasoning for piloting an airplane was implemented. Our embedded system is composed of sensors
such as gyroscope, accelerometer, magnetometer, pressure sensor,. . . Data sensors are transformed into
normal defaults in order to respect a specific syntax. We tackled the problem of incomplete and uncertain
information by formalizing the rules of piloting using default logic. We get good results in terms of cal-
culation time, thanks to the use of Horn clauses and normal defaults (Considering the restriction of the
embedded computer such as the low energy consumption (0.8 Watts), running at 1 GHz ARM11 (single
core) and 512 Mb of RAM). Eventually, we described an example in which 5 extensions are obtained.
The model implemented has 113 defaults. We are currently working on the decision making part in order
to have a control system based on queries in Prolog. In addition we can take advantage of the infinite
loops of Prolog which is one of his most outstanding tools. This allows to compute the extensions all the
time while embedded computer is on.
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