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Answer Set Programming (ASP) is a famous logic language for knowledge representation, which

has been really successful in the last years, as witnessed by the great interest into the development

of efficient solvers for ASP. Yet, the great request of resources for certain types of problems, as

the planning ones, still constitutes a big limitation for problem solving. Particularly, in the case

the program is grounded before the resolving phase, an exponential blow up of the grounding can

generate a huge ground file, infeasible for single machines with limited resources, thus preventing

even the discovering of a single non-optimal solution. To address this problem, in this paper we

present a distributed approach to ASP solving, exploiting distributed computation benefits in order to

overcome the just explained limitations. The here presented tool, which is called Distributed Answer

Set Coloring (DASC), is a pure solver based on the well-known Graph Coloring algorithm. DASC

is part of a bigger project aiming to bring logic programming into a distributed system, started in

2017 by Federico Igne with mASPreduce and continued in 2018 by Pietro Totis with a distributed

grounder. In this paper we present a low level implementation of the Graph Coloring algorithm, via

the Boost and MPI libraries for C++. Finally, we provide a few results of the very first working

version of our tool, at the moment without any strong optimization or heuristic.

I want to thank Fabio Tardivo, Agostino Dovier and Enrico Pontelli for their support during the development of the tool.

1 Introduction and problem description

The Answer Set Programming (ASP) language has become very popular in the last years thanks to the

availability of more and more efficient solvers (e.g., Clingo [8] and DLV [1]). It is based on the stable

model semantics from Gelfond and Lifschitz [9], introduced to resemble the human reasoning process;

together with its simple syntax, this makes ASP a very intuitive language to be used. Like most logic

languages, the ASP solving process is split into two phases: the grounding, namely the transformation

of the normal program into a so-called ground program, which is the equivalent propositional logic

program where each rule is instantiated over the domain of its variables. The second phase consists

in the real solving process, which alternates non-deterministic guesses and deterministic propagation to

find the solutions, starting from the ground program. As described, e.g., in [3], ASP has some important

weakness when dealing with real-world complex problems, like planning [5, 16], which generates huge

ground programs. The grounding phase is in fact a strong limitation when dealing with problems that

generate a great amount of rules, especially if it is an in-memory computation. This kind of programs

leads to two issues, one regarding the grounding itself and one regarding the computation of its stable

models, both limited by the amount of resources of the machine. Even if in literature there is a fair

interest towards the parallelization of stable models computation, the single-machine multithreading
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applied to this field still has the memory limitation issue. To address this problem, we present in this

paper a distributed ASP solver, called Distributed Answer Set Coloring (DASC), which automatically

splits a ground program over a network, using the resources of a single computational node to process

only a portion of the original program. To accomplish this, we use the Graph Coloring algorithm, which

represents the program as a graph, and its stable models as different colorings of its vertices.

DASC is not the first attempt of this sort: it was born with the purpose of lowering the implementation

level of the mASPreduce solver, a tool developed by Federico Igne for his Master thesis [10], in order to

address its performance. mASPreduce is indeed developed with the distribution framework Spark from

Apache, which, although it is a very powerful and expressive framework for distributed programming,

gives to the user very low control over the communication flow, and it is the real performance killer

during such kind of distributed computations.

We handled this communication control problem by developing DASC with C++, using the MPI library

for messages handling and the Parallel Boost Graph Library to represent the distributed graph to color.

This research summary is organised as follows. In Section 2, we give some basic notations about ASP

semantics and the Graph Coloring algorithm, and we see some related work in literature. Then we present

the main details of our tool in Section 3. Some experimental results and comparison between DASC,

mASPreduce and the state-of-the-art Clingo solver are reported in Section 4. The reader can find our

conclusions and future work in Section 5.

2 Background and Related Work

2.1 Answer Set Programming

We provide a quick review of the basic concepts of Answer Set Programming (ASP). We assume famil-

iarity with logic programming.

A normal rule r is of the form

h← a1, . . . ,an,not b1, . . . ,not bm. (1)

where 0≤ n,m, h is a positive literal, for 1≤ i≤ n, ai is a positive literal, and for 1≤ j ≤ m, not b j is a

negative literal. A rule where m = n = 0 is called a fact, and a rule where h = ⊥ (representing false) is

called a constraint. A normal logic program Π is a finite set of normal rules and ATOMS(Π) is the set

of all atoms of the alphabet occurring in Π. Given a normal rule r of a program Π, we define head(r) =
h, body+(r) = {a1, . . . ,an}, body−(r) = {b1, . . . ,bm} and body(r) = {a1, . . . ,an,not b1, . . . ,not bm}.
Given a program Π, we can write head(Π) = {head(r) | r ∈Π} (similar for body, body+ and body−).

We call a program Π with body−(Π) = /0 and without constraints a definite logic program. A definite

logic program always admits a minimum Herbrand model, denoted by Cn(Π).
We say that a set X of atoms satisfies a rule r (in symbols X � r) if head(r) ∈ X whenever body+(r)⊆

X and body−(r)∩X = /0, and that X satisfies a program Π if for all r ∈Π (X � r).
Given a program Π and a set X ⊆ ATOMS(Π), we define the reduct Π

X of Π w.r.t. X as Π
X =

{head(r) ← body+(r) | r ∈ Π,body−(r)∩X = /0}. X is an answer set of Π iff Cn(ΠX ) = X . AS(Π)
denotes the set of all answer sets of a program Π.

The operator Cn(·) can also be characterized as the least fixpoint of the immediate consequence

operator TΠ(X) = {head(r) | r ∈ Π,body+(r) ⊆ X}. Iterated applications of TΠ can be defined as

T 0
Π
(X) = X and T i+1

Π
(X) = TΠ(T

i
Π
(X)), for i ≥ 1. For a definite logic program Π, it can be proven

that Cn(Π) =
⋃

i≥0 T i
Π
( /0). Therefore, X is an answer set of P iff

⋃
i≥0 T i

ΠX ( /0) = X .
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Definition 2.1 (Generating Rules of an answer set). Given a set of atoms X from a program Π, the set

RΠ(X) of generating rules is given by

RΠ(X) = {r ∈Π |body+(r)⊆ X ,body−(r)∩X = /0}.

RΠ(X) is uniquely identified by an answer set X . Given a program Π, a set X ⊆ ATOMS(Π) is an

answer set of Π iff Cn(RΠ(X) /0) = X [12]—let us observe that RΠ(X) /0 is the reduct of RΠ(X) w.r.t. the

empty set of atoms.

The semantics discussed above assumes that the atoms in the program are ground, i.e., they do not

contain any variables. Intuitively, an atom/rule containing variables is a shorthand for the set of all

possible ground instances obtained by consistently replacing each variable with all possible elements of

the Herbrand universe. The process of rewriting a rule with variables into the equivalent set of rules

without variables is referred to as grounding.

2.2 The Graph Coloring Algorithm

We briefly present the Coloring algorithm for the computation of answer sets [12], used by both mASPre-

duce and DASC solvers.

A labeled graph is a pair (G, ℓ) where G = (V,E) is a directed graph and ℓ : E →L is a mapping

from edges to the set L = {0,1} of labels (intuitively 0 will represent a positive dependency and 1 a

negative dependency). (G, ℓ) can be represented by the triple (V,E0,E1), where Ei = {e ∈ E | ℓ(e) = i}
for i = 0,1. Given a labeled graph G = (V,E0,E1), an i–subgraph of G for i = 0,1 is a subgraph of the

graph Gi = (V,Ei)—i.e. a graph G′ = (W,F) s.t. W ⊆V , and F ⊆ Ei∩ (W
2). If x,y ∈ V , an i–path is a

path from x to y in the graph Gi.

Let Π be a ground logic program; its rule dependency graph (RDG ) ΓΠ = (Π,E0,E1) is a labeled

graph where nodes are the program rules and

E0 = {(r,r
′) | r,r′ ∈Π,head(r) ∈ body+(r′)}

E1 = {(r,r
′) | r,r′ ∈Π,head(r) ∈ body−(r′)}

A (partial/total) coloring of ΓΠ is a partial/total mapping C : Π→{⊕,⊖}, where⊕ and⊖ are two colors.

We will denote C⊕ = {r | r ∈ Π,C(r) = ⊕} and C⊖ = {r | r ∈ Π,C(r) = ⊖}, and a (partial) coloring as

(C⊕,C⊖). Let CΠ be the set of all (partial) colorings, and define a partial order over CΠ as follows: let

C,C′ be partial coloring of ΓΠ. We say that C ⊑ C′ iff C⊕ ⊆ C′⊕ and C⊖ ⊆ C′⊖. The empty coloring

( /0, /0) is the bottom of the partial order CΠ. Colors represent enabling (⊕) and disabling (⊖) of rules.

Intuitively, we are interested in finding all possible sets of generating rules, leading us to all the possible

answer sets of a logic program.

Let Π be a logic program, and let ΓΠ be the corresponding RDG . We define the notion of admissible

coloring as follows: if X ∈ AS(Π), then C = (RΠ(X),Π \RΠ(X)) is an admissible coloring of ΓΠ (i.e.,

all the rules whose bodies are satisfied by X are colored positively, and the other rules negatively) such

that head(C⊕) = X [12]. We denote by AC(Π) the set of all admissible colorings of ΓΠ.

By definition, admissible colorings are total and correspond one-to-one with answer sets. As shown

in [12], for computing them we have to visit the space of partial colorings. Of course we are interested

in partial colorings that will lead us to a total admissible coloring.

Let Π be a program and C a coloring of ΓΠ = (Π,E0,E1). For r ∈Π:

• r is supported in (ΓΠ,C), if body+(r)⊆ {head(r′) | (r′,r) ∈ E0,r
′ ∈C⊕};
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• r is unsupported in (ΓΠ,C), if there is q ∈ body+(r) s.t. {r′ | (r′,r) ∈ E0,head(r′) = q} ⊆C⊖;

• r is blocked in (ΓΠ,C), if there exists r′ ∈C⊕ s.t. (r′,r) ∈ E1;

• r is unblocked in (ΓΠ,C), if r′ ∈C⊖ for all (r′,r) ∈ E1.

We also define the sets of supported S(Γ,C), unsupported S̄(Γ,C), blocked B(Γ,C), and unblocked

B̄(Γ,C) rules. By definition, S(Γ,C)∩ S̄(Γ,C) = /0 and B(Γ,C)∩ B̄(Γ,C) = /0. With C a total coloring,

a rule is unsupported or unblocked iff it is not supported or blocked, respectively. This is not true, in

general, for partial colorings.

The above defined notions can be used to define an operational semantics to compute the stable

models of a logic program. We will only give an overview of the characterization implemented in our

solver. For a deeper analysis of several other operational characterizations, we refer the reader to [12].

Let Γ be the RDG of a logic program Π and C be a partial coloring of Γ. The coloring operator

D
⊙
Γ

: C→ C, where ⊙ ∈ {⊕,⊖}, is defined as follows:

1. D
⊕
Γ
= (C⊕∪{r},C⊖) for some r ∈ S(Γ,C)\ (C⊕∪C⊖);

2. D
⊖
Γ
= (C⊕,C⊖∪{r}) for some r ∈ S(Γ,C)\ (C⊕∪C⊖).

Operator D
⊙
Γ

will be used to encode a branching path in the visit of the coloring tree, in fact, rep-

resenting a non-deterministic choice (restricting our choice to the supported rules). Since support is a

local property of a node (it only depends on information coming from the neighborhood), the coloring

operator can be efficiently applied.

Let Γ be the RDG of a logic program Π and C be a (partial) coloring of Γ. Let us define the operators

PΓ,TΓ,VΓ : C→ C as follows

PΓ(C) = (C⊕∪ (S(Γ,C)∩ B̄(Γ,C)),C⊖ ∪ (S̄(Γ,C)∪B(Γ,C)))
TΓ(C) = (C⊕∪ (S(Γ,C)\C⊖),C⊖)
VΓ(C) = (C⊕,Π\V )

where V =T ∗
Γ
(C⊕) and T ∗

Γ
(C) is the⊑-smallest coloring containing C and closed under TΓ. A coloring

C is closed under the operator op if C = op(C). Finally, let (PV )∗
Γ
(C) be the ⊑-smallest coloring

containing C and being closed under PΓ and VΓ.

Theorem 2.1 (Operational Answer Set Characterization, III). Let Γ be the RDG of a logic program

Π and let C be a total coloring of Γ. Then, C is an admissible coloring of Γ iff there exists a coloring

sequence C0,C1, . . . ,Cn such that: (1) C0 = (PV )∗
Γ
(( /0, /0)), (2) Ci+1 = (PV )∗

Γ
(D⊙

Γ
(Ci)) for some ⊙ ∈

{⊕,⊖} and 0≤ i < n, (3) Cn =C.

Given an admissible coloring C, head(C⊕) returns its corresponding answer set. The proof of the

above theorem can be found in [12] and a general introduction of so-called ASP computation is given

in [13].

2.3 A survey on parallel solving

In this section we give a brief overview of existing parallelization techniques for ASP solving. For more

details, we refer the reader to [6].
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2.3.1 Parallel Grounding

We are going to start by presenting a multi-level parallel approach for grounding, made up of three

phases: the Component Level Parallelism, the Rule Level Parallelism and the Single-Rule Level Paral-

lelism [2].

In the Component Level Parallelism, the dependency graph of the ASP program is split into several

partitions (or components), according to the Strongly Connected Components (SCC) of the graph.

Then, we can make a grounder work on each component separately, in order to process all of them in

parallel.

In the second phase, the rules of each module are grounded in parallel, following some guidelines in

order to not do invalidate the result. In fact, the rules are split into two groups, the exit rules and the

recursive rules, and the former are instantiated first. For more details see the original paper [6].

Then, the third phase consists of splitting a rule body atom, selected by a heuristic procedure, and parti-

tioning its extension between several threads.

2.3.2 Parallel Solving

Almost all the NP-problem solving techniques, including ASP solvers, are based on a search process.

It can be seen as a tree (called search tree), in which each internal node represents a non-deterministic

choice, each leaf is either a solution or a inconsistency, and the edges between different nodes are the

deterministic propagation part which leads from a non-deterministic guess to the following one.

The general idea to parallelize this process is to assign to different threads (or computational nodes) the

processing of the several subtrees generated along the search [14, 7].

However, this approach has two main problems:

• the knowledge/information collected till the moment a subtree T is split into more parts (for in-

stance, a subtree for each of T ’s children) has to be replicated, possibly causing a memory blow

up;

• to improve performance, solvers use heuristics which collect information from a specific branch in

order to reuse it on another branches. This requires communication between the different parallel

processes.

To address the latter, various techniques have been developed, divided into two groups: task sharing and

scheduling. For more details, we refer the reader to the original paper [6].

2.3.3 Related Work

Our solver is part of a bigger project aiming to bring logic programming into a distributed system,

started in 2017 by Federico Igne with mASPreduce [10, 11] and continued in 2018 by Pietro Totis with

the distributed grounder STRASP [17].

Both of them are implemented in Scala, with the distribution framework Spark from Apache. The main

difference between them lies in their purposes:

• mASPreduce is a pure solver, and it is a high level implementation of the Graph Coloring algo-

rithm. Spark provides support for automatic distribution and parallelization via the MapReduce

technique [4]: as a consequence, all the Graph Coloring operators are implemented as MapReduce

routines. Although the operators seem pretty suitable to be encoded in this way, this leads to a

network overhead, seriously affecting the performance;
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• STRASP is a multi-purpose distributed tool: it can be used as a grounder for any kind of ASP

programs, or as a solver for definite and stratified programs, like most of the grounders.

It makes use of the two first levels of parallelism during the grounding phase: the Component

Level Parallelism and the Rule Level Parallelism.

Unfortunately, it suffers of the same performance issues as the previous system, because of the

underlying framework.

In view of this, we chose for a different strategy: since communication handling is as important as the

solving algorithm in a distributed environment, we developed from scratch a new implementation for the

Graph Coloring algorithm, using low level languages and frameworks, such as C++, the Boost libraries

and the MPI library for communication. This has led to a considerable performance improvement, as the

reader can see in Section 4.

3 Distributed Answer Set Coloring

The DASC solver has been developed with the purpose of improving the poor performance and scaling of

mASPreduce, caused by the limitation of the high-level framework Spark. To reach this goal, we opted

for a C++ implementation, with the help of the Parallel Boost Graph Library (briefly, PBGL) for the

distributed graph data structure, and the boost MPI library for the communication stage. Thanks to the

latter, we have complete control over the messages sent on the network and the synchronization between

the different computational nodes. Since the bad scaling of mASPreduce resides on the communication

stage, our optimization starts from that.

The way PBGL distributes the graph is pretty straightforward: vertices are divided between the com-

putational nodes in a Round Robin way, stored in a node list, and each unit keeps track of the edges

connected to its local vertices with adjacency lists. The user can choose between different data structures

to implement both the node list and the adjacency lists (vector or list), and he can also set a property

map, which we use to store vertex characteristics (color, supported, blocked, . . . ).

Anyway, this naive graph partitioning leads to poor communication performance, caused by the

high size of the cut (with cut we mean the set of edges which connect two vertices stored in different

computational units).

For this reason, we developed a greedy redistribution algorithm, which, for each pair of computational

nodes, keeps swapping the two vertices that contribute more to the cut until a fixpoint is reached, i.e.,

until the swapping operation increases the cut size.

3.1 Design choices

The first and most visible change with respect to mASPreduce is a modification of the RDG structure,

which has two noticeable effects: it is more suitable to address the notify change implementation of

propagation, explained later in this section, and it can considerably reduces the number of edges, at the

cost of doubling up the nodes. From now on, we refer to such a graph as RDG ’.

Definition 3.1 (New Rule Dependency Graph: RDG ’). Given a logic program Π, we define the RDG ’

Γ as the graph (V,E0,E1,E2) where

• V = Π ∪ atoms(Π)
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• positive edges E0: they have the same meaning they had in RDG , but the source node must be an

atom a and the destination node a rule r:

E0 = {(a,r) | a ∈ atoms(Π) , r ∈Π,a ∈ body+(r)}

• negative edges E1: they have the same meaning they had in RDG , but the source node must be an

atom a and the destination node a rule r:

E1 = {(a,r) | a ∈ atoms(Π) , r ∈Π,a ∈ body−(r)}

• head edges E2: they link each rule with its head (if it has any):

E2 = {(r,a) | r ∈Π , a ∈ atoms(Π),head(r) = a}

The reason why this graph is more suitable to our algorithm is that we rely only on information local

to a node to decide whether the latter is supported or blocked.

For instance, a rule r is unblocked if we are sure that in the actual coloring an atom a belonging to

body−(r) does not belong to the answer set, i.e, for all rules r′ such that head(r′) = a, then r′ ∈ C⊖. To

perform this check without forcing r to query all its neighbors, we could use a counter for each atom

in body−(r) to count how many r′ were disabled. Since it is not a good idea to keep variable size data

structures inside a node, we opted to use atom nodes, each one with its own single counter.

The other reason to choose this RDG structure is that it can strongly decrease the number of edges,

which is a very good point in a distributed graph: the fewer edges between different computational

nodes, the less amount of communication.

To explain this property, the reader can imagine a logic program with n rules with the same head a, which

in turn is present in the body of m rules. To represent a’s dependencies, an RDG would need n∗m edges

(from each of n rules to each of m rules), while an RDG ’ can instead obtain the same result with only

n+m edges (from each of n rules to the atom node a, and from the atom node a to each of m rules).

To address performance and reduce communication, a completely different strategy was developed

in DASC to implement the propagation operators, as the reader can notice below.

The MapReduce paradigm has a big downside when dealing with a distributed system. Querying a

neighbor stored in another computational node is a very expensive operation, and this situation always

happens, even if the considered vertex would never be touched by the actual propagation. Looking at

the example in Figure 1, we refer to nodes connected to other computational units as border nodes; since

MapReduce relies on the fact that each node queries all of its neighbors, this implies that also in the case

of a local propagation (like one involving only r1 and r3), which theoretically does not need to send any

message on the network, edges connected to border nodes are crossed, causing useless traffic inside the

cluster.

To fix the problem, the idea is to develop an algorithm in which only the nodes really affected

by the actual propagation (plus their neighbors) are touched: we will refer to this implementation as

notify change algorithm, since it will be duty of an affected node to notify its neighbors of an eventual

change in its coloring state, and not the opposite.

4 Preliminary results

In Figure 3 the reader can find a quick comparison between DASC and mASPreduce. We tested a toy

example (Figure 2) in which, by only changing the domain size of the problem, it is easy to generate
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r1 r2

r3

... ... ...

br1 br2 br3
. . . brn

. . . . . . . . . . . . . . .

Computational node 1

Computational node 2

Figure 1: This figure represents the main issue of the MapReduce paradigm: during a propagation involv-

ing only nodes owned by a single machine (like r1,r2,r3), the border nodes bri do query their neighbors

(owned by computational node 2), generating useless communication.

dom ( 1 . . n ) .

s e l (X) :− dom (X) , n o t n s e l (X ) .

n s e l (X) :− dom (X) , n o t s e l (X ) .

:− s e l (X) , s e l (Y) , X != Y.

p ( X1 , X2 , X3 , X4 , X5 , X6 ) :−
s e l ( X1 ) , s e l ( X2 ) , s e l ( X3 ) , s e l ( X4 ) , s e l (X5 ) , s e l (X6 ) .

Figure 2: Toy example: by increasing n inside dom(1..n), the number of generated ground roules grows

exponentially
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Inst Distr
1 cp unit 2 cp unit 3 cp unit 4 cp unit 5 cp unit

DASC MR DASC MR DASC MR DASC MR DASC MR

1
RR 0.003

56.330
0.013

42.190
0.015

40.160
0.015

41.177
0.017

35.405
RD NR 0.010 0.011 0.013 0.014

2
RR 0.048

95.697
0.14

64.315
0.19

61.767
0.16

62.845
0.19

54.144
RD NR 0.184 0.151 0.166 0.172

3
RR 0.36

150.82
1.11

88.043
1.42

89.145
1.36

89.695
1.33

78.178
RD NR 1.226 1.393 1.115 1.232

4
RR 1.83

SE
6.23

SE
6.18

SE
6.26

SE
5.98

SE
RD NR 6.118 6.401 6.226 5.256

5
RR 7.03

to
22.84

to
23.86

to
33.60

to
24.21

to
RD NR 22.513 20.765 20.881 18.511

6
RR 21.99

to
71.09

to
81.55

to
69.76

to
65.83

to
RD NR 71.07 83.60 66.43 68.20

7
RR 58.90

to
188.85

to
185.45

to
212.69

to
220.73

to
RD NR 185.46 195.41 182.33 191.27

Figure 3: Comparison between DASC and mASPreduce (MR) on a set of benchmarks. For DASC,

two distribution options are tested: round robin (RR) and greedy redistribution (RD). NR means “not

relevant” (we can not test a redistribution modality with 1 cp unit), SE “Spark Error”, and “to” timeout.

Tests involve from 1 to 5 computation units.

ground programs with a high number of ground rules: since our program does not (yet) make use of any

heuristics, and we are more interested in how it deals with a huge number of nodes to distribute, this

behaviour is useful to test how well a problem scales over both the number of computational nodes and

the number of vertices in the RDG.

Each DASC test is executed with all possible combinations of distribution options:

• Distribution algorithm: it could be either a naive round robin distribution (standard behaviour of

boost) or a greedy distribution algorithm which tries to minimize cut size;

• Number of computational nodes: each problem is tested using different numbers of computational

units of the cluster, from 1 to 5.

We omit the Clingo (single thread) tables since almost all timings were at most 10ms.

It is clear that there is a huge performance gap between both mASPreduce with DASC, and the latter

with Clingo.

Moreover, also DASC seems to do not scale very well, how the reader can notice by the fact that the

tests with only one computational node are the ones which behaviour better in all the cases. The rea-

son for such a bad scaling lies on the communication phase: apparently, the improvement for having

a propagation process parallelized between more nodes is not enough to compensate the performance

degradation caused by the communication between those nodes. There are other reasons to still use this

distributed approach, like the fact we can theoretically handle programs too big to be contained into a

single machine. Yet for the moment, such problems are too complicated to be solved by our tool within

acceptable timings, but this will change in the future, through the implementation of various heuristics.

Moreover, a big part of the guilt of this behaviour is due to the initial round robin distribution from which

the redistribution algorithm starts. In fact, we noticed a very few iterations were made during the graph

repartition, resulting in a node distribution too similar to the initial one. We stongly believe that, by
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addressing this problem, we would obtain a far better scaling.

5 Conclusion and Future Work

DASC represents a step forward in building a tool capable of exploiting distributed system resources in

order to manage huge-size programs, thanks also to the fact that it is capable of solving domains that do

not work properly with mASPreduce, like the ones from the 2015 ASP competition. Yet, we are still far

from achieving the goal of large problems handling, and a lot of work has to be done to make our tool

competitive with state-of-the-art solvers. Heuristics implementation would probably be the main task to

perform in order to close the gap with them. At that point, DASC could be used to handle programs too

big for single machine solvers.

Moreover, it is evident from the performance difference between our tool and mASPreduce that lowering

the level of implementation paid off, together with the development of a different propagation technique,

the so-called notify change approach.

To confirm C++ boost improvement with respect to SPARK, in the instances in which Clingo exceeds

10ms, the minimum machine time, DASC is about 500 times slower; STRASP instead, the distributed

grounder developed by Pietro Totis in his thesis using SPARK [17], capable of solving stratified programs

(non-definite programs solvable without non-determinism in polynomial time), is circa 2000 times slower

than Clingo.

Finally, we present below the roadmap for DASC:

• improving the initial distribution or changing the redistribution algorithm with a more sophisticated

one;

• implementing multithreading. We identified two kinds of parallelization we can apply, and the

program is already prepared for the first one:

– task parallelization: in the actual state, each time a node receives a message with a distribu-

tion task to execute, this is stored inside a stack. Since we noticed during the testing that this

stack can reach really huge size, a good idea would be to process these tasks in parallel, by

distributing them between more threads. Of course this kind of parallelization would work

only in a distributed system;

– local parallelization: to exploit multithreading also when working in a local machine we can

do the following: each time we need to propagate some information from a vertex with many

outgoing edges, we can cross each edge with a different thread, in order to parallelize the

various propagation branches.

Obviously multithreading introduces some issues, like the fact we need to avoid that more thread-

s/propagation branches read or write from the same vertex at the same time, because one of them

could retrieve invalid information, but Boost provides us all the tools to address this problem, like

mutex access;

• implementing heuristics, like the strong techniques used by Clingo, namely clause learning and

backjumping.
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