
F. Ricca, A. Russo et al. (Eds.): Proc. 36th International Conference
on Logic Programming (Technical Communications) 2020 (ICLP 2020)
EPTCS 325, 2020, pp. 164–177, doi:10.4204/EPTCS.325.22

© S. Forti and A. Brogi
This work is licensed under the
Creative Commons Attribution License.

Continuous Reasoning for Managing
Next-Gen Distributed Applications

Stefano Forti and Antonio Brogi
Department of Computer Science, University of Pisa, Italy

{stefano.forti, antonio.brogi}@di.unipi.it

Continuous reasoning has proven effective in incrementally analysing changes in application code-
bases within Continuous Integration/Continuous Deployment (CI/CD) software release pipelines. In
this article, we present a novel declarative continuous reasoning approach to support the manage-
ment of multi-service applications over the Cloud-IoT continuum, in particular when infrastructure
variations impede meeting application’s hardware, software, IoT or network QoS requirements. We
show how such an approach brings considerable speed-ups compared to non-incremental reasoning.

1 Introduction

Large IT companies rely on continuous reasoning to support iterative software development up to its
continuous integration within a single shared codebase [18]. For instance, static analyses based on
compositional models of programs and code repositories permit exploiting continuous reasoning to check
security properties on a whole codebase repository by verifying them only on the changes occurred
since the last performed verification. By employing such techniques, Facebook Infer incrementally and
continuously checks whether new commits from Facebook developers are safe (and can be accepted in
the codebase) or not (and should be revised before acceptance) [9]. This dramatically reduces analysis
times, instead of repeating a complete codebase analysis at every single commit.

Meanwhile, the Internet of Things (IoT) is undergoing a relentless growth which is becoming more
difficult to support with the current software and infrastructure architectures. Besides, many next-gen
IoT applications will have QoS requirements such as low latencies, network bandwidth availability and
deployment security, which are difficult to guarantee over Cloud-only infrastructures [4]. Relying upon
a large-scale hierarchy of distributed nodes, Cloud-IoT computing paradigms aim at enabling the QoS-
and context-aware deployment of next-gen IoT application services to any device supporting them over
the Cloud-IoT computing continuum, e.g. in Fog [1] or Osmotic [22] computing. In this scenario, the
problem of deciding where to place application services (i.e., functionalities) to infrastructure nodes is
of primary importance and it is provably NP-hard [2, 7]. In recent years, much literature focussed on
determining the best QoS- and context-aware placement of multi-service IoT applications to Cloud-IoT
infrastructures, mainly exploiting search-based and mathematical programming solutions [4].

Inspired from continuous reasoning and from our previous work on next-gen application place-
ment [5] and management [11], we consider it promising to extend the concept of continuous reasoning
in support of the management of next-gen multi-service distributed applications. This will reduce the
time needed to make management decisions when only part of a running application deployment is af-
fected by changes in the Cloud-IoT infrastructures, e.g. crash of a node hosting a service, degraded
network QoS in between communicating services running on different nodes. By mainly considering
the migration of services suffering due to such infrastructure changes, continuous reasoning can bring

http://dx.doi.org/10.4204/EPTCS.325.22
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

S. Forti and A. Brogi 165

two-fold benefits. On one hand, it permits scaling to larger sizes of the placement problem by incre-
mentally solving smaller instances of such a problem, thus reducing the time needed to make informed
decisions. On the other hand, it can reduce the number of management operations needed to adapt the
current deployment to the new infrastructure conditions, by avoiding unnecessary service migrations.

In this article, we move a first step towards this direction by introducing the application of continuous
reasoning in support of the automated management of next-gen multi-service applications in Cloud-
IoT settings. We propose a novel declarative methodology and its open-source continuous reasoner
prototype, FogBrain, that makes informed service migration decisions, when infrastructure variations
prevent running applications from meeting their hardware, software, IoT or network QoS requirements.
Our methodology shows three main elements of novelty, corresponding to very desirable properties for
Cloud-IoT application management support:

• it is declarative, hence more concise, easier to understand, modify and maintain when compared
to existing procedural solutions, and it is also characterised by a high level of flexibility and exten-
sibility, which suits the ever-changing needs of Cloud-IoT scenarios,

• it is intrinsically explainable as it derives proofs for input user queries by relying on Prolog state-
of-the-art resolution engines, and it can be easily extended to justify why a certain management
decision was taken at runtime in the spirit of explainable AI (XAI), and

• it features scalability by supporting application management at the large-scale, by relying on a
continuous reasoning approach to reduce the size of the considered problem instance only to those
application services currently in need for attention.

The rest of this paper is organised as follows. We first illustrate how FogBrain determines context-
and QoS-aware placements of multiservice applications to Cloud-IoT infrastructures (Sect. 2), and how
it implements continuous reasoning for runtime placement decisions (Sect. 3). We then discuss the
scalability of FogBrain over examples of increasing size (Sect. 4), and survey some related work (Sect. 5).
We finally conclude and highlight directions for future work (Sect. 6).

2 Placement of Next-Gen Distributed Applications

Hereafter, we describe a declarative solution to the problem of placing multi-service applications to
Cloud-IoT computing infrastructures in a context- and QoS-aware manner. Eligible placements are map-
pings of each service of an application to a computational node in the available infrastructure, which
supports all service software, hardware, IoT and QoS requirements. Placements can include nodes that
host more than one service, if their capabilities are sufficient. The Prolog program described in this
section will be the core of the FogBrain prototype that we will present in Sect. 3.
Declaring Application Requirements. First, applications identified by AppId and made from services
ServiceId1, ..., ServiceIdK are declared as in
app(AppId, [ServiceId1, ..., ServiceIdK]).

Second, application services identified by ServiceId and associated with their software SwReqs, hardware
HwReqs and IoT requirements TReqs are declared as in
service(ServiceId, SwReqs, HwReqs, TReqs).

Finally, interactions between services ServiceId1 and ServiceId2, associated with their maximum la-
tency LatReq and minimum bandwidth BwReq requirements are declared as in
s2s(ServiceId1, ServiceId2, LatReq, BwReq).

166 Continuous Reasoning for Managing Next-Gen Distributed Applications

Example. Consider the Virtual Reality (VR) application in Fig. 1, which is made of three interacting
services. VR videos are streamed from the Video Storage service to the VR Driver service, connected to a
VR Viewer device, passing through the Scene Selector service, which selects the portion of the video to
show to the user, based on her currently sensed head positioning.

Figure 1: VR application of the example.

The requirements of such an application can be easily declared1 as in Fig. 2.

application(vrApp, [videoStorage, sceneSelector, vrDriver]).
service(videoStorage, [mySQL, ubuntu], 16, []).
service(sceneSelector, [ubuntu], 2, []).
service(vrDriver, [gcc, make], 2, [vrViewer]).
s2s(videoStorage, sceneSelector, 150, 16).
s2s(sceneSelector, videoStorage, 150, 0.5).
s2s(sceneSelector, vrDriver, 20, 8).
s2s(vrDriver, sceneSelector, 20, 1).

Figure 2: Example VR application specification.

For instance, the VR Driver service requires both gcc and make to bootstrap on the target deployment
node, the availability of 2 hardware units and the reachability of the specified vrViewer. Analogously,
the service-to-service link between the Scene Selector and the VR Driver requires end-to-end download
bandwidth of at least 8 Mbps with at most 20 ms latency to stream videos to the VR Viewer, and end-
to-end upload bandwidth of at least 1 Mbps with at most 20 ms latency to receive the currently sensed
user’s head positioning (as per the last two s2s/4 facts in Fig. 2). �
Declaring Infrastructure Capabilities. Dually to application requirements, it is possible to declare an
infrastructure node identified by NodeId and its software (i.e. SwCaps), hardware (i.e. HwCaps) and IoT
(i.e. TCaps) capabilities, obtained via infrastructure monitoring, as in

node(NodeId, SwCaps, HwCaps, TCaps).

Besides, it is possible to declare the monitored end-to-end latency (i.e. FeatLat) and bandwidth (i.e.
FeatBw) featured by communication links between a pair of nodes NodeIdA–NodeIdB as in

link(NodeIdA, NodeIdB, FeatLat, FeatBw).

1For the sake of simplicity, we consider generic hardware units to express the hardware requirements to be met, as in most
of the approaches we surveyed in [4].

S. Forti and A. Brogi 167

Example. Consider the infrastructure of Fig. 3, sketching a Cloud-IoT computing continuum that spans
through the Internet backbone, an ISP infrastructure, a metropolitan access network, and eventually
reaches a home access point enabling a wireless LAN. Assume that both the access point and the smart-
phone can reach out a VR Viewer in the wireless LAN enabled by the access point. Such VR Viewer can
be exploited by a running instance of the application of Fig. 1.

Figure 3: Infrastructure of the example.

Such an infrastructure can be represented, including end-to-end links not shown in Fig. 3, as listed in
Fig. 4.

node(cloud, [ubuntu, mySQL, gcc, make], inf, []).
node(ispdatacentre, [ubuntu, mySQL], 50, []).
node(cabinetserver, [ubuntu, mySQL], 20, []).
node(accesspoint, [ubuntu, gcc, make], 4, [vrViewer]).
node(smartphone, [android, gcc, make], 8, [vrViewer]).

link(cloud, ispdatacentre, 110, 1000). link(cabinetserver, accesspoint, 13, 50).
link(cloud, cabinetserver, 135, 100). link(cabinetserver, smartphone, 15, 35).
link(cloud, accesspoint, 148, 20). link(accesspoint, cloud, 148, 3).
link(cloud, smartphone, 150, 18). link(accesspoint, ispdatacentre, 38, 4).
link(ispdatacentre, cloud, 110, 1000). link(accesspoint, cabinetserver, 13, 4).
link(ispdatacentre, cabinetserver, 25, 500). link(accesspoint, smartphone, 2, 70).
link(ispdatacentre, accesspoint, 38, 50). link(smartphone, cloud, 150, 2).
link(ispdatacentre, smartphone, 40, 35). link(smartphone, ispdatacentre, 40, 2.5).
link(cabinetserver, cloud, 135, 100). link(smartphone, cabinetserver, 15, 3).
link(cabinetserver, ispdatacentre, 25, 500). link(smartphone, accesspoint, 2, 70).

Figure 4: Example infrastructure declaration.

The proposed representation captures asymmetric links (i.e. with different upload and download band-
width), which are common in Cloud-IoT scenarios, especially in edge networks. �

168 Continuous Reasoning for Managing Next-Gen Distributed Applications

Determining Eligibile Application Placements. It is now possible to define a declarative generate
& test strategy to match application requirements to infrastructure capabilities and determine eligible
placements as per the code of Fig. 5. The placement/2 predicate (lines 1–4) retrieves an application
App (line 2) and looks for a Placement of its Services that meets all the application requirements over
the available infrastructure by calling the predicate placement/7 (line 3). A found eligible placement is
asserted as a fact into the knowledge base of the FogBrain reasoner along with the associated hardware
AllocHW and bandwidth AllocBW allocations (line 4).

The placement/7 predicate (lines 5–9) recursively scans the list of services to be deployed (i.e.
[S|Ss]) to determine an eligible Placement for each of them. The variables AllocHW/NewAllocHW and
AllocBW/NewAllocBw are used to keep track of the hardware and bandwidth allocated by the placement
being built in Placement/NewPlacement (line 6). This information is used not to exceed the hardware
capabilities nor to saturate communication links with cumulative hardware or bandwidth requirements
of application services mapped onto a same node or link, respectively. When a valid placement for
service S on node N is found, it is appended to the placement being built as the tuple on(S,N) (line 9).
To this end, placement/7 coordinates the checks on service requirements (line 7) with the checks on
service-to-service communication requirements (line 8) in two repeated steps, until the list of services to
be deployed is empty (line 5).

As a first step, servicePlacement/4 (lines 7, 10–16) non-deterministically places service S onto a
node N (lines 7, 10–16), and checks that node N can at least support the hardware requirements of S

(line 13) and meets its IoT (lines 14, 17) and software (lines 15, 18) requirements. Then, by means of
hwReqsOK/5 (lines 16, 19–24), servicePlacement/4 performs a check on cumulative hardware allocation,
as it updates the AllocHW accumulator into the NewAllocHW accumulator by summing up the requirements
of S to the hardware previously allocated to other services mapped onto N as per Placement. Thus, the
hardware AllocHW currently allocated at any node N by the current placement can always be found within
the list TAllocHW (line 7) in the couple (N, AllocHW).

As a second step, flowOK/5 (lines 8, 25–27) checks whether service-to-service interactions between
the last-placed service S and previously placed services in Placement can support the required network
QoS. All the requirements of latency and bandwidth to be checked on the communication link between
the nodes N and N2 (or N1 and N) that support communicating services S and S2 (or S1 and S), respectively,
are retrieved by exploiting the interested/8 predicate (lines 26, 28–31). Then, the serviceFlowOK/3 (line
27, 32–37) recursively scans the N2Ns list, and it checks latency requirements (line 35) and cumulative
bandwidth allocation (via bwOK/6, line 36, 38–43), and updates the AllocBw accumulator accordingly.
Overall, this second step implements a fail-fast heuristic, by immediately backtracking from a placement
that cannot meet requirements on communication QoS with other services.

Finally, it is worth noting that hwReqsOK/5 and bwOK/6 rely upon two user-set threshold facts

hwTh(THW). % 0.5 by default
bwTh(TBW). % 0.2 by default

which represent the amount of hardware and bandwidth not to be allocated so to avoid overloading nodes
and links, respectively.

Example. By querying the placement/2 predicate on the example application (Fig. 1) and infrastructure
(Fig. 3), it outputs

1 ?- placement(vrApp, P).
P = [on(vrDriver, accesspoint), on(sceneSelector, cabinetserver), on(videoStorage, cloud)]

S. Forti and A. Brogi 169

1 placement(App, Placement) :-
2 application(App, Services),
3 placement(Services, [], AllocHW, [], AllocBW, [], Placement),
4 assert(deployment(App, Placement, AllocHW, AllocBW)).

5 placement([], AllocHW, AllocHW, AllocBW, AllocBW, Placement, Placement).
6 placement([S|Ss], AllocHW, NewAllocHW, AllocBW, NewAllocBW, Placement, NewPlacement) :-
7 servicePlacement(S, AllocHW, TAllocHW, N),
8 flowOK(S, N, Placement, AllocBW, TAllocBW),
9 placement(Ss, TAllocHW, NewAllocHW, TAllocBW, NewAllocBW, [on(S,N)|Placement], NewPlacement).

10 servicePlacement(S, AllocHW, NewAllocHW, N) :-
11 service(S, SWReqs, HWReqs, TReqs),
12 node(N, SWCaps, HWCaps, TCaps),
13 hwTh(T), HWCaps >= HWReqs + T,
14 thingReqsOK(TReqs, TCaps),
15 swReqsOK(SWReqs, SWCaps),
16 hwReqsOK(HWReqs, HWCaps, N, AllocHW, NewAllocHW).

17 thingReqsOK(TReqs, TCaps) :- subset(TReqs, TCaps).

18 swReqsOK(SWReqs, SWCaps) :- subset(SWReqs, SWCaps).

19 hwReqsOK(HWReqs, HWCaps, N, [], [(N,HWReqs)]) :-
20 hwTh(T), HWCaps >= HWReqs + T.
21 hwReqsOK(HWReqs, HWCaps, N, [(N,AllocHW)|L], [(N,NewAllocHW)|L]) :-
22 NewAllocHW is AllocHW + HWReqs, hwTh(T), HWCaps >= NewAllocHW + T.
23 hwReqsOK(HWReqs, HWCaps, N, [(N1,AllocHW)|L], [(N1,AllocHW)|NewL]) :-
24 N \== N1, hwReqsOK(HWReqs, HWCaps, N, L, NewL).

25 flowOK(S, N, Placement, AllocBW, NewAllocBW) :-
26 findall(n2n(N1,N2,ReqLat,ReqBW), interested(N1,N2,ReqLat,ReqBW,S,N,Placement), Ss),
27 serviceFlowOK(Ss, AllocBW, NewAllocBW).

28 interested(N, N2, ReqLat, ReqBW, S, N, Placement) :-
29 s2s(S, S2, ReqLat, ReqBW), member(on(S2,N2), Placement), N\==N2.
30 interested(N1, N, ReqLat, ReqBW, S, N, Placement) :-
31 s2s(S1, S, ReqLat, ReqBW), member(on(S1,N1), Placement), N\==N1.

32 serviceFlowOK([], AllocBW, AllocBW).
33 serviceFlowOK([n2n(N1,N2,ReqLat,ReqBW)|Ss], AllocBW, NewAllocBW) :-
34 link(N1, N2, FeatLat, FeatBW),
35 FeatLat =< ReqLat,
36 bwOK(N1, N2, ReqBW, FeatBW, AllocBW, TAllocBW),
37 serviceFlowOK(Ss, TAllocBW, NewAllocBW).

38 bwOK(N1, N2, ReqBW, FeatBW, [], [(N1,N2,ReqBW)]):-
39 bwTh(T), FeatBW >= ReqBW + T.
40 bwOK(N1, N2, ReqBW, FeatBW, [(N1,N2,AllocBW)|L], [(N1,N2,NewAllocBW)|L]):-
41 NewAllocBW is ReqBW + AllocBW, bwTh(T), FeatBW >= NewAllocBW + T.
42 bwOK(N1, N2, ReqBW, FeatBW, [(N3,N4,AllocBW)|L], [(N3,N4,AllocBW)|NewL]):-
43 \+ (N1 == N3, N2 == N4), bwOK(N1,N2,ReqBW,FeatBW,L,NewL).

Figure 5: Multi-service application placement to infrastructure nodes.

170 Continuous Reasoning for Managing Next-Gen Distributed Applications

The obtained placement is one out of the 53 = 125 that are combinatorially possible, and one of the
12 eligible ones. DevOps engineers managing the VR application can select this placement to initially
deploy it to the available infrastructure. �
We conclude this section with a note on the time complexity of the proposed solution. Having to place
S services onto N nodes, our prototype could explore at most the whole search space to determine an
eligible placement (if any), incurring in a worst-case time complexity of O(NS).

3 Continuous Management of Next-Gen Distributed Applications

In this section, we illustrate how FogBrain implements continuous reasoning on application placement
decisions. We only describe the main predicates of FogBrain realising such a feature. The complete
FogBrain codebase and interactive documentation, realised with Klipse [20], is available online2.

FogBrain works as per the high-level behaviour of fogBrain/2 shown in Fig. 6. We assume that Fog-
Brain is embedded in an infinite loop and that changes in the infrastructure conditions trigger a query to
fogBrain(App, Placement), which distinguishes the case of runtime application management (lines 44–
46) from the case of first application deployment (lines 47–49). In the former case, since a deployment/4

has already been asserted for App (line 45), FogBrain triggers a continuous reasoning step on the existing
deployment so to understand which management actions are possibly needed, if the deployment does not
currently meet all application requirements (line 46). In the latter case, where no previous deployment
of App exists (line 48), FogBrain queries the placement/2 predicate of Fig. 5 (line 49) to determine a first
placement for the input application.

44 fogBrain(App, NewPlacement) :-
45 deployment(App, Placement, AllocHW, AllocBW),
46 reasoningStep(App, Placement, AllocHW, AllocBW, NewPlacement).
47 fogBrain(App, Placement) :-
48 \+ deployment(App,_,_,_),
49 placement(App, Placement).

Figure 6: Overview of FogBrain.

The key idea of FogBrain is to reduce the time needed to make informed application management deci-
sions by limiting the size of the considered placement problem instance, so to tame its NP-hard nature
and worst-case exp-time complexity. This is achieved by building suitable partially ground queries for
placement/7 via the reasoningStep/5 predicate, which sets to unbound the placement of those applica-
tion services that, due to the last infrastructure changes, cannot meet their hardware, software or QoS
requirements anymore. Then, a new placement will be determined only for those application services
suffering from the current node or network conditions. As a consequence, a problem instance to be
solved is handled much faster in most of the cases. Only when it will not be possible to determine an
eligible migration for the suffering services, FogBrain will look for a new complete placement.

We now detail how reasoningStep/5, shown in Fig. 7, works. The reasoningStep/5 predicate (lines
50–52) determines via toMigrate/2 (lines 51, 53–56) which ServicesToMigrate in the current Placement
need to be migrated due to node or network conditions that impede meeting application requirements.
Then, it exploits the replacement/7 (line 52) to query the placement/7 with partially ground placement
information, so to attempt migrating only suffering services.

2FogBrain is available at https://pages.di.unipi.it/forti/fogbrain

https://pages.di.unipi.it/forti/fogbrain

S. Forti and A. Brogi 171

50 reasoningStep(App, Placement, AllocHW, AllocBW, NewPlacement) :-
51 toMigrate(Placement, ServicesToMigrate),
52 replacement(App, ServicesToMigrate, Placement, AllocHW, AllocBW, NewPlacement).

53 toMigrate(Placement, ServicesToMigrate) :-
54 findall((S,N,HWReqs), onSufferingNode(S,N,HWReqs,Placement), ServiceDescr1),
55 findall((SD1,SD2), onSufferingLink(SD1,SD2,Placement), ServiceDescr2),
56 merge(ServiceDescr2, ServiceDescr1, ServicesToMigrate).

57 onSufferingNode(S, N, HWReqs, Placement) :-
58 member(on(S,N), Placement),
59 service(S, SWReqs, HWReqs, TReqs),
60 nodeProblem(N, SWReqs, TReqs).

61 onSufferingLink((S1,N1,HWReqs1),(S2,N2,HWReqs2),Placement) :-
62 member(on(S1,N1), Placement), member(on(S2,N2), Placement), N1 \== N2,
63 s2s(S1, S2, ReqLat, _),
64 communicationProblem(N1, N2, ReqLat),
65 service(S1, _, HWReqs1, _),
66 service(S2, _, HWReqs2, _).

Figure 7: The reasoningStep/5 predicate.

The toMigrate/2 predicate (lines 53–56) retrieves all service descriptors of those services that are
currently suffering due to node or communication issues via predicates onSufferingNode/4 (line 54) and
onSufferingLink/3 (line 55), respectively. Service descriptors are triples (S,N,HWReqs) containing the
service identifier, the current deployment node and the service hardware requirements.

First, the toMigrate/2 predicate calls onSufferingNode/4 (lines 57–60) to determine all services
suffering due to node changes. In turn, onSufferingNode/4 exploits nodeProblem/3 (line 60) to check
whether the node onto which a service S is deployed as per the current Placement (lines 58–59) can-
not satisfy all requirements of S. Analogously, to determine all pairs of service descriptors (SD1, SD2)

suffering from communication problems, toMigrate/2 calls onSufferingLink/3 (lines 61-66). In turn,
onSufferingLink/3 exploits communicationProblem/3 (line 69) to check if the link supporting the com-
munication between S1 and S2 (lines 62–63) does not feature suitable QoS.

Both nodeProblem/3 and communicationProblem/3 can be flexibly defined by FogBrain users to check
different properties. Fig. 8 shows the two default definitions of the predicates checking node and links
current capabilities against software, IoT and communication QoS requirements of the application ser-
vices as well as nodes and links overloading situations (lines 67–69 and 72–73). The default definitions
also check nodes and links for failures (lines 70–71 and 75–76, respectively).

The merge/3 predicate (line 56) merges into the list ServicesToMigrate all found descriptors of suf-
fering services, by removing duplicates and splitting descriptor couples determined by onSufferingLink/3.
Such a list, along with the current Placement, hardware and bandwidth allocations, is passed to predicate
replacement/6 (line 52), with the goal of determining a NewPlacement for those suffering services.

We now describe the functioning of replacement/6, listed in Fig. 9. In case no service needs to
be migrated, the NewPlacement does not change, i.e. it coincides with the current Placement (line 77).
Otherwise, the current deployment is retracted, and FogBrain builds a suitable partially-ground query to
placement/7 (line 84) by means of the predicates partialPlacement/3 (lines 80–81), freeHWAllocation/3
(lines 82) and freeBWAllocation/4 (lines 83).

172 Continuous Reasoning for Managing Next-Gen Distributed Applications

67 nodeProblem(N, SWReqs, TReqs) :-
68 node(N, SWCaps, HWCaps, TCaps),
69 hwTh(T), \+ (HWCaps > T, thingReqsOK(TReqs,TCaps), swReqsOK(SWReqs,SWCaps)).
70 nodeProblem(N, _, _) :-
71 \+ node(N, _, _, _).

72 communicationProblem(N1, N2, ReqLat) :-
73 link(N1, N2, FeatLat, FeatBW),
74 (FeatLat > ReqLat; bwTh(T), FeatBW < T).
75 communicationProblem(N1,N2,_) :-
76 \+ link(N1, N2, _, _).

Figure 8: Default nodeProblem/3 and communicationProblem/3 predicates.

77 replacement(_, [], Placement, _, _, Placement).
78 replacement(A, ServicesToMigrate, Placement, AllocHW, AllocBW, NewPlacement) :-
79 ServicesToMigrate \== [], retract(deployment(A, Placement, _, _)),
80 findall(S, member((S,_,_), ServicesToMigrate), Services),
81 partialPlacement(Placement, Services, PPlacement),
82 freeHWAllocation(AllocHW, PAllocHW, ServicesToMigrate),
83 freeBWAllocation(AllocBW, PAllocBW, ServicesToMigrate, Placement),
84 placement(Services, PAllocHW, NewAllocHW, PAllocBW, NewAllocBW, PPlacement, NewPlacement),
85 assert(deployment(A, NewPlacement, NewAllocHW, NewAllocBW)).

86 partialPlacement([],_,[]).
87 partialPlacement([on(S,_)|P],Services,PPlacement) :-
88 member(S,Services), partialPlacement(P,Services,PPlacement).
89 partialPlacement([on(S,N)|P],Services,[on(S,N)|PPlacement]) :-
90 \+member(S,Services), partialPlacement(P,Services,PPlacement).

Figure 9: The replacement/7 and partialPlacement/3 predicates.

First of all, partialPlacement/3 (lines 86–90) recursively scans the current Placement and removes
from it all services to be migrated so to build the partial placement PPlacement. Then, the predicate
freeHWAllocation/3, listed in Fig. 10, cleans up the current hardware allocation by removing the hard-
ware allocation of suffering services from the nodes whose services are migrated. This is done by recur-
sively scanning the current allocation for each node (N, AllocHW), summing all hardware requirements
of the descriptors of the services to be migrated from N via sumNodeHWToFree (line 93, 97–99), and by
removing them from AllocHW (line 94–95). All updated hardware allocations are assembled together
into NewAllocHW via assemble/3 (lines 100–101), while removing zero-hardware allocations (line 100).
Analogously, the freeBWAllocation/4 cleans up the current bandwidth allocation BWAlloc by removing
from communication links all bandwidth allocations that involve at least one suffering service.

Finally, as listed in Fig. 9, the partial placement PPlacement, the partial hardware and bandwidth
allocations, PAllocHW and PAllocBW, and the identifiers of the Services to be migrated are input to
placement/7 to determine an eligible NewPlacement (and the related NewAllocHW and NewAllocBW) (line
84) to be asserted as a deployment/4 for the application A (line 85). If partially migrating application
services fails, no deployment/4 is asserted and a complete new placement is looked for as per the second
clause of fogBrain/2 (line 47–49, Fig. 6).

S. Forti and A. Brogi 173

91 freeHWAllocation([], [], _).
92 freeHWAllocation([(N,AllocHW)|L], NewL, ServicesToMigrate) :-
93 sumNodeHWToFree(N, ServicesToMigrate, HWToFree),
94 NewAllocHW is AllocHW - HWToFree,
95 freeHWAllocation(L, TempL, ServicesToMigrate),
96 assemble((N,NewAllocHW), TempL, NewL).

97 sumNodeHWToFree(_, [], 0).
98 sumNodeHWToFree(N, [(_,N,H)|STMs], Tot) :- sumNodeHWToFree(N, STMs, HH), Tot is H+HH.
99 sumNodeHWToFree(N, [(_,N1,_)|STMs], H) :- N \== N1, sumNodeHWToFree(N, STMs, H).

100 assemble((_,NewAllocHW), L, L) :- NewAllocHW=:=0.
101 assemble((N, NewAllocHW), L, [(N,NewAllocHW)|L]) :- NewAllocHW>0.

Figure 10: The freeHWAllocation/3 predicate.

Example. Retaking the example of Sect. 2, we now exploit FogBrain to determine a first eligible deploy-
ment for the VR application:
1 ?- fogBrain(vrApp,P).
P = [on(vrDriver, accesspoint), on(sceneSelector, cabinetserver), on(videoStorage, cloud)] .

Assuming now that the Cloud datacentre does not offer anymore the software capabilities required by
Video Storage (i.e. node(cloud, [centos, gcc, make], inf, []).), we obtain:
2 ?- fogBrain(vrApp,P).
P = [on(videoStorage, ispdatacentre), on(vrDriver, accesspoint),

on(sceneSelector, cabinetserver)]

This reasoning step suggests migrating the Video Storage from the Cloud to the ISP datacentre. Such a
result was obtained by exploiting the following partially ground query of placement/7:
placement([videoStorage], [(cabinetserver,2),(accesspoint,2)], NewAllocHW,

[(accesspoint,cabinetserver,1),(cabinetserver,accesspoint,8)], NewAllocBW,
[on(vrDriver,accesspoint),on(sceneSelector,cabinetserver)], NewPlacement).

obtained as per the reasoningStep/5 predicate, by removing Video Storage from the input partial place-
ment, and from the input hardware and bandwidth allocations, while leaving untouched information
related to non-suffering services (viz. VR Driver and Scene Selector). �
We conclude this section with a note on the time complexity of our continuous reasoning solution. Iden-
tifying suffering services and building the partial query for placement/7 incurs in worst-case O(S2) time
complexity, bounded by the maximum number of service-to-service requirements to check on S services.
If all services are eventually migrated, our solution is still worst-case exp-time O(NS), over an infrastruc-
ture with N nodes. More likely, as we will epitomise in Sect. 4, a new placement will be determined only
for a lower number s of services s < S, leading to a O(Ns)< O(NS) time complexity. For instance, when
only one service will be migrated, our approach will be worst-case linear-time O(N) and, when only one
service-to-service interaction will trigger migration, it will be worst-case quadratic-time O(N2).

4 Experimental Results

In this section, we run FogBrain against increasing infrastructure sizes to assess the scalability of our
continuous reasoning approach to support runtime application management.

174 Continuous Reasoning for Managing Next-Gen Distributed Applications

Dataset. In all experiments, the application to be placed is the one of Fig. 1. Target infrastructures
replicate the infrastructure of Fig. 3 for a number R ∈ {2,10,20,100,200} of times, and fully connect
nodes with suitable links3. Finally, infrastructures feature a single smartphone and a single access point
capable of reaching out the VR Viewer needed by the application.

Execution Environment. We run FogBrain in SWI-Prolog4 64-bits (v. 8.0.3) on a commodity laptop fea-
turing Windows 10, an Intel i5-6200U CPU (2.30 GHz) and 8 GB of RAM. We rely upon the time/1

meta-predicate to count the inferences needed by reasoningStep/5 (line 46) and by placement/2 (line
49). Counting inferences (instead of only measuring time) permits to assess the performance of con-
tinuous reasoning against a machine-independent metric. Finally, we do not consider the inferences
needed to load infrastructure data, which we assume can be periodically and incrementally updated by
an infrastructure monitoring tool.

Experiments. For all different sizes of the infrastructure we perform the following:

(1) a run of FogBrain to find a first deployment of the application,

(2) a run of FogBrain where infrastructure changes led to no need for migration,

(3a) a run of FogBrain where the Cloud node exploited for deployment features too low hardware re-
sources (viz. 0) versus a run of placement/2 over the same infrastructure, and

(3b) a run of FogBrain where, instead, the link between the Cloud node and the cabinet server exploited
for deployment in the infrastructure features too high latency (viz. 1350 ms) versus a run of
placement/2 over the same infrastructure.

Discussion. Table 1 shows the results of all experiments (1), (2), (3a) and (3b). It is worth noting
that determining a first placement (1) requires an exponentially increasing number of inferences as the
infrastructure size grows. In our settings, this step requires 1 to 2 seconds to find a valid first placement
with 2000 infrastructure nodes, which is a tolerable amount of time when the application is not running
yet. However, when it comes to runtime application management, reducing the number of required infer-
ences and, consequently, decision-making times, is crucial to avoid prolonged application performance
degradation. As per Table 1, using continuous reasoning to analyse infrastructure changes that do not
trigger migrations (2) requires a constant number of inferences, independently of the infrastructure size.
In our settings, this corresponds to negligible execution times for all considered infrastructure sizes. This
happens because the time complexity of the performed check is at most O(S2) for an application with S
services (as discussed in Sect. 3) and S is constant (viz. 3) throughout the experiments.

Table 1 compares the number of inferences needed to react to (3a) and (3b) with continuous reasoning
(i.e. CR Inf.s) to the number of inferences needed to react to them by computing a whole new placement
(i.e. No CR Inf.s) using placement/2. Table 1 also reports inference speed-ups (viz. (No CR Inf.s /
CR Inf.s)) achieved by continuous reasoning for (3a) and (3b). The speed-up for (3a) is over 5500×
with an infrastructure of 1000 nodes5. Analogously, in the case of a single link failure (3b), which
requires migrating two services and all service-to-service allocations, the speed-up is over 95× with an
infrastructure of 1000 nodes. It is worth noting that in both (3a) and (3b) FogBrain starts speeding up

3The Python code which can be used to generate infrastructures of arbitrary sizes by replicating the base module is available
at: https://github.com/di-unipi-socc/fogbrain/blob/master/infrastructure builder/builder.py

4SWI-Prolog available at: https://www.swi-prolog.org/
5The number of CR inferences for (3a) is constant due to the Prolog ordering of the clauses of node/4 in the example, which

always leads to finding a new placement on a node other than the Cloud node in 369 inferences. Anyway, as discussed at the
end of Sect. 3, in the worst case, the number of CR inferences increases at most linearly in the number of infrastructure nodes
when migrating a single service.

https://github.com/di-unipi-socc/fogbrain/blob/master/infrastructure_builder/builder.py
https://www.swi-prolog.org/

S. Forti and A. Brogi 175

with at least 10 nodes since, for smaller infrastructure sizes, analysing the current deployment conditions
requires a number of inferences greater than computing a placement anew.

Table 1: Experimental results.

Nodes
(1) Deploy (2) No migration (3a) Cloud node failure (3b) Cloud-cabinet link failure

Inferences Inferences CR Inf.s No CR Inf.s Speed-up CR Inf.s No CR Inf.s Speed-up

5 457 120 369 300 0.8× 791 517 0.7×

10 883 120 369 695 1.9× 743 926 1.2×

50 7891 120 369 7455 20× 1575 7934 5×

100 25651 120 369 24905 67× 2615 25694 10×

500 527731 120 369 524505 1421× 10935 527774 48×

1000 2055331 120 369 2049005 5553× 21335 2055374 96×

1500 4582931 120 369 4573505 12394× 31735 4582974 144×

2000 8110531 120 369 8098005 21946× 42135 8110574 192×

Overall, the usage of a continuous reasoning approach to support application placement decision-making
shows very promising results in our experiments as it substantially reduces the time needed to make
decisions at runtime, in the likely situation where only a portion of the deployed application services
cannot currently satisfy its requirements.

5 Related Work

In the past, much literature has focussed on the placement of application services to physical servers in
Cloud datacentres [19], only a few of which (e.g. [14, 25]) employing a declarative approach. However,
managing applications over the Cloud-IoT continuum introduces new peculiar challenges, mainly due to
infrastructure scale and heterogeneity, need for QoS-awareness, dynamicity and support to interactions
with the IoT, rarely considered in Cloud-only scenarios. Next, we briefly summarise the state of the art
in the field of Cloud-IoT multi-service application placement and management, referring the readers to
our recent survey [4] for further details.

Among the first proposals investigating the peculiarities of Cloud-IoT application placement, [13]
proposed a simple search algorithm to determine an eligible deployment of (multi-service) applications
to tree-like Cloud-IoT infrastructures, open-sourced in the iFogSim Java prototype. Building on top of
iFogSim, various works tried to optimise different metrics, e.g. service delivery deadlines [16], load-
balancing [23], or client-server distances [12]. In our previous work [2, 5], we proved NP-hardness
of the placement problem, and we devised a backtracking strategy to determine context-, QoS- and
cost-aware placements of multiservice applications to Cloud-IoT infrastructures, also employing genetic
algorithms to speed up the search [3]. Based on our work and on the related FogTorchΠ Java prototype,
[24] focussed on minimising application response times, while [8] proposed a strategy for Cloud-IoT
task offloading. Very recently, we exploited logic programming to assess the security and trust levels
of application placements [10], and to determine the placement and network routing of Virtual Network
Function chains in Cloud-IoT scenarios [6]. To the best of our knowledge, no other previous work tack-
ling the problem of application placement to Cloud-IoT infrastructures relies on declarative programming
solutions. Besides, no previous work proposes continuous reasoning approaches to tame the exp-time
worst-case complexity of such a problem, nor to solve it incrementally at application management time.

Finally, proposals exists for simulating application placements and management policies in Cloud-
IoT scenarios [17], e.g. YAFS [15], EdgeCloudSim [21], and iFogSim [13] itself. Recently, we also
worked on simulating the management of CISCO FogDirector-enabled infrastructures and opensourced

176 Continuous Reasoning for Managing Next-Gen Distributed Applications

the FogDirSim prototype [11]. Those simulators were mainly used to assess static placements, or dy-
namic performances of simple management policies (e.g. random, first-fit, best-fit), reasoning on the
whole infrastructure and application status when facing infrastructure changes.

Summing up, to the best of our knowledge, this work is the first proposing a declarative continuous
reasoning solution to support placement decisions during runtime management of multi-service applica-
tions over Cloud-IoT infrastructures.

6 Concluding Remarks

In this article, we presented a novel declarative continuous reasoning methodology, and its prototype
FogBrain, to support runtime management decision-making concerning the placement of next-gen multi-
service applications to Cloud-IoT infrastructures. FogBrain was assessed over a lifelike example at vary-
ing infrastructure sizes, from small-scale to large-scale. Limiting placement decisions only to services
affected by the last infrastructure variations via continuous reasoning has shown considerable average
speedups (i.e. > 2500×). Overall, FogBrain represents the core of a continuous reasoner to support
Cloud-IoT application management which, being declarative, is concise (125 single lines of code), and
easier to understand and extend so to account for new emerging needs, compared to existing procedural
solutions (> 1000s lines of code).

As future work, we plan to extend the continuous reasoning capabilities of FogBrain to also handle
changes in the application topology (i.e. addition/removal of services) or requirements (e.g. security
policies), to support other runtime management decisions (e.g. application scaling, service adaptation),
and to exploit a cost-model and heuristic algorithms to determine optimal eligible placements, possibly
along with constraint logic programming and incremental tabling. Besides, we intend to include the pos-
sibility to obtain textual explanations on why a certain management decision was taken by FogBrain and
to exploit probabilistic logic programming to simulate infrastructure variations as per historical moni-
tored data. Last, but not least, we plan to assess FogBrain over other use cases and in testbed settings over
actual multi-service applications.

Acknowledgements. Work partly supported by the projects “DECLWARE”(PRA 2018 66), funded by the Uni-
versity of Pisa, Italy, and “GIÒ”, funded by the Department of Computer Science, University of Pisa, Italy.

References
[1] Paolo Bellavista, Javier Berrocal, Antonio Corradi, Sajal K. Das, Luca Foschini & Alessandro Zanni

(2019): A survey on fog computing for the Internet of Things. Pervasive Mob. Comp. 52, pp. 71 – 99,
doi:10.1016/j.pmcj.2018.12.007.

[2] Antonio Brogi & Stefano Forti (2017): QoS-Aware Deployment of IoT Applications Through the Fog. IEEE
Internet of Things Journal 4(5), pp. 1185–1192, doi:10.1109/JIOT.2017.2701408.

[3] Antonio Brogi, Stefano Forti, Carlos Guerrero & Isaac Lera (2019): Meet Genetic Algorithms in Monte
Carlo: Optimised Placement of Multi-Service Applications in the Fog. In: EDGE 2019, pp. 13–17,
doi:10.1109/EDGE.2019.00016.

[4] Antonio Brogi, Stefano Forti, Carlos Guerrero & Isaac Lera (2020): How to Place Your Apps in the Fog -
State of the Art and Open Challenges. Softw. Pract. Exp. 50(5), pp. 719–740, doi:10.1002/spe.2766.

[5] Antonio Brogi, Stefano Forti & Ahmad Ibrahim (2019): Predictive Analysis to Support Fog Application
Deployment. In: Fog and Edge Computing: Principles and Paradigms, chapter 9, Wiley, pp. 191–222,
doi:10.1002/9781119525080.ch9.

[6] Antonio Brogi, Stefano Forti & Federica Paganelli (2019): Probabilistic QoS-aware Placement of VNF
chains at the Edge. CoRR abs/1906.00197. Available at http://arxiv.org/abs/1906.00197.

http://dx.doi.org/10.1016/j.pmcj.2018.12.007
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1109/EDGE.2019.00016
http://dx.doi.org/10.1002/spe.2766
http://dx.doi.org/10.1002/9781119525080.ch9
http://arxiv.org/abs/1906.00197

S. Forti and A. Brogi 177

[7] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti & Matteo Nardelli (2017): Optimal Operator Repli-
cation and Placement for Distributed Stream Processing Systems. SIGMETRICS Perf. Eval. Rev. 44(4), pp.
11–22, doi:10.1145/3092819.3092823.

[8] Vincenzo De Maio & Ivona Brandic (2018): First Hop Mobile Offloading of DAG Computations. In: CC-
GRID 2018, pp. 83–92, doi:10.1109/CCGRID.2018.00023.

[9] Dino Distefano, Manuel Fähndrich, Francesco Logozzo & Peter W. O’Hearn (2019): Scaling Static Analyses
at Facebook. Commun. ACM 62(8), p. 6270, doi:10.1145/3338112.

[10] Stefano Forti, Gian-Luigi Ferrari & Antonio Brogi (2020): Secure Cloud-Edge Deployments, with Trust.
Future Gener. Comput. Syst. 102, pp. 775–788, doi:10.1016/j.future.2019.08.020.

[11] Stefano Forti, Alessandro Pagiaro & Antonio Brogi (2020): Simulating FogDirector Application Manage-
ment. Simul. Model. Pract. Theory 101(102021), pp. 1–18, doi:10.1016/j.simpat.2019.102021.

[12] Carlos Guerrero, Isaac Lera & Carlos Juiz (2019): A lightweight decentralized service placement policy
for performance optimization in fog computing. J. Ambient Intell. Humaniz. Comput. 10, pp. 2435–2452,
doi:10.1007/s12652-018-0914-0.

[13] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh & Rajkumar Buyya (2017): iFogSim: A toolkit
for modeling and simulation of resource management techniques in the Internet of Things, Edge and Fog
computing environments. Soft. Pract. Exp. 47(9), pp. 1275–1296, doi:10.1002/spe.2509.

[14] Serdar Kadioglu, Mike Colena & Samir Sebbah (2016): Heterogeneous resource allocation in Cloud Man-
agement. In: NCA 2016, pp. 35–38, doi:10.1109/NCA.2016.7778589.

[15] Isaac Lera, Carlos Guerrero & Carlos Juiz (2019): YAFS: A Simulator for IoT Scenarios in Fog Computing.
IEEE Access 7, pp. 91745–91758, doi:10.1109/ACCESS.2019.2927895.

[16] Redowan Mahmud, Kotagiri Ramamohanarao & Rajkumar Buyya (2018): Latency-aware Application Mod-
ule Management for Fog Computing Environments. ACM Trans. Internet Techn. 19(1), pp. 9:1–9:21,
doi:10.1145/3186592.

[17] Spiridoula V Margariti, Vassilios V Dimakopoulos & Georgios Tsoumanis (2020): Modeling and Simulation
Tools for Fog Computing–A Comprehensive Survey from a Cost Perspective. Future Internet 12(5), p. 89,
doi:10.3390/fi12050089.

[18] Peter W. O’Hearn (2018): Continuous Reasoning: Scaling the Impact of Formal Methods. In: LICS 2018,
pp. 13–25, doi:10.1145/3209108.3209109.

[19] Ilia Pietri & Rizos Sakellariou (2016): Mapping virtual machines onto physical machines in cloud computing:
A survey. ACM Comput. Surv. 49(3), pp. 1–30, doi:10.1145/2983575.

[20] Yehonathan Sharvit (2019): A new way of blogging about Prolog. http://blog.klipse.tech/prolog/
2019/01/01/blog-prolog.html. Last accessed: July 2020.

[21] Cagatay Sonmez, Atay Ozgovde & Cem Ersoy (2018): EdgeCloudSim: An environment for per-
formance evaluation of Edge Computing systems. Trans. Emerg. Telecommun. Technol. 29(e3493),
doi:10.1002/ett.3493.

[22] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer Rana, Devki Nandan Jha & Rajiv Ranjan (2019):
Osmosis: The Osmotic Computing Platform for Microelements in the Cloud, Edge, and Internet of Things.
IEEE Computer 52(8), pp. 14–26, doi:10.1109/MC.2018.2888767.

[23] S. Wang, M. Zafer & K. K. Leung (2017): Online Placement of Multi-Component Applications in Edge
Computing Environments. IEEE Access 5, pp. 2514–2533, doi:10.1109/ACCESS.2017.2665971.

[24] Ye Xia, Xavier Etchevers, Loı̈c Letondeur, Thierry Coupaye & Frédéric Desprez (2018): Combining hard-
ware nodes and software components ordering-based heuristics for optimizing the placement of distributed
IoT applications in the fog. In: ACM SAC, pp. 751–760, doi:10.1145/3167132.3167215.

[25] Qin Yin, Adrian Schüpbach, Justin Cappos, Andrew Baumann & Timothy Roscoe (2009): Rhizoma: a
runtime for self-deploying, self-managing overlays. In: Middleware 2009, pp. 184–204, doi:10.1007/978-3-
642-10445-9˙10.

http://dx.doi.org/10.1145/3092819.3092823
http://dx.doi.org/10.1109/CCGRID.2018.00023
http://dx.doi.org/10.1145/3338112
http://dx.doi.org/10.1016/j.future.2019.08.020
http://dx.doi.org/10.1016/j.simpat.2019.102021
http://dx.doi.org/10.1007/s12652-018-0914-0
http://dx.doi.org/10.1002/spe.2509
http://dx.doi.org/10.1109/NCA.2016.7778589
http://dx.doi.org/10.1109/ACCESS.2019.2927895
http://dx.doi.org/10.1145/3186592
http://dx.doi.org/10.3390/fi12050089
http://dx.doi.org/10.1145/3209108.3209109
http://dx.doi.org/10.1145/2983575
http://blog.klipse.tech/prolog/2019/01/01/blog-prolog.html
http://blog.klipse.tech/prolog/2019/01/01/blog-prolog.html
http://dx.doi.org/10.1002/ett.3493
http://dx.doi.org/10.1109/MC.2018.2888767
http://dx.doi.org/10.1109/ACCESS.2017.2665971
http://dx.doi.org/10.1145/3167132.3167215
http://dx.doi.org/10.1007/978-3-642-10445-9_10
http://dx.doi.org/10.1007/978-3-642-10445-9_10

	1 Introduction
	2 Placement of Next-Gen Distributed Applications
	3 Continuous Management of Next-Gen Distributed Applications
	4 Experimental Results
	5 Related Work
	6 Concluding Remarks

