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Problems affecting the transport of people or goods are plentiful in industry and commerce and they
also appear to be at the origin of much more complex problems. In recent years, the logistics and
transport sector keeps growing supported by technological progress, i.e. companies to be competitive
are resorting to innovative technologies aimed at efficiency and effectiveness. This is why companies
are increasingly using technologies such as Artificial Intelligence (AI), Blockchain and Internet of
Things (IoT). Artificial intelligence, in particular, is often used to solve optimization problems in
order to provide users with the most efficient ways to exploit available resources.

In this work we present an overview of our current research activities concerning the development
of new algorithms, based on Constraint Logic Programming (CLP) techniques, for route planning
problems exploiting the geometric information intrinsically present in many of them or in some of
their variants. The research so far has focused in particular on the Euclidean Traveling Salesperson
Problem (Euclidean TSP) with the aim to exploit the results obtained also to other problems of the
same category, such as the Euclidean Vehicle Routing Problem (Euclidean VRP), in the future.

1 Introduction

Given a weighted graph G with n vertices the Traveling Salesperson Problem (TSP) requires to compute
the shortest cycle that visits each vertex of G exactly once 1. The name “Traveling Salesman Problem”
comes from the problem’s most famous formulation: “A salesman has to visit a set of cities, each of
which must be visited only once, and he wants to minimize the length of the tour”. The problem is
NP-hard [19]. Currently, the best solver for the TSP is Concorde [1], that includes several techniques
based on Integer Linear Programming (with branch-and-bound and branch-and-cut) and Local Search.

Some significant sub-classes of the general TSP are the metric TSP, in which the distance function
between cities enjoys the triangle inequality, and the Euclidean TSP, in which the nodes of the graph
represent points in the plane and the distance function is the Euclidean distance. These are reasonable
assumptions in many important instances: many industrial problem and various benchmarks taken from
the TSPLIB [26] fall into these classes.

Both the metric and the Euclidean TSP, as the general TSP, are NP-hard [15]; nonetheless, differently
from the general TSP, the Euclidean TSP admits a Polynomial Time Approximation Scheme (PTAS)
[2, 23], i.e., given a value ε > 0, it is possible to obtain a solution with cost (1+ ε)L∗ (where L∗ is the
length of the optimal tour) in polynomial time with respect to the number of nodes n (note, however, that
the time is exponential with respect to 1

ε
).

It is worth noting that in the Euclidean TSP more information is available than in the general TSP:
the coordinates of the points to be visited are known, and geometrical concepts (straight line segments,

1A cycle that visit each vertex exactly once is often referred as Hamiltonian cycle or Hamiltonian circuit.
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angles, etc.) can be defined in the Euclidean plane. Despite these results are very important theoretically,
TSP solvers do not use the additional geometric information which is available in the Euclidean TSP
instances. Concorde, which is in practice faster in most applications, discards the information regarding
vertices position on the plane and it computes the distance matrix using Euclidean distances as weights.

In the literature another important work that attempted to use geometric information has recently
been published: Deudon et al. [7] train a Deep Neural Network with points coordinates to learn efficient
heuristics to explore the search space. This work, instead, is the first attempt (to the best of our knowl-
edge) to exploit geometric information to obtain further pruning in Constraint Programming (CP) during
the solution of some route planning problems.

2 Related Works

As mentioned in the previous section, the best solver currently available for the TSP is Concorde[1]; but
Concorde can address only pure TSPs, i.e., no further side constraints are allowed, while in CP many
variants can be easily cast, such as the TSP with Time Windows (TSPTW).

Three representations have been devised, in CP literature, for defining variables in the Hamiltonian
circuit problem and the TSP: the permutation representation, the successor representation and the set
variable representation [4] later extended to the graph representation [8, 9, 10]. In the following of this
paper, we will be mainly concerned with the successor representation.

Given a list L of variables [Next1,Next2, ...,Nextn], where n is the number of vertices of the graph G,
we denote with Dom(Nexti) the initial domain of the variable Nexti, where Dom(Nexti) = {1, . . . ,n}\{i}.
In the successor representation, the value of the Nexti variable denotes the successor of the vertex i in the
resulting tour (e.g. if n = 5 and L = [3,5,4,2,1] the corresponding tour will be 1,3,4,2,5,1). Note that
in the Euclidean TSP each vertex i always corresponds to one point Pi = (xi,yi) in the plane.

The constraint model includes an alldifferent(L) constraint [25] on the list L of all variables,
that ensures that each node has exactly one incoming edge, as well a circuit(L) [3, 6, 20] constraint
(sometimes called nocycle) that avoids sub-tours, i.e., cycles of length less than n.

Caseau and Laburthe [6] propose a simple but efficient propagation algorithm for circuit constraint
(nocycle) combined with new branching strategies based on the combination of first-fail and max-regret.
First-fail selects first the variable with smallest domain because it has a higher probability of running out
of elements and thus lead to failure. The regret of a variable is defined, instead, as the cost difference
between its two best possible assignments, so the strategy is to first select those variables in which the
regret is higher in order to avoid a significant increase in the cost of the solution. They also propose to
filter values based on the objective function. For this last purpose, they apply the assignment-based and
the spanning tree relaxations.

Another filtering rule proposed for the circuit constraint is that of Kaya and Hooker [20] based
on graph separators theory. Francis and Stuckey [14] compare the effectiveness of different propagation
algorithm for circuit when adding explanation in the context of a lazy clause generation solver.

Pesant et al. [24] address the TSPTW, in which cities must be visited within given temporal intervals,
and exploit the circuit constraint together with the minimum spanning tree relaxation. Focacci et al.
[12, 13] introduce hybrid approaches that merge CP and Operations Research techniques, including:
reduced costs filtering, use of the assignment problem and minimum spanning forest relaxation.

A filtering technique presented more recently by Benchimol et al. [4] for the Weighted Circuit Con-
straint (WCC) has been able to obtain, on medium dimension instances, results comparable with the
solver Concorde. In their work, they use a variety of techniques. In order to obtain an initial upper
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bound to be used for propagation, they first run the Lin-Kernighan-Helsgaun algorithm [22, 17]. Then
the filtering technique uses the Held and Karp [16] scheme together with a Lagrangian relaxation to ob-
tain the reduced costs of the edges and uses it to remove them. The algorithm is also able to identify
the mandatory arcs that if removed would increase the current lower bound. In the experiments with
asymmetric TSPs, they also use additive bounding [11] to combine both the 1-tree and the assignment
problem relaxations.

Fages et al. [10], achieve significant improvement by casting the problem in CP(Graph) and through
the introduction of improved search strategies (i.e. Last Conflict heuristic). Fages and Lorca [9] shown
how properties of the reduced graphs associated to an Asymmetric TSPs can be used to improve the
Minimum Spanning Tree relaxation. The nodes of the reduced graphs are the Strongly Connected Com-
ponents of the original graph.

Isoart and Régin [18] design a propagator based on the search of k-cutsets. The combination of this
constraint with the WCC constraint has resulted in a significant reduction in the computation time.

3 Ongoing research

Several algorithms have already been developed, some of them have recently been published in their first
version [5] while others are still being studied.

3.1 The nocrossing constraint

A well-known finding in the literature (e.g., [2]) is that the optimal solution of Euclidean TSP does not
have crossing edges (see Figure 1).

Pi
b

b

b

b

PjPl

Pk

Figure 1: Crossings elimination leads to a shorter route.

Property 1. There is no crossing in the optimal solution for a Euclidean TSP.

We can take advantage of Property 1 to reduce the size of the search tree by eliminating branches
presenting crosses. We propose the nocrossing constraint that eliminates assignments leading to non-
optimal solutions. In the successor representation, it is defined as follows.

Definition 1. The nocrossing(i,Nexti, j,Next j) constraint assures that segments iNexti and jNext j do
not cross each other.

The nocrossing constraint is a binary constraint since i and j are ground values at the time when
it is imposed. Suppose we have n nodes, to avoid crossings n(n− 1)/2 constraints are introduced, one
constraint for each pair of nodes of the graph. The nocrossing constraint can be implemented thorough
a pair of propagators: one propagates changes in the domain of the variable Nexti on the domain of the
variable Next j, while the other propagator propagates changes on the other way.
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Figure 2: An arrow from Px to Py means that y ∈ Dom(Nextx). Dashed lines are plotted to show the
angles.

The nocrossing constraint could be implemented in a naive manner, for example using the table
constraint [28] or the propia library [21]. A table constraint consists of a table (usually a list of tuples)
of values that the involved variables must, or must not, assume. However this implementation would
be inefficient, because the constraint wakes up most of the time without being able to carry out any
propagation. Moreover, with the table constraint one should initially compute large tables, containing,
for all pairs of edges in the graph, if they cross or not. Propagating such constraint would have the usual
cost of arc-consistency propagation for a single constraint of O(d2) (if d is the size of the domains) in
each activation of the constraint.

From the definition of arc-consistency and Definition 1, a value v can be removed from Dom(Next j)
only if the segment PjPv intersects all possible segments originating from Pi (e.g. segment PjPt in Fig-
ure 2a).

We define a possible segment from Pi a segment PiPj such that j ∈ Dom(Nexti). We denote with
←→
PiPj

the (infinite straight) line passing through points Pi and Pj, and with ∠PiPjPk the counterclockwise angle
formed by the segments PiPj and PjPk with vertex in Pj from Pi to Pk.

We have identified the following necessary and sufficient conditions for pruning and we have ex-
ploited them within our propagation algorithm.

Theorem 1 (Necessary condition). Let PjPt a possible segment from Pj. If PjPt crosses all possible
segments from Pi then all segments originating from Pi must lie on the same half-plane with respect to
the line

←→
PiPj.

The propagator is suspended waiting that all elements in the domain of Nexti lie on the same half-
plane. We select one element in each half-plane and the propagator suspends waiting that one of the two
elements is removed from Dom(Nexti).

Theorem 2 (Necessary condition). Let PjPt a possible segment from Pj. If PjPt crosses all possible
segments from Pi then αt ≤ α , where α = min{αq | q ∈ Dom(Nexti)} and αk = ∠PiPjPk (see Figure 2b).

Theorem 3 (Sufficient condition). Suppose there exists a possible segment PjPt from Pj such that αt ≤α .
If PjPt crosses all possible segments from Pi then βt > β , where β = max{βq | q ∈ Dom(Nexti)} and
βk = ∠PkPiPj (see Figure 2b).

Thanks to these theorems, the nocrossing propagator can be implemented with O(d) complexity
(if d is the size of the domains) per each activation (to be compared to the O(d2) of a naive propagator).

A study we are conducting to evaluate the actual performance of the nocrossing constraint is shown
in Figure 3.
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(a) (b)

(c)

Figure 3: A graphical representation of the nocrossing constraint while solving an instance with 20
nodes. The darker the color, the higher is the value for the following indicators: (a) number of value
deletion; (b) number of failures; (c) instances of nocrossing that have not performed pruning (binary
value: true, false).

3.2 The clockwise constraint

Further pruning can be obtained by means of the convex hull of the set of points. We recall the definition
of convex hull.

Definition 2. Let S be a set of points, the convex hull of S is defined as the smallest convex set containing
S. The convex hull is therefore the smallest convex polygon that includes all the points of the set S.

The following property resulting from Property 1 can also be exploited to reduce the space of possible
solutions.

Property 2. Let k of the n points in the Euclidean TSP be vertices on the boundary of the convex hull.
Then the order in which these k points appear in the optimum traveling salesman tour must be the same
as the order in which these same points appear on the boundary of the convex hull.

From Property 2 follows that the optimal solution of the TSP is is a simple polygon, and it divides
the plane into exactly two areas: an internal and an external area. Please observe that the points on the
border of the convex hull do not necessarily appear consecutively in the solution, an example is reported
in Figure 4a.

Let V = {1,2, ...,n} be the set of vertices, where n is the number of vertices of the graph, and let
H = {(h1,h2, ...,hk)|hi ∈ V, i = 1, ..,k} be the list of vertices that lies on the boundary of the convex
hull ordered clockwise. The following is a summary of three different ways we proposed to exploit the
information about the convex hull for constraint propagation.

The simplest way to satisfy the Property 2 is to apply the following relation:

∀i ∈ H, Dom(Nexti)∩{h j| j = 1, ...k, j 6= (i+1)}= /0 (1)
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Figure 4: (a) Visiting vertices of the perimeter of the convex hull not in order generates a cross in the
solution of the TSP, therefore that solution cannot be optimal. (b) Imagine to cut the optimal TSP with
two vertical lines, the convex hull reasoning can be extended to the borders (i.e., the parts of the circuit
inside the stripe).

Equation 1 states that it is possible to eliminate from the domain of each point in H all the other points
on the boundary of the convex hull except the next in the sequence (see Figure 5a).

Further propagation can be carried out when the domain associated with a point on the boundary of
the convex hull becomes ground. Let Hi be the index of the point on the boundary of the convex hull
whose domain has become ground and P its value, i.e., in the current assignment there is the HiP segment.
If we choose to go through the points on the boundary of the convex hull in a clockwise direction, in
order to satisfy Property 2, no points situated on the left of the HiP segment can have Hi as its successor
(see Figure 5b)

The third way is to impose that each path originating from a convex hull vertex cannot reach any con-
vex hull vertex except for the one immediately following it. Implementation is inspired by the circuit
constraint [6], but performs more powerful pruning (see Figure 5c). It is clear that this third propagation
also implies the first one.

The applicability of the three convex hull propagators presented can also be extended to points that
lie in the interior of the hull. Once a partial path has been defined, consider the polygon formed by such
path plus a segment connecting its extremes. We can apply the propagators to the convex hull of the
points inside that polygon (see Figure 4b).

We propose the clockwise constraint that implements all the propagation described in this section.

4 Preliminary Result

In order to assess the effectiveness of the proposed algorithms, we devised a series of experiments based
on randomly-generated TSPs and taken from structured instances (e.g. TSPLIB [26]).

We implemented all algorithms using the ECLiPSe CLP language [27]. We started comparing our
algorithms with a simple model for the successor representation (that includes alldifferent and
circuit constraints), such a constraint model is named CLP(FD) in the following. Then in order to
show that the pruning we provide is not subsumed by that of state of the art techniques, we implemented
in ECLiPSe, in the successor representation, also the Held and Karp bound with pruning based on re-
duced and marginal costs, as proposed by Benchimol et al. [4] (shown with BvHRRR in the following).
The constraint model, named Geometric, includes the nocrossing constraint on all pairs of vertices,
together with the clockwise constraint that implements the propagation described in Section 3.2. The
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Figure 5: Depiction of three different ways to exploit the information about the convex hull for constraint
propagation as implemented in the clockwise constraint. The boundary of the convex hull is represented
with dotted lines. (a) The successor of a convex hull vertex cannot be another vertices on the boundary of
the convex hull except for the one that immediately follows it. (b) In order to visit nodes in a clockwise
order, the angle between the incoming edge and the outgoing edge of a convex hull vertex cannot be
positive (it must be between −π and 0). (c) On each paths originating from a convex hull vertex Hi the
first convex hull vertex different from Hi is the one immediately following it, that is Hi+1.

Geometric model also includes bounds with the Lin-Kernighan-Helsgaun [17]) as included in BvHRRR.
In Figure 6 we present cactus plots that compare the impact of our filtering algorithms with the

constraints already predefined in ECLiPSe system. In the x-axis we report the number of optimally solved
instances, and in the y-axis the solving time in seconds. Fixed a certain amount of time, Figure 6 clearly
illustrates that our filtering algorithms, especially when used simultaneously, significantly increase the
number of instances solved.

In Figure 7 we present cactus plot that compare the impact of our filtering algorithm with the pruning
proposed by Benchimol et al. [4]. The addition of the filtering on geometric properties improves the
runtime.

Admittedly, the instances we were able to solve are not as large as those addressed by state of the
art techniques in CP [4, 10, 9]. This could be due to several factors. Our implementation is based on
declarative languages that have the advantage of separating problem definition (as much as possible) from
implementation details. On the other hand, their performance can be significantly slower than imperative
languages, not only due to interpretation vs compilation schemes, but also to the availability of efficient
data structures and search techniques.

Although the results achieved so far are a solid starting point, we are still working on improving the
performance and making our algorithms scalable to solve larger instances.

5 Conclusion and Future Works

In this paper, we proposed to exploit geometric information while solving route planning problems in
order to have additional pruning with respect to the techniques already available in CP.

The pruning of the WCC, proposed by Benchimol et al. [4], is orthogonal with respect to that of
the nocrossing and clockwise constraints. The quality of the propagation carried out by the WCC is
proportional to the quality of the current upper bound on the cost of the solution of the TSP, while our
propagator can delete values from the domains even if no bound is known yet.

Despite the preliminary results that we have achieved and presented in this paper are good, our
approaches are still not competitive with Concorde especially for large instances.
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Figure 6: Cactus plot of filtering algorithms which we run over 68 randomly-generated Euclidean TSP
instances with 20 nodes (a) and 24 nodes (b). Time limit was set to 1200 seconds.

(a)

20 30 40 50

100

101

102

# nodes

lo
g 1

0
tim

e
[s

]

(b)

600 700 800 900

600

1,200

1,800

# solved instances

tim
e

[s
]

BvHRRR

Geom.+BvHRRR

Figure 7: Experimental results on randomly-generated Euclidean TSP instances from 20 to 50 nodes in
steps of 2. For each size we generated 60 instances (30 uniform and 30 clustered). Time limit was set
to 1800 seconds. (a) Average solving time of filtering algorithms varying the size of the instances. Each
point is the average solving time of 60 instances. (b) Cactus plot showing the number of solved instances
varying the solving time.

We used the successor representation, while the set variable or the graph representations should be
experimented extensively, possibly mixing different representations with tunneling constraints.

As future work we also plan to apply extensions of the proposed techniques in the Euclidean VRP
and possibly to other similar problems. In a Vehicle Routing Problem (VRP) there is a fleet of vehicles
that must reach all the nodes of a graph; in each node the vehicle must load (or unload) goods. Each
vehicle has a capacity that must not be exceeded, so it is not possible to use a single vehicle (with only
one vehicle the VRP boils down to the TSP). It can be seen that in an optimal solution of Euclidean VRP
there are no intersections in the path of each vehicle, even though there may be intersections between the
paths of different vehicles.

We are also planning to extend some of the techniques presented here in CLP to Answer Set Pro-
gramming (ASP).
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