
F. Ricca, A. Russo et al. (Eds.): Proc. 36th International Conference

on Logic Programming (Technical Communications) 2020 (ICLP 2020)

EPTCS 325, 2020, pp. 296–302, doi:10.4204/EPTCS.325.39

Research Summary on

Implementing Functional Patterns by

Synthesizing Inverse Functions

Finn Teegen

Kiel University
Kiel, Germany

fte@informatik.uni-kiel.de

In this research summary we present our recent work on implementing functional patterns with in-

verse functions in the lazy functional-logic programming language Curry. Our goal is the synthesis of

the inverse of any given function in Curry itself. The setting of a functional-logic language especially

allows the inversion of non-injective functions. In general, inverse computation is a non-trivial prob-

lem in lazy programming languages due to their non-strict semantics. We are so far able to directly

derive the inverse function for a limited class of functions, namely those consisting of rules that do

not involve both extra variables and non-linear right-hand sides. Because the synthesized definitions

are based on standard code, known optimizations techniques can be applied to them. For all other

functions we can still provide an inverse function by using non-strict unification.

1 Introduction

Curry [18] is a functional-logic programming language [7] with Haskell-like syntax and support for non-

deterministic operations [15] and free variables. In standard code only variables and constructors are

allowed in patterns on the left-hand side of function definitions. Functional patterns [6] are an extension

to Curry and relax this restriction by additionally allowing the use of function symbols within patterns.

As an example, we consider the function that returns the last element of a list.

last :: [a] -> a

last (xs++[x]) = x

Here, we use the function (++), which concatenates two lists, to specify that the variable x should cor-

respond to the last element of the input list. Semantically, the functional pattern is equivalent to the

following infinite set of rules.

last [x] = x

last [x1,x] = x

last [x1,x2,x] = x

. . .

Note that the definition of last using functional patterns is less strict than the following common encod-

ing with an equality constraint, where (=:=) denotes the (strict) unification operator.

last z | xs ++ [x] =:= z = x where xs, x free

For example, evaluating the expression last [failed, True] (where failed is an expression that has

no value) fails with the definition above due to the strictness of the unification operation. In contrast, the

variant based on functional patterns yields True for the same expression and, thus, properly reflects the

non-strict nature of Curry, which can benefit many applications in practice [11, 12].

http://dx.doi.org/10.4204/EPTCS.325.39

F. Teegen 297

Despite their usefulness, functional patterns have the disadvantage that they must be explicitly sup-

ported by the runtime system. For this purpose, the runtime system has to provide a special primitive for

non-strict unification [6] with which functional patterns are implemented. With this primitive, namely

(=:<=), the last function using functional patterns can be translated as follows.

last z | xs ++ [x] =:<= z = x where xs , x free

Our original research intention was to find a way to implement functional patterns as a source-to-source

transformation and, thus, without any dedicated primitive. This way, not only the complexity of the

runtime systems of different compilers could be reduced, but functional patterns could also be made

available in other programming languages with similar characteristics, e.g., TOY [19].

Due to the close connection between function inversion and functional patterns [10], it seemed likely

that functional patterns could also be expressed by means of function inversion. In fact, both functional

patterns and inverse functions can be expressed by one another. For instance, we can define the inverse

of (++), which non-deterministically computes all splittings of a list, using a functional pattern in the

following way.

(++)-1 :: [a] -> ([a], [a])

(++)-1 (xs++ys) = (xs, ys)

Conversely, we can transform functional patterns into calls to the inverses of the functions used in the

functional patterns. For the example of last this transformation looks as follows.

last z = case (++)-1 z of

(xs ,[x]) -> x

Thus, if we had the inverse of any function at hand, we would be able to implement functional patterns

directly without the need of a special primitive in the runtime system.

2 Goal

The goal of our research is to synthesize the inverse function for any given function in a lazy functional-

logic programming language like Curry. More specifically, for any function

f :: τ1 -> . . . -> τn -> τ

we want to obtain an inverse function

f -1 :: τ -> (τ1, . . ., τn)

that complies to the following specification.

f -1 (f x1 . . . xn) = (x1, . . ., xn)

Note that we utilize functional patterns to specify the semantics of inverse functions. In particular, inverse

functions should exhibit the same non-strict behavior as functional patterns. As a result, the implemen-

tation of (++)-1 from section 1 can serve as a specification implementation against which we can test a

synthesized inverse function, e.g., by using equivalence checking of non-deterministic operations [9] as

implemented in CurryCheck [16].

Another requirement for the synthesized inverse functions is that they should consist only of standard

code. Especially, they must not rely on functional patterns since we want to implement the latter using

the synthesized inverse functions following the transformation scheme shown in section 1. Furthermore,

using only standard code enables the application of established optimization techniques [8, 21].

298 Implementing Functional Patterns by Synthesizing Inverse Functions

3 Current Status

Our approach to synthesize inverse functions is based on the idea to swap the sides of rules. We demon-

strate this approach with the example of the synthesis of the inverse function (++)-1.

First, we recall the definition of (++).

(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

By swapping the sides of both rules we obtain the following preliminary inverse function.

(++)-1 ys = ([], ys)

(++)-1 (x:(xs++ys)) = (x:xs, ys)

We can see that swapping rule sides results in new left-hand sides that may contain not only constructors

and variables but also function symbols. That is, we may get functional patterns on the new left-hand

sides. As stated in section 2, we must not use functional patterns within the definition of our synthesized

inverse function. But we can apply the transformation sketched in section 1 to eliminate the functional

patterns. We then get the following definition, which is also the final inverse.

(++)-1 ys = ([], ys)

(++)-1 (x:z) = case (++)-1 z of

(xs,ys) -> (x:xs, ys)

Most notably, this definition complies with the specification for inverse functions from section 2.

When implementing function inversion, non-linear right-hand sides can pose a challenge. As an

example, consider the following function that appends a list to itself.

selfAppend :: [a] -> [a]

selfAppend xs = xs ++ xs

If we swap the sides of a rule with a non-linear right-hand side, the resulting rule is non-left-linear which

is not allowed in traditional functional-logic programs.

selfAppend-1 :: [a] -> [a]

selfAppend-1 z = case (++)-1 z of

(xs ,xs) -> xs

The intended meaning of multiple occurrences of a variable on the left-hand side is usually that the actual

arguments should be structurally equal [5]. Therefore, we can overcome the challenge of non-linear left-

hand sides with the strict unification.

selfAppend-1 z = case (++)-1 z of

(xs ,ys) | xs =:= ys -> xs

Another common challenge in inverse computation is the handling of variables which are not referred

to on right-hand sides. In the following definition, x is such an extra variable.

tail :: [a] -> [a]

tail (x:xs) = xs

Since extra variables can in principle take any value of their type when the function is called, the inverse

function must return any possible value of the same type. For this we can easily use free variables.

tail-1 :: [a] -> [a]

tail-1 xs = x : xs where x free

F. Teegen 299

4 Open Issues

The approach presented so far is a first step, but there are some unresolved issues. Consider the following

program that is a variant of an example that was also discussed in the context of functional patterns [6].

g :: Int -> (Int , Int) f :: Int -> Int

g 0 = (f j, j) where j free f i = 0

Most significantly, the program contains both extra variables (i in the definition of f) and non-linear

right-hand sides (there are two occurrences of j in the definition of g). For this example, we are interested

in the inverse of g. If we apply the first step of our transformation scheme to g, i.e., we swap the rule

sides, we get the following inverse.

g-1 :: (Int , Int) -> Int

g-1 (f j,j) = 0

According to the semantics of functional patterns [6], this definition of g-1 should be equivalent to the

following one.

g-1 (0,j) = 0

It is also the inverse of the following simpler definition of g, which is equivalent to the one above.

g 0 = (0, j) where j free

Normally, we would expect the inverses of two equivalent functions to also be equivalent. This is,

however, not the case for the two variants of g-1. Further applying our transformation scheme to the first

variant of g-1 leads to the following definitions.

g-1 (z,x) = case f-1 z of f-1 :: Int -> Int

y | x =:= y -> 0 f-1 0 = x where x free

Now consider the expression g-1 (0, failed). While the inverse function obtained from the simpler

definition of g correctly computes the value 0 for that expression, evaluating it fails with the more com-

plex variant of g-1 due to the strict unification. The problem arises solely from the aforementioned

combination of extra variables and non-linearity in the program. Unfortunately, we do not yet have a

solution for this problem. In this particular case, we could analyze the program, but in general it is un-

decidable at compile-time whether a variable is used or not at run-time. Note that both properties alone

do not pose a problem, only their combination does.

Another open issue is that we have not yet tackled the inversion of higher-order functions, a notorious

difficult problem. For instance, consider the infix application operator ($), which is defined as follows.

($) :: a -> (a -> b) -> b

x $ f = f x

Its inverse

($)-1 :: b -> (a, a -> b)

would have to return all value-function-pairs so that the function applied to the value would yield the

inverse’s input. Since we cannot easily guess arbitrary functions, it seems reasonable to restrict our

approach to first-order programs. In fact, functional patterns are affected by this problem as well, so the

same restriction would make sense for them too. One possible (and well-integrated) way to do this is to

introduce additional type class constraints [17].

300 Implementing Functional Patterns by Synthesizing Inverse Functions

5 Related Work

There is earlier work on function inversion in the field of declarative programming. Abramov and Glck

presented an algorithm for inverse interpretation in a first-order functional programming language re-

stricted to tail-recursion [1, 2]. The so-called Universal Resolving Algorithm (URA) is based on the

notion of perfect process trees [14]. Abramov, Glck and Klimov later extended the original URA to

general recursion and improved efficiency as well as termination by reducing the search space [3]. The

reduction of the search space was achieved by inspecting partially produced output, i.e., utilizing the

lazy evaluation of functional programming languages. Furthermore, they discussed the introduction of

an mgu-based equality operator that is very similar to the non-strict unification operator proposed earlier

in [6]. Another independent extension of the original URA was presented by Secher and Sørensen. They

improved the termination of the URA, but at the cost of its soundness [22].

Glck and Kawabe presented an approach to automatically derive the inverse of first-order functions

[13]. In the process, they used methods of LR parsing to eliminate non-determinism resulting from the

automatic program inversion. Since they aimed to obtain deterministic inverse programs in the end, they

restricted themselves to injective functions in the first place.

Total inversion is subsumed by partial inversion where a part of the inputs may be fixed. The partial

inverse of a function then computes the remaining inputs with respect to the fixed ones and a given output.

Nishida, Sakai and Sakabe proposed a partial-inversion compiler of constructor term rewriting systems

that first generates a conditional term rewriting system and then unravels it to an unconditional system

[20]. Their approach handles extra variables by applying narrowing strategies, but only covers strict

programming languages which again easily allows for non-linear right-hand sides. Almendros-Jimnez

and Vidal described another partial inversion technique—again for first-order functional programs—that

is specialized on inductively sequential functions [4]. In the same paper, they also sketched extensions

of their method to higher-order and laziness.

While most related work provide algorithms for (partial) function inversion, few publications cover

the semantics and desired properties of function inversion. For example, Brael and Christiansen de-

scribed a relational semantics for first-order-restricted Curry and also covered properties of function

inversion in a lazy functional-logic programming language [10].

6 Conclusion

We have presented our research on implementing functional patterns by deriving the inverse of a function

from its original definition in the lazy functional-logic programming language Curry. In essence, our idea

is to swap the sides of rules and to subsequently eliminate all resulting functional patterns. Because our

synthesis generates only standard code, the resulting inverses can be subject to further optimizations.

So far our approach is limited to first-order functions whose rules do not involve both extra variables

and non-linear right-hand sides. However, we think that we already cover many relevant functions this

way. For all remaining cases we can temporarily resort to the specification implementation based on

functional patterns. The consequence is that the runtime system still has to provide the non-strict unifi-

cation primitive for the time being. With methods of static analysis we could shift the boundary, but the

problem itself remains undecidable and, thus, would require additional effort at run-time. Nonetheless,

we think that being able to directly invert a relevant class of functions is a good starting point for future

research.

F. Teegen 301

References

[1] Sergei Abramov & Robert Glück (2000): The Universal Resolving Algorithm: Inverse Computation in a

Functional Language. In: Mathematics of Program Construction, MPC’00, Springer, Berlin, Heidelberg, pp.

187–212, doi:10.1007/10722010_13.

[2] Sergei Abramov & Robert Glück (2002): The Universal Resolving Algorithm and its Correctness: Inverse

Computation in a Functional Language. Science of Computer Programming 43(2), pp. 193–229, doi:10.

1016/S0167-6423(02)00023-0.

[3] Sergei Abramov, Robert Glück & Yuri Klimov (2007): An Universal Resolving Algorithm for Inverse Com-

putation of Lazy Languages. In: Proceedings of the 6th International Andrei Ershov Memorial Conference

on Perspectives of Systems Informatics, PSI’06, Springer, Berlin, Heidelberg, pp. 27–40, doi:10.1007/

978-3-540-70881-0_6.

[4] Jesús M. Almendros-Jiménez & Germán Vidal (2007): Automatic Partial Inversion of Inductively Sequential

Functions. In: Proceedings of the 18th International Conference on Implementation and Application of Func-

tional Languages, IFL’06, Springer, Berlin, Heidelberg, pp. 253–270, doi:10.1007/978-3-540-74130-5_

15.

[5] Sergio Antoy (2001): Constructor-Based Conditional Narrowing. In: Proceedings of the 3rd ACM SIG-

PLAN International Conference on Principles and Practice of Declarative Programming, PPDP01, Associa-

tion for Computing Machinery, New York, NY, USA, pp. 199–206, doi:10.1145/773184.773205.

[6] Sergio Antoy & Michael Hanus (2006): Declarative Programming with Function Patterns. In: Proceedings

of the 15th International Conference on Logic-Based Program Synthesis and Transformation, LOPSTR’05,

Springer, Berlin, Heidelberg, pp. 6–22, doi:10.1007/11680093_2.

[7] Sergio Antoy & Michael Hanus (2010): Functional Logic Programming. Communications of the ACM

53(4), pp. 74–85, doi:10.1145/1721654.1721675.

[8] Sergio Antoy & Michael Hanus (2017): Eliminating Irrelevant Non-determinism in Functional Logic Pro-

grams. In: Practical Aspects of Declarative Languages, PADL’17, Springer, Cham, pp. 1–18, doi:10.1007/

978-3-319-51676-9_1.

[9] Sergio Antoy & Michael Hanus (2018): Equivalence Checking of Non-deterministic Operations. In: Pro-

ceedings of the 14th International Symposium on Functional and Logic Programming, FLOPS’18, Springer,

Cham, pp. 149–165, doi:10.1007/978-3-319-90686-7_10.

[10] Bernd Braßel & Jan Christiansen (2008): A Relation Algebraic Semantics for a Lazy Functional Logic Lan-

guage. In: Relations and Kleene Algebra in Computer Science, RelMiCS’08, Springer, Berlin, Heidelberg,

pp. 37–53, doi:10.1007/978-3-540-78913-0_5.

[11] Jan Christiansen & Sebastian Fischer (2008): EasyCheck – Test Data for Free. In: Proceedings of the 9th

International Symposium on Functional and Logic Programming, FLOPS’08, Springer, Berlin, Heidelberg,

pp. 322–336, doi:10.1007/978-3-540-78969-7_23.

[12] Sandra Dylus, Jan Christiansen & Finn Teegen (2020): Implementing a Library for Probabilistic Program-

ming Using Non-strict Non-determinism. Theory and Practice of Logic Programming 20(1), pp. 147–175,

doi:10.1017/S1471068419000085.

[13] Robert Glück & Masahiko Kawabe (2004): Derivation of Deterministic Inverse Programs Based on LR

Parsing. In: Functional and Logic Programming, FLOPS’04, Springer, Berlin, Heidelberg, pp. 291–306,

doi:10.1007/978-3-540-24754-8_21.

[14] Robert Glück & Andrei V. Klimov (1993): Occam’s Razor in Metacomputation: the Notion of a Perfect

Process Tree. In Patrick Cousot, Moreno Falaschi, Gilberto Filé & Antoine Rauzy, editors: Static Analysis,

Springer, Berlin, Heidelberg, pp. 112–123, doi:10.1007/3-540-57264-3_34.

[15] Juan Carlos González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas & M. Rodrı́guez-Artalejo (1999):

An approach to declarative programming based on a rewriting logic. Journal of Logic Programming 40, pp.

47–87, doi:10.1016/S0743-1066(98)10029-8.

http://dx.doi.org/10.1007/10722010_13
http://dx.doi.org/10.1016/S0167-6423(02)00023-0
http://dx.doi.org/10.1016/S0167-6423(02)00023-0
http://dx.doi.org/10.1007/978-3-540-70881-0_6
http://dx.doi.org/10.1007/978-3-540-70881-0_6
http://dx.doi.org/10.1007/978-3-540-74130-5_15
http://dx.doi.org/10.1007/978-3-540-74130-5_15
http://dx.doi.org/10.1145/773184.773205
http://dx.doi.org/10.1007/11680093_2
http://dx.doi.org/10.1145/1721654.1721675
http://dx.doi.org/10.1007/978-3-319-51676-9_1
http://dx.doi.org/10.1007/978-3-319-51676-9_1
http://dx.doi.org/10.1007/978-3-319-90686-7_10
http://dx.doi.org/10.1007/978-3-540-78913-0_5
http://dx.doi.org/10.1007/978-3-540-78969-7_23
http://dx.doi.org/10.1017/S1471068419000085
http://dx.doi.org/10.1007/978-3-540-24754-8_21
http://dx.doi.org/10.1007/3-540-57264-3_34
http://dx.doi.org/10.1016/S0743-1066(98)10029-8

302 Implementing Functional Patterns by Synthesizing Inverse Functions

[16] Michael Hanus (2017): CurryCheck: Checking Properties of Curry Programs. In: Proceedings of the 26th

International Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR’16, Springer,

Cham, pp. 222–239, doi:10.1007/978-3-319-63139-4_13.

[17] Michael Hanus & Finn Teegen (2020): Adding Data to Curry. In: Declarative Programming and Knowledge

Management, Springer, Cham, pp. 230–246, doi:10.1007/978-3-030-46714-2_15.

[18] Michael Hanus (ed.) (2016): Curry: An Integrated Functional Logic Language (Vers. 0.9.0). Available at

http://www.curry-lang.org.

[19] Francisco López-Fraguas & Jaime Sánchez-Hernández (1999): TOY: A Multiparadigm Declarative System.

In: Rewriting Techniques and Applications, RTA’99, Springer, Berlin, Heidelberg, pp. 244–247, doi:10.

1007/3-540-48685-2_19.

[20] Naoki Nishida, Masahiko Sakai & Toshiki Sakabe (2005): Partial Inversion of Constructor Term Rewriting

Systems. In: Proceedings of the 16th International Conference on Term Rewriting and Applications, RTA’05,

Springer, Berlin, Heidelberg, pp. 264–278, doi:10.1007/978-3-540-32033-3_20.

[21] Björn Peemöller (2016): Normalization and Partial Evaluation of Functional Logic Programs. Ph.D. thesis,

Kiel University. Available at https://macau.uni-kiel.de/receive/diss_mods_00021156.

[22] Jens Peter Secher & Morten Heine Sørensen (2002): From Checking to Inference via Driving and Dag

Grammars. In: Proceedings of the 2002 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-

based Program Manipulation, PEPM’02, ACM, New York, NY, USA, pp. 41–51, doi:10.1145/509799.

503036.

http://dx.doi.org/10.1007/978-3-319-63139-4_13
http://dx.doi.org/10.1007/978-3-030-46714-2_15
http://www.curry-lang.org
http://dx.doi.org/10.1007/3-540-48685-2_19
http://dx.doi.org/10.1007/3-540-48685-2_19
http://dx.doi.org/10.1007/978-3-540-32033-3_20
https://macau.uni-kiel.de/receive/diss_mods_00021156
http://dx.doi.org/10.1145/509799.503036
http://dx.doi.org/10.1145/509799.503036

	1 Introduction
	2 Goal
	3 Current Status
	4 Open Issues
	5 Related Work
	6 Conclusion

