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Hybrid Answer Set Programming (Hybrid ASP) is an extension of Answer Set Programming (ASP)

that allows ASP-like rules to interact with outside sources. The Splitting Set Theorem is an important

and extensively used result for ASP. The paper introduces the Splitting Set Theorem for Hybrid ASP,

which is for Hybrid ASP the equivalent of the Splitting Set Theorem, and shows how it can be applied

to simplify computing answer sets for Hybrid ASP programs most relevant for practical applications.

An important result for logic programs is the Splitting Set Theorem [12], which shows how comput-

ing an answer set for a program can be broken into several tasks of the same kind for smaller programs.

The theorem and its more general variant the Splitting Sequence Theorem are extensively used for prov-

ing other theorems, for instance in [1], [9] or [3] among many others. Hybrid Answer Set Programming

(Hybrid ASP) [4] is an extension of ASP that allows ASP-like rules to interact with outside sources,

which makes Hybrid ASP well suited for practical applications. For instance, recently Hybrid ASP has

been used in a system for diagnosing failures of data processing pipelines at Google Inc [8]. The theory

of Hybrid ASP, however is not extensively developed. This paper introduces the Splitting Set Theorem

for Hybrid ASP and the Splitting Sequence Theorem for Hybrid ASP, which are the equivalents for Hy-

brid ASP of the similarly named results for ASP, thus making a small step towards developing the theory

of Hybrid ASP. The author hopes that the new theorems will have many future applications, in the way

analogous to the original Splitting Set Theorem and Splitting Sequence Theorem. The potential of the

new theorems to be useful in the future, and the significance of the new results is demonstrated by using

them to simplify computation of answer sets for the types of Hybrid ASP programs most relevant for

practical applications, i.e. those applications that have answer sets with states having times of the form

k ·∆t, such as the programs that result from translating descriptions in action languages Hybrid AL [7]

and Hybrid ALE [2], or such as the programs used in other applications of Hybrid ASP [6], [5].

The paper is structured as follows. The first section reviews ASP, The Splitting Set Theorem and

Hybrid ASP. The paper then presents The Splitting Set Theorem for Hybrid ASP and The Splitting Se-

quence Theorem for Hybrid ASP. The following section presents an algorithm that simplifies computing

answer sets for Hybrid ASP. Finally a short conclusion follows.

1 Review of the Splitting Set Theorem and Hybrid ASP

We will begin with a brief review of ASP. Let At be a nonempty set of symbols called atoms. A block is

an expression of the form

b1, ...,bk, not bk+1, ..., not bk+m (1)

where b1, ..., bk+m are atoms. For a block B as above, let the set of atoms of B be defined as At (B) ≡
{b1, ..., bk+m}. B+ ≡ b1, ..., bk is called the positive part of B, and B− ≡ not bk+1, ..., not bk+m is

called the negative part of B. A set operation applied to a block B will indicate the same set operation

applied to At (B) with the block being reconstructed from the result of the set operation. For instance

b1, b2, not b3, b4 \ {b1, b4} will indicate a block b2, not b3.
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A normal propositional logic programming rule is an expression of the form

r ≡ a : − B (2)

where a is an atom and B is a block. We define the head of r as head (r)≡ a, and we define the body of

r as body(r)≡ B. We define At (r)≡ {a}∪At (B).

Given any set M ⊆ At and a block B, we say that M satisfies B, written M |= B, if At (B+) ⊆ M and

At (B−)∩M = /0. For a rule r, we say that M satisfies r, written M |= r, if whenever M satisfies the body

of r, then M satisfies the head of r. A normal logic program P is a set of rules. We say that M ⊆ At is a

model of P, written M |= P, if M satisfies every rule of P.

A Horn rule is the rule with the empty negative part. A Horn program P is a set of Horn rules.

Each Horn program P has a least model under inclusion, LMP, which can be defined using the one-step

provability operator T [P] as follows. For any set A, let P (A) denote the set of all subsets of A. The one-

step provability operator T [P] : P (At)→P (At) associated with the Horn program P [10] is defined by

setting

T [P] (M) = M∪{a : ∃r ∈ P (a = head(r)∧M |= body(r))}

for any M ∈P (At). We define T [P]n (M) by induction by setting T [P]0 (M)=M, T [P]1 (M)= T [P] (M)
and T [P]n+1 (M) = T [P] (T [P]n (M)). Then the least model LMP can be computed as

LMP =
⋃

n≥0 T [P]n ( /0).

If P is a normal logic program and M ⊆ At, then the Gelfond-Lifschitz (GL) reduct of P with respect

to M [11] is the Horn program PM which results by eliminating those rules r such that M 6|= body(r)−

and replacing other rules r by head (r) : −body(r)+. We then say that M is a stable model for P if M

equals the least model of PM.

An answer set programming rule is an expression of the form (2) where a,b1, . . . ,bk+m are classical

literals, i.e., either positive atoms or atoms preceded by the classical negation sign ¬. The set of literals

of At will be denoted LitAt . Answer sets are defined in analogy to stable models, but taking into account

that atoms may be preceded by classical negation and that atoms a and classically negated atoms ¬a are

mutually exclusive in answer sets.

We will now follow [12] in review of the Splitting Set Theorem and the Splitting Sequence Theorem.

A splitting set for a program P is any set U ⊆ At such that for every rule r ∈ P if head (r) ∈ U then

At (r) ⊆U . The set of rules r ∈ P such that At (r) ⊆ U is called the bottom of P relative to the splitting

set U and is denoted by bU (P). The set P\bU (P) is the top of P relative to U .

Consider X ⊆At. For each rule r ∈ P such that At(body(r)+)∩U ⊆ X and At(body(r)−)∩U ∩X = /0

take the rule r′ defined by

head (r) : − body(r) \U

The program consisting of all rules r′ obtained in this way will be denoted by εU (P,X).

A solution to P with respect to U is a pair (X ,Y ) of sets of literals such that

• X is an answer set for bU (P)

• Y is an answer set for εU (P \ bU (P) , X)

• X ∪Y is consistent (a set is consistent if for any atom a it does not contain both a and classically

negated atom −a)
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Splitting Set Theorem. Let U be a splitting set for a program P. A set A of literals is a consistent

answer set for P if and only if A = X ∪Y for some solution (X ,Y ) to P with respect to U.

We will now review extending the definition of a splitting set to a splitting sequence. A sequence is

a family whose index set is an initial segment of ordinals, {α : α < µ}. The ordinal µ is the length of

the sequence. A sequence 〈Uα〉α<µ of sets is monotone if Uα ⊂Uβ whenever α < β , and continuous if,

for each limit ordinal α < µ , Uα =
⋃

β<α

Uβ .

A splitting sequence for a program P is a monotone, continuous sequence 〈Uα〉α<µ of splitting sets

for P such that
⋃

α<µ

Uα = LitAt . The definition of a solution with respect to a splitting set is extended to

splitting sequence as follows. A solution to P with respect to 〈Uα〉α<µ is a sequence 〈Xα〉α<µ of sets of

literals such that

• X0 is an answer set for bU0
(P),

• for any α such that α +1 < µ , Xα+1 is an answer set for εUα (bUα+1
(P)\bUα (P) ,

⋃

β≤α

Xβ ),

• for any limit ordinal α < µ , Xα = /0,

•
⋃

α<µ

Xα is consistent.

Splitting Sequence Theorem. Let U ≡ 〈Uα〉α<µ be a splitting sequence for a program P. A set A

of literals is a consistent answer set for P if and only if A =
⋃

α<µ

Xα for some solution 〈Xα〉α<µ to P with

respect to U.

We will now proceed with the review of Hybrid ASP. A Hybrid ASP program P has an underlying

parameter space S. Elements of S are of the form p = (t,x1, . . . ,xl) where t is time and xi are arbitrary

parameter values. We shall let t(p) denote t and xi(p) denote xi for i = 1, . . . , l. We refer to the elements

of S as generalized positions. Let At be a set of atoms of P. Then the universe of P is At ×S. Let B be a

block. We will define

B×p ≡ {(x,p) : x ∈ B}.

If M ⊆ At ×S, we let GP(M) = {p ∈ S : (∃a ∈ At)((a,p) ∈ M)}. Given an initial condition, defined

as a subset I ⊆ S let GPI (M) = GP(M)∪ I. Given M ⊆ At × S and p ∈ S, we say that M and initial

condition I satisfy a block B of the form (1) at the generalized position p, written M |=I (B,p), if the

following holds:

• if B+ 6= /0 then B+×p ⊆ M and B−×p∩M = /0

• if B+ = /0 then B−×p∩M = /0 and p ∈ GPI (M).

We say that M satisfies a n-tuple of blocks written as B1; ...; Bn with the initial condition I at the

n-tuple of generalized positions (p1, ..., pn), written M |=I (B1; ...;Bn, (p1, ...,pn)), if M |=I (Bi,pi) for

i = 1, ...,n.

There are two types of rules in Hybrid ASP. Advancing rules are of the form

r ≡ a : −B1;B2; . . . ;Bn : A,O (3)
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where A is a function returning a set of generalized positions, body(r)≡B1, ..., Bn are blocks, head (r)≡
a is a literal, and O is a subset of Sn such that if (p1, . . . ,pn)∈O, then t(p1)< · · ·< t(pn) and A(p1, . . . ,pn)
(A applied to p1, . . . ,pn) is a subset of S such that for all q ∈ A(p1, . . . ,pn), t(q)> t(pn). Here and in the

next rule, we allow blocks to be empty for any i. O is called the constraint set of the rule r and will be

denoted by CS(r). A is called the advancing algorithm of the rule r and is denoted by Adv(r). The arity

of rule r, N (r), is equal to n.

The idea is that if (p1, . . . ,pn)∈ O and for each i, Bi is satisfied at the generalized position pi, then the

function A can be applied to (p1, . . . ,pn) to produce a set of generalized positions O′ such that if q ∈ O′,

then t(q)> t(pn) and (a,q) holds. Thus advancing rules are like input-output devices in that the function

A allows the user to derive possible successor generalized positions as well as certain atoms a which are

to hold at such positions. The advancing algorithm A can access outside sources quite arbitrarily in that

it may involve functions for solving differential or integral equations, solving a set of linear equations or

linear programming equations, solving an optimization problem, etc. (as for example in [5]).

Stationary rules are of the form

r ≡ a : −B1;B2; . . . ;Bn : H,O (4)

where body(r)≡B1, ...,Bn are blocks, head (r)≡ a is a literal, H is called a boolean algorithm of the rule

r and will be denoted by Bool (r), and O ⊆ Sk is the constraint set of the rule r denoted CS(r). A boolean

algorithm is a function returning either true or false. We will sometimes treat a boolean algorithm of the

rule as a set. For instance H ∩O will indicate all the n-tuples of generalized positions (p1, . . . ,pn) such

that H (p1, . . . ,pn) is true and (p1, . . . ,pn) ∈ O. The arity of rule r, N (r), is equal to n.

Stationary rules are much like normal logic programming rules in that they allow us to derive new

atoms at a given generalized position pn. The idea is that if (p1, . . . ,pn) ∈ O∩H and for each i, Bi is

satisfied at the generalized position pi, then (a,pn) holds. The difference is that a derivation with our

stationary rules can depend on what happens in the multiple past time points and the boolean algorithm

H can be any sort of a function which returns either true or false.

For an advancing rule or a stationary rule r as above we define the positive part of the body of r,

denoted body(r)+ ≡ B+
1 ; ...;B+

n and we define the negative part of the body of r, denoted body(r)− ≡
B−

1 ; ...;B−
n . For the rest of the paper, we denote by n the arity of a hybrid ASP rule when the rule is clear

from the context.

A Hybrid ASP program P is a collection of Hybrid ASP advancing and stationary rules. To define

the notion of a stable model of P, we first must define the notion of a Hybrid ASP Horn program and the

one-step provability operator for Hybrid ASP Horn programs.

A Hybrid ASP Horn program is a Hybrid ASP program which does not contain any negated atoms.

Let P be a Horn Hybrid ASP program and I ⊆ S be an initial condition. Then the one-step provability

operator T [P, I] is defined so that given M ⊆ At ×S, T [P, I] (M) consists of M together with the set of all

(a,J) ∈ At ×S such that

1. there exists a stationary rule r and (p1, . . . ,pn) ∈ CS(r) ∩ Bool (r) ∩ (GPI(M))n
such that

(head (r) ,J) = (a,pn) and M |= (body(r) , (p1, ...,pn)) or

2. there exists an advancing rule r and (p1, . . . ,pn) ∈ CS(r) ∩ (GPI(M))n
such that

J ∈ Adv(r) (p1, . . . ,pn) and M |= (body(r) , (p1, ...,pn)) and a = head (r).

The stable model semantics for Hybrid ASP programs is defined as follows. Let M ⊆ At×S and I be

an initial condition in S. An Hybrid ASP rule r ≡ a : −B1; . . . ,Bn : A,O is inapplicable for (M, I) if for all
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(p1, . . . ,pn)∈O∩(GPI(M))n
, either (i) there is an i such that M 6|=(B−

i ,pi), (ii) A(p1, . . . ,pn)∩GPI(M)=
/0 if A is an advancing algorithm, or (iii) A(p1, . . . ,pn) = 0 if A is a boolean algorithm.

If r is not inapplicable for (M, I) then we define the GL reduct of r over M and I, denoted by rM,I as

follows:

1. If r is an advancing rule r ≡ a : −B1; ...;Bn : A,O then rM,I ≡ B+
1 ; . . . ,B+

n : AM,I ,OM,I where OM,I

is equal to the set of (p1, . . . ,pn) in O∩ (GPI(M))n
such that M |=I (body(r)− , (p1, . . . ,pn)) and

A(p1, . . . ,pn)∩GPI(M) 6= /0, and AM,I(p1, . . . ,pn)≡ A(p1, . . . ,pn)∩GPI(M).

2. If r is a stationary rule r ≡ a : −B1; ...;Bn : A,O then rM,I ≡ a : −B+
1 ; . . . ,B+

n : H|OM,I ,OM,I where

OM,I is equal to the set of all (p1, . . . ,pn) in O ∩ (GPI(M))n
such that

M |=I (body(r)− , (p1, . . . ,pn)) and H(p1, . . . ,pn) is true.

One note to make about the definition above is that GL reduct cannot derive generalized positions

that are not in GPI (M). This is because the range of AM,I in the definition is restricted to GPI(M).
We form a GL reduct of P over M and I, PM,I as follows.

1. Eliminate all rules which are inapplicable for (M, I).

2. If a rule r ∈ P is not eliminated in step 1, then replace it by the rule rM,I .

We then say that M is a stable model of P with initial condition I if

∞
⋃

k=0

T
[

PM,I , I
]k
( /0) = M.

Answer sets are defined in analogy to stable models, but taking into account that atoms may be

preceded by classical negation and that (a,p) and (−a,p) are mutually exclusive in answer sets.

2 The Splitting Set Theorem for Hybrid ASP

We will now introduce additional notation that will be used throughout the rest of the paper.

Without loss of generality assume that all advancing rules are of the form

a : −B1; ...; Bn : O,A

and all of stationary rules are of the form

a : −B1; ...; Bn : O,H

where a is a literal, B1, ..., Bn are blocks, O is a constraint set, A is an advancing algorithm, and H is a

boolean algorithm.

Let M be a set of literals and generalized position pairs, and let p be a generalized position. Define

M|p ≡ {(a,q) ∈ M : q = p}

At (M)≡ {a : (a,p) ∈ M}

Let U ⊆ LitAt ×S. We say that U is a splitting set of P with initial condition (w.i.c.) J if for all r ∈ P

1. if r is advancing and (p1, ..., pn) ∈ CS(r) and p ∈ Adv(r)(p1, ..., pn) and (a,p) ∈ U then both

for i = 1, ...,n, Bi ×pi ⊆U and {p1, ..., pn} ⊆ GPJ (U).
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2. if r is stationary and (p1, ..., pn) ∈ CS(r) and (a,pn) ∈ U then both for i = 1, ...,n, Bi ×pi ⊆ U

and {p1, ..., pn} ⊆ GPJ (U).

As in the case of the original splitting set theorem [12] the splitting set U acts to split Hybrid ASP

program P into the part that can derive U or one of its subsets, and the remaining part of P, which can

derive At ×S\U or one of its subsets. The difference, however, is that for a given rule the conclusion of

the rule may be in U for some n-tuples of generalized positions (p1, ..., pn) and not for others. So, the

splitting set splits not only the program, but the rules themselves. This will be elaborated below.

As in the case of the original splitting set theorem we identify by bU (P) a set of new rules that capture

the rules and generalized positions that may contribute to generating U .

Define Rulesb (U,P) as

{ r ∈ P : if r is advancing and there exists (p1, ..., pn) ∈CS(r)

and p ∈ Adv(r) (p1, ..., pn) such that (a,p) ∈U

if r is stationary and there exists (p1, ..., pn) ∈CS(r)∩Bool (r)

such that (a,pn) ∈U }

In other words, Rulesb (U,P) is the set of all rules of P that could contribute to U for some tuple of

generalized positions.

For an advancing rule r let

CSb (U,r) ≡ { (p1, ..., pn) ∈CS(r) :

there exists p ∈ Adv(r) (p1, ..., pn) such that (a,p) ∈U }

For a stationary rule r let

CSb (U,r) ≡ { (p1, ..., pn) ∈CS(r)∩Bool (r) : (a,pn) ∈U }

That is CSb (U,r) are all the generalized position tuples for which r could contribute to U .

For an advancing rule r ∈ Rulesb (U,P) define Advb (U,r) by

Advb (U,r) (p1, ..., pn)≡ { p : p ∈ Adv(r) (p1, ..., pn)

such that (a,p) ∈U if (p1, ..., pn) ∈CSb (U,r) }

Advb (U,r) is an advancing algorithm that for any tuple of generalized positions will only generate

those p that contribute to U .

For an advancing rule r let

bU (r)≡ head (r) : − body(r) : CSb (U,r) , Advb (U,r)

For a stationary rule r let

bU (r)≡ head (r) : − body(r) : CSb (U,r) , Bool (r)

Define the bottom of P with respect to U , bU (P) as

bU (P)≡ { bU (r) : r ∈ Rulesb (U,P) }
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The idea is that just like in [12], bU (P) forms only those rules that could contribute to U , and so X will

be an answer set of bU (P) w.i.c. J iff M∩U = X for some answer set M of P w.i.c. J.

We will now proceed to define εU (P,X) with the understanding that the same rule may contribute to

U for some generalized position tuples and contribute to LitAt ×S \U for others.

First, we need to identify remainder Rem(U,P) of Rulesb (U,P) not captured by bU (P). That is

we need to identify the parts contributing to the complement of U of those rules that have other parts

contributing to U . This is due to an important difference between Hybrid ASP and ASP. In ASP a rule

contributes a single conclusion. Thus if ASP rule contributes to the splitting set then it must be in the

bottom of the program. In Hybrid ASP, however, a rule acts more like a collection of rules contributing

different conclusions for different generalized position tuples. Consequently, the parts of the rules that

contribute to the complement of the splitting set need to be separated from those that contribute to the

splitting set itself. We will now proceed with the definition.

For an advancing rule r define

CSRem (U,r) ≡ { (p1, ..., pn) ∈CS(r) :

there exists p ∈ Adv(r) (p1, ..., pn) (a,p) /∈U }

For a stationary r define

CSRem (U,r) ≡ { (p1, ..., pn) ∈CS(r)∩Bool (r) : (a,pn) /∈U }

That is, CSRem (U,r) contains those generalized position tuples such that for them the rule r con-

tributes to the complement of U .

For an advancing rule r ∈ Rulesb (U,P) and (p1, ..., pn) define

AdvRem(U,r)(p1, ..., pn)≡







{p : p ∈ Adv(r)(p1, ..., pn) s.t. (a,p) /∈U }
if (p1, ..., pn) ∈CSRem (U,r)

/0 if (p1, ..., pn) /∈CSRem(U,r)

That is AdvRem(U,r) is a restriction of Adv(r) to those generalized positions such that for them r

contributes to the complement of U .

When CSRem (U,r) 6= /0 define

Rem(U,r) ≡

{

head (r) : − body(r) : CSRem (U,r) , AdvRem (U,r) if r is advancing

head (r) : − body(r) : CSRem (U,r) , Bool (r) if r is stationary

In other words, Rem(U,r) is the part of r that contributes to the complement of U .

Define

Rem(U,P)≡ { Rem(U,r) : r ∈ Rulesb (U,P) and CSRem (U,r) 6= /0 }

That is Rem(U,P) contain those parts of the rules in Rulesb (U,P) that contribute to the complement

of U .

Let X ⊆U . For a rule r define

CSε (U,r,X)≡ { (p1, ..., pn) ∈CS(r) :
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for i = 1, ..., n {B+
i ×pi}∩U ⊆ X and {B−

i ×pi}∩X = /0 }

That is CSε (U,r,X) is the set of those generalized position tuples such that for them the ”projection”

of body(r) onto U is satisfied by X .

Finally

εU (P,X)≡ {

r′ ≡ a : − B1\At (U |p1
) ; ...; Bn\At (U |pn

) : {(p1, ..., pn)}, Q |

r ≡ a : − B1; ...; Bn : O,Q ∈ { r ∈ P : CS(εU ,r,X) 6= /0 } and

(p1, ..., pn) ∈CSε (U,r,X) }

In other words, for every rule r ∈P such thatCS(εU ,r,X) 6= /0 and for every (p1, ..., pn)∈CSε (U,r,X)
where the ”projection” of body(r) onto U is satisfied by X at (p1, ..., pn), we add to εU (P,X) a rule r′,

which is a part of rule r that will be active only for that (p1, ..., pn) with the ”projection” part removed.

Theorem 1. (The Splitting Set Theorem for Hybrid ASP). Let P be a Hybrid ASP program over

LitAt × S. Let U ⊆ LitAt × S be a splitting set of P w.i.c. J ⊆ S. A set M is a answer set of P w.i.c.

J iff X ≡ M ∩U is a answer set of bU (P) w.i.c. J and M\U is a answer set of εU(P\Rulesb (U,P)∪
Rem(U,P) , X) w.i.c. GPJ (X).

Sketch of a proof. We first prove that if M is an answer set of P w.i.c. J then X ≡ M∩U is an answer

set of bU (P) w.i.c. J. That is, we want to show that X =
∞
⋃

k=0

T
[

bU (P)X ,J ,J
]k

( /0). In ⊇ direction we show

by induction on k in one-step provability operator T
[

bU (P)X ,J ,J
]k

that if a rule bU (r)X ,J
in bU (P)X ,J

derives (a,p) in T
[

bU (P)X ,J ,J
]k+1

( /0), then the rule rM,J must derive (a,p) in T
[

PM,J ,J
]m+1

( /0) for

some m. In ⊆ direction we show by induction on k in T
[

PM,J ,J
]k
( /0) that if rM,J derives (a,p) in

T
[

PM,J ,J
]k+1

( /0) where (a,p) ∈U , then bU (r)X ,J
derives (a,p) in T

[

bU (P)X ,J ,J
]m+1

( /0) for some m.

We then proceed to prove that if M is an answer set of P w.i.c. J, and Y ≡ M\U then Y is an answer

set of Q ≡ εU(P\Rulesb (U,P)∪Rem(U,P) ,X) w.i.c. L ≡ GPJ (X). That is, we want to show that Y =
∞
⋃

k=0

T
[

QY,L,L
]k
( /0). In ⊇ direction we prove by induction that if rY,L derives (a,p) in T

[

QY,L,L
]k+1

( /0)

then there is a corresponding rule qM,J in PM,J that derives (a,p) in T
[

PM,J ,J
]m+1

( /0) for some m. In

⊆ direction we prove by induction on k in T
[

PM,J,J
]k
( /0) that if qM,J derives (a,p) in T

[

PM,J,J
]k+1

( /0)

where (a,p) ∈ M\U then there is a corresponding r in QY,L that derives (a,p) in T
[

QY,L,L
]m+1

( /0) for

some m.

To finish the proof we need to show that if X ⊆U is an answer set of bU (P) w.i.c. J and Y ⊆UC is

an answer set of Q w.i.c. L then M ≡ X ∪Y is an answer set of P w.i.c. J. That is we want to show that

M =
∞
⋃

k=0

T
[

PM,J ,J
]k
( /0). We do so by induction in both directions in a manner similar to the previous

part of the proof. �

Similar to the Splitting Sequence Theorem of [12] we also prove the Splitting Sequence Theorem for

Hybrid ASP.
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Theorem 2. (The Splitting Sequence Theorem for Hybrid ASP). Let 〈Uα〉α<µ be a monotone con-

tinuous sequence of splitting sets for a Hybrid ASP program P over At × S w.i.c. J ⊆ S, and
⋃

α<µ

Uα =

LitAt ×S. M is an answer set of P w.i.c. J iff M =
⋃

α<µ

Xα for a sequence 〈Xα〉α<µ s.t.

• X0 is an answer set of bU0
(P) w.i.c. J

• for any α such that α +1 < µ Xα+1 is an answer set for

εUα (bUα+1
(P) \Rulesb(Uα ,bUα+1

(P))∪Rem(Uα ,bUα+1
(P)),

⋃

β≤α

Xβ )w.i.c. Lα ≡GPJ(
⋃

β≤α

Xβ ) and

Xα+1 = M∩ (Uα+1\Uα) and
⋃

β≤α

Xβ is an answer set of bUα (P) w.i.c. J.

The proof proceeds by the induction on α and is a direct application of The Splitting Set Theorem

for Hybrid ASP.

In the Splitting Sequence Theorem for Hybrid ASP, bUα+1
(P) is a program that derives

⋃

β≤α+1

Xβ as

its answer set w.i.c. J. Now,
⋃

β≤α+1

Xβ ⊆
⋃

β≤α+1

Uβ . So, to derive Xα+1 (i.e. the subset of
⋃

β≤α+1

Xβ that

is in Uα+1\Uα ) we need to remove from bUα+1
(P) the rules that derive

⋃

β≤α

Xβ . That is accomplished

by subtracting from bUα+1
(P) the rules Rulesb(Uα ,bUα+1

(P)). Nevertheless, this subtracts too much as

some of the rules in Rulesb(Uα ,bUα+1
(P)) contribute to Xα+1 for some generalized position tuples. The

parts of those rules that contribute to Xα+1 are Rem(Uα ,bUα+1
(P)), which we then add back. Applying

εUα operator to the resulting program (i.e. bUα+1
(P) \ Rulesb(Uα ,bUα+1

(P))∪Rem(Uα ,bUα+1
(P))) then

removes the ”useless” part of the rules with respect to
⋃

β≤α

Xβ .

3 An Application: Computing Answer Sets of Hybrid ASP Programs

One of the applications of the Splitting Sequence Theorem for Hybrid ASP is proving the correctness

of a certain algorithm for computing answer sets of certain types of Hybrid ASP programs. We will

consider only the programs where the set of generalized positions S is such that if p ∈ S then t (p) = k ·∆t

where k ∈ N, and for any advancing rule r of any arity n, for any (p1, ..., pn) ∈ Sn we have that for all

q ∈Adv(r) (p1, ..., pn), t (q) = t (pn)+∆t. That is, these are the programs with generalized positions

with discrete times of the form k∆t, and whenever an advancing algorithm produces a new generalized

position, that generalized position has time larger by ∆t than the largest time in the input arguments. All

applications of Hybrid ASP known to the author are restricted to such programs. This is the case for

using Hybrid ASP to diagnose failure of data processing pipelines, as described in [2] and [8]. It is the

case for the Hybrid ASP programs that are the result of translation from action languages Hybrid AL [7]

and Hybrid ALE [2]. It is also the case for using Hybrid ASP to compute optimal finite horizon policies

in dynamic domains [5].

The algorithm.

We will first describe the algorithm informally. We will use some of the new notation which will

be defined further below. The algorithm is based on the observation that in Hybrid ASP the facts in
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the ”future” cannot affect the facts in the ”past”. That is for any two generalized position p and q, if

t (p) < t (q) then the state at q cannot be used to derive the state at p (but the state at p can be used to

derive the state at q). Consequently, it should be possible to first derive the states at some minimal time

tmin, then derive the states at the time tmin +∆t, then derive the states at time tmin +2∆t and so on.

Without the loss of generality, we will assume that for any initial condition J ⊆ S, there exists p ∈ J

such that t (p) = 0. Let P be a Hybrid ASP program over LitAt ×S. Let J ⊆ S be an initial condition. The

algorithm will be defined inductively. Suppose the set N of all the (literal, generalized position) pairs for

the generalized positions with time up to k ·∆t is derived by the algorithm for some k. The algorithm will

first identify all the advancing rules RulesAdv (P,N,k∆t) that could derive generalized positions with time

(k+1) ·∆t. These are the advancing rules r such that N satisfies their body for some (p1, ..., pn)∈CS(r),
where n = arity(r) and the time of pn is k ·∆t. The set of the ”next” generalized positions (i.e. the set of

generalized positions with time (k+1) ·∆t) is derived by choosing a subset of the set of all the generalized

positions derived by these rules. To formally define such a choice of a subset we introduce a concept of

an advancing selector F , which is a function s.t. for M ⊆ LitAt ×S and Z ⊆ S, F (M,Z) is a subset of Z.

We will denote the set of ”next” generalized positions derived in this manner by NextGP(P,F,N,k∆t).
Now, for every ”next” generalized position q in NextGP(P,F,N,k∆t) derived by an advancing rule

r ∈ RulesAdv (P,N,k∆t), it must be that (head (r) , q) is derived. So, for every q there is a set of literals

that will be derived at q by the advancing rules in RulesAdv (P,N,k∆t). This set of literals will be denoted

by HeadAdv(P,N,q).
Next we turn our attention to the role of the stationary rules in deriving hybrid state at a ”next”

generalized position q. There is a set of stationary rules that can contribute to the hybrid state at q. If

such a stationary rule r has n blocks, then the first n− 1 blocks are satisfied by N (at some generalized

positions p1, ..., pn−1) and (p1, ..., pn−1, q) are in CS(r)∩Bool (r). Thus, only the last block, which

we will denote by Bn needs to be evaluated at q. Thus, the relevant part of such a stationary rule r is a

regular ASP rule of the form head (r) : −Bn. All such regular ASP rules applicable at q will be denoted

by RedApp(P, N, q). A state at q is then an answer set of a regular ASP program RedApp(P, N, q)∪{[h :

−] : h ∈ HeadAdv(P,N,q)}. To formally define such a choice we will use a concept of a stationary

selector D, which we will define further below.

We will now define the algorithm formally.

For a set N ⊆ LitAt ×S and generalized positions p and q, let

RulesAdv (P,N,k∆t)≡ {r ∈ P : r is an advancing rule and there is

(p1, ..., pn) ∈ GPJ (N)n ∩CS(r) with t (pn) = k ·∆t and N |=J (body(r) , (p1, ..., pn)}

Let p1, ..., pn ∈ GPJ (N). We define the set of advancing rules active at p1, ..., pn relative to N as

RulesAdv(P, N, (p1, ..., pn))≡ {r ∈ RulesAdv (P, N, t (pn)) : (p1, ..., pn) ∈CS(r)}.

That is, RulesAdv(P, N, (p1, ..., pn)) is the set of the advancing rules whose body is satisfied by N at

(p1, ..., pn) and (p1, ..., pn) ∈CS(r).
We define the set of ”next” generalized positions at p1, ..., pn relative to N as

NextGP(P,N, (p1, ..., pn))≡
⋃

r∈RulesAdv(P, N, (p1, ..., pn))

Adv(r) (p1, ..., pn).

That is NextGP(P,N, (p1, ..., pn)) is the set of ”next” generalized positions generated by any advancing

rule active at p1, ..., pn relative to N.
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For a time k ·∆t, we define the set of all the ”next” generalized positions relative to N, k ·∆t and an

advancing selector F as

NextGP(P,F,N,k∆t)≡ F(N,
⋃

n≥1
p1, ..., pn∈GPJ(N)

t(pn)=k∆t

NextGP(P,N, (p1, ..., pn)) ).

The set of all heads at q ∈ NextGP(P,F,N,k∆t) relative to N is then

HeadAdv(P, N, q)≡ { head (r) : there exists p1, ..., pn ∈ GPJ (N) and

r ∈ RulesAdv(P, N, (p1, ..., pn))

such that q ∈ Adv(r) (p1, ..., pn)}.

Let p1, ..., pn ∈ GPJ (N). We define the set of stationary rules active at p1, ..., pn relative to N as

RulesStat(P, N, (p1, ..., pn))≡ {r ∈ P : r is stationary and

(p1, ..., pn) ∈CS(r)∩Bool (r) and for i = 1, ..., n−1 N |=J (Bi, pi) }.

That is RulesStat(P, N, (p1, ..., pn)) is the set of stationary rules with n− 1 blocks satisfied by N at

p1, ..., pn−1 respectively, and (p1, ..., pn) ∈CS(r)∩Bool (r).

We define a stationary selector D to be a function such that for M ⊆ At × S for z ∈ S for an ASP

program U , D(M, z, U) is an answer set of U . That is, a stationary selector chooses one of answer sets

of a regular ASP programs U .

For a stationary rule r of the form a : −B1; ...; Bn : O,H , we define an applicable reduct of r

RedApp (r)≡ {a : − Bn}.

For z ∈ NewGP(P,F,N,k∆t) we define the active reduct of P at z relative to N as

RedApp(P, N, z)≡ {RedApp (r) : there exists n ≥ 1 and (p1, ..., pn−1) ∈ GPJ (N)n−1

such that r ∈ RulesStat(P, N, (p1, ..., pn−1, z) }

Finally, for N ⊆ At × S and i ∈ N let N [i] ≡ {(a, p) ∈ N : t (p) = i · ∆t}. Similarly for Z ⊆ S,

Z[i]≡ {p ∈ Z : t (p) = i ·∆t}.

We are now ready to formally specify our algorithm. We define a sequence of sets 〈Yi〉i≥0 , Yi ⊆
(At ×S)[i] as follows:

Y0 ≡
⋃

z∈J[0]

D( /0, z, RedApp(P, /0, z))× z

That is, the state at any generalized position z ∈ J with time equal to 0 is determined by taking all the

stationary rules r with one block (i.e. rules of the form a : −B : O,H ) such that z ∈ O∩H , composing a

regular ASP program from the reducts of the form a : −B derived from those rules, and then finding an

answer set of that program.
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Now, suppose Yi are defined for 0 ≤ i ≤ k and Yk 6= /0. Let

Zk+1 ≡ NextGP(P,F,
k
⋃

i=0

Yi, k∆t).

That is Zk+1 is the set of generalized positions with time (k+1)∆t derived by the advancing rules

RulesAdv

(

P,
k
⋃

i=0

Yi, k∆t

)

.

Let

Yk+1 ≡
⋃

z∈Zk+1

D(
k
⋃

i=0

Yi, z, RedApp(P,
k
⋃

i=0

Yi, z)∪

{[a : −] : a ∈ HeadAdv(P,
k
⋃

i=0

Yi, z)}) × z

if D(...) 6= /0 and Yk+1 ≡ /0 otherwise.

That is, Yk+1 is a collection of hybrid states (Yk+1|z,z) where z ∈ Zk+1, and where Yk+1|z is an answer

set of a regular ASP program composed of the active reducts of the stationary rules that can contribute

to z and the heads of the advancing rules that derive z.

Theorem 3. M is an answer set of P w.i.c. J iff there is advancing selector F and a stationary selector

D such that

∞
⋃

i=0

Yi = M with F and D.

Sketch of a proof. We begin by specifying a sequence of splitting sets 〈Ui〉
∞
i=0 defined as

Ui = LitAt ×{p : p ∈ S and 0 ≤ t (p)≤ i∆t }

We then first show that Y0 is an answer set of bU0
(P) w.i.c. J. The rules that can contribute to Y0 are

stationary-1 rules r such as CS(r)∩Bool (r)∩ J [0] 6= /0. These rules will contribute regular ASP rules

to RedApp(P, /0, z) for every z ∈ J [0]. We then show that D( /0, z, RedApp(P, /0,z)) is an answer set of

RedApp(P, /0,z) iff D( /0, z, RedApp(P, /0,z))× z is an answer set of bU0
(P) w.i.c. J.

The rest is proven by induction using The Splitting Sequence Theorem. That is M [k+1] is an answer

set of E = εUk
(bUk+1

(P)\Rulesb(Uk,bUk+1
(P))∪Rem(Uk,bUk+1

(P)),
⋃

i≤k

M [i]) w.i.c. GPJ(L), where L =

⋃

i≤k

M [i] iff there exists an advancing selector F and a stationary selector D such that M [k+1] is equal to

Yk+1 as defined by the algorithm.

For the forward direction of the inductive step we define F(N, Y )≡ Y ∩GP(M). We define

D(N, p, Q)≡

{

At (N|p) if At (N|p) is an answer set of Q

/0 otherwise

We then show GP(M [k+1]) = NextGP(P,F,L,k∆t). We then use the induction on one-step prov-

ability operator T
[

EM[k+1], GPJ(L),GPJ (L)
] j

to show that if M [k+1] is an answer set of E w.i.c. GPJ (L)
then M [k+1] |p = Yk+1|p. That is we show that if M [k+1] is an answer set of E w.i.c. GPJ (L) then the

algorithm derives it as Yk+1.
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For the reverse direction we first show {(head (r) , p) : r ∈ HeadAdv(P, L, p), p ∈ GP(Yk)} ⊆

T
[

EYk+1,GPJ(L),GPJ (L)
]1
( /0). That is we show that the literals of HeadAdv(P, L, p) are also derived by E

at p. We then use induction on one step provability T
[

KAt(Yk+1|p)
]i

, where K ≡ RedApp(P,L,p) to show

that for all p ∈ GP(Yk+1) it is the case that
⋃

i≥0

T
[

KAt(Yk+1|p)
]i
( /0)×p ⊆

⋃

j≥0

T
[

EYk+1,GPJ(L),GPJ (L)
] j
( /0),

for some j. That is, we show that the literals derived by the regular ASP program RedApp(P,L,p) are

also derived by E at p. But this merely shows that Y ≡
∞
⋃

i=0

Yi ⊆
⋃

j≥0

T [PY,J,J] ( /0). We also need to show

that
⋃

j≥0

T [PY,J,J] ( /0)⊆Y .

We do that by using induction on one step provability operator T
[

EYk+1,GPJ(L),GPJ (L)
] j

to show that

for all p∈GP(Yk+1) it is the case that
⋃

j≥0

T
[

EYk+1,GPJ(L),GPJ (L)
] j
( /0) is a subset of

⋃

i≥0

T
[

KAt(Yk+1|p)
]i
( /0)×

p.

This completes the proof of the theorem. �

The algorithm computes an answer set of the Hybrid ASP program P w.i.c. J inductively, by com-

puting a subset of the answer set at time 0, then at time ∆t, and so on through time k∆t. Moreover,

the aglorithm reduces the process of computing an answer set of a Hybrid ASP program to the repeated

application of two processes: the process of computing the set of ”next” generalized positions, and the

process of computing an answer set of a regular ASP program derived from advancing and stationary

Hybrid ASP rules applicable at these ”next” generalized positions.

It’s worth noting that the algorithm is a more general form of The Local Algorithm [5], variation of

which is also discussed in [2].

4 Conclusion

The paper presents The Splitting Set Theorem for Hybrid ASP, which is the equivalent for Hybrid ASP

of the Splitting Set Theorem [12], and the Splitting Sequence Theorem for Hybrid ASP (which is the

equivalent for Hybrid ASP of The Splitting Sequence Theorem). The original Splitting Set Theorem

proved to be a widely used result. It is the author’s hope that the new theorem will likewise prove to have

many applications. The paper discusses one of the applications of the theorems to computing answer

sets of Hybrid ASP programs.
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