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SHACL is a W3C-proposed language for expressing structural constraints on RDF graphs. The rec-
ommendation only specifies semantics for non-recursive SHACL; recently, some efforts have been
made to allow recursive SHACL schemas. In this paper, we argue that for defining and studying
semantics of recursive SHACL, lessons can be learned from years of research in non-monotonic
reasoning. We show that from a SHACL schema, a three-valued semantic operator can directly be
obtained. Building on Approximation Fixpoint Theory (AFT), this operator immediately induces a
wide variety of semantics, including a supported, stable, and well-founded semantics, related in the
expected ways. By building on AFT, a rich body of theoretical results becomes directly available for
SHACL. As such, the main contribution of this short paper is providing theoretical foundations for
the study of recursive SHACL, which can later enable an informed decision for an extension of the
W3C recommendation.

1 Introduction

The Semantic Web [2] extends the World-Wide Web with machine-interpretable data. The de facto
standard of this web is that data is stored and published in the Resource Description Framework [22],
i.e., as a set of triples, referred to as a graph, often extended with semantic information expressed in OWL
[20]. While in principle the Semantic Web is open and every agent can represent their data however they
want, from the perspective of applications, or when consuming RDF data in some other way, it can often
be useful to know which structural properties an RDF graph in question satisfies. In other words, there
is a need for a declarative language for describing integrity constraints on RDF graphs.

Several proposals have emerged to fill this need, the most prominent of them being ShEx [9] and
SHACL [23]. Both approaches start from the notion of a shape: a structural property that a node in an
RDF graph can satisfy, e.g., the shape of “things that have a name” will be satisfied for those nodes
that appear as the subject in a triple with predicate foaf:name. On top of a language for defining such
shapes, the two proposals also have a mechanism for targeting: for specifying which nodes should satisfy
which shapes, e.g., to declare that “All persons should satisfy the has-a-name shape”.

In our paper, we will build on a formalization of SHACL [12], which has revealed a striking similarity
between shapes and concepts descriptions, as known from description logics [3]; we recently deepened
this connection further [7]. Following this line of research, we formalize a SHACL schema as a tuple
(Def ,T), where Def is a set of rules of the form s← φ and T is a set of concept inclusions of the form
φ ⊆ s with φ a shape (i.e., a concept description) and s a shape name. Def defines the shapes in terms of
relations in the RDF graph and T contains the so-called targeting constraints.

The W3C recommendation for SHACL only specifies the semantics when Def is non-recursive, i.e.,
if no shape is defined in terms of itself, but recently, some efforts have been made to lift this restriction,
i.e., to define a supported and a stable semantics for recursive SHACL [12, 1].
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In this paper, we put forward another principled way to define semantics of recursive SHACL, building
on Approximation Fixpoint Theory (AFT), an abstract lattice-theoretic framework originally designed to
unify semantics of non-monotonic logics [14] with applications, among others, in (extensions of) logic
programming, autoepistemic logic, default logic, abstract argumentation, and active integrity constraints
[15, 21, 24, 19, 11, 5]. There are several advantages to defining semantics of SHACL in this way:

• It is simple and straightforward: the power of AFT, comes largely from the fact that all that is
required to apply it, is to define a (three-valued) semantic operator (similar to Fitting’s immediate
consequence operator for logic programs [18]). In many domains (including SHACL), there is a
natural choice for such an operator; AFT then immediately induces all major classes of semantics.

• It provides confidence: AFT guarantees that the developed semantics follow well-established prin-
ciples in nonmonotonic reasoning. Even in case semantics are already defined, applying AFT can
be a sanity check. A striking example of this is the fact that applications of AFT uncovered some
issues in the semantics of (weighted and non-weighted) Abstract Dialectic Frameworks [24, 10, 4].

• It provides access to a large body of theoretical results, including theorems on stratification [27, 6],
predicate introduction [28], and strong equivalence [25], thereby eliminating the need to “reinvent
the wheel” by rediscovering these results in each of the separate domains.

In a nutshell, our main contribution is establishing formal foundations for the study of recursive SHACL.

2 Formalization of SHACL

In actual SHACL, semantics is defined in terms of RDF graphs, but we recently showed how to reduce
this to the logical setting [7]. As such, for the purpose of the current paper, we focus on the logical setting
and take abstraction of RDF graphs. Throughout this paper, we (implicitly) fix a vocabulary, i.e., a set
of node names (denoted N), property names (denoted P), and shape names (denoted S). A node name c
is also referred to as a constant, a property name p as a binary predicate symbol and a shape name s as a
unary predicate symbol. Path expressions E and shapes φ are defined as follows:

E ::= p | p− | E ∪E | E ◦E | E∗ | E?

φ ::=> | s | {c} | φ ∧φ | φ ∨φ | ¬φ | ∀E.φ | ≥n E.φ | eq(E,E) | disj(E,E) | closed(Q)

where p, c, and s represent property names, node names, and shape names respectively, and n stands for
non-zero natural numbers. When developing our semantics, we will treat φ1 ∨φ2 as an abbreviation of
¬(¬φ1∧¬φ2) and ∀E.φ as an abbreviation for ¬ ≥1 E.¬φ . The reason for having them in the syntax is
to enable the comparison with existing semantics in Section 5.

As usual, an interpretation I consists of (i) a set ∆I , called the domain of I; (ii) for each constant c, an
element JcKI ∈ ∆I; (iii) for each shape name s, a set JsKI ⊆ ∆I; and (iv) for each property name p, a binary
relation JpKI on ∆I . When we say a graph-interpretation, we mean an interpretation that only consists
of a domain and an interpretation for node and property names (not shape names). Intuitively, such an
interpretation corresponds to an RDF graph. A path expression E evaluates in I to a binary relation JEKI

on ∆I , and a shape φ to a subset JφKI of ∆I , as defined in Tables 1 and 2.
A SHACL schema is a tuple (Def ,T) with

• Def a set of rules of the form s← φ with s a shape name (referred to as the head of the rule) and φ

a shape (the body of the rule), such that each s ∈ S appears exactly once in the head of a rule, and
• T a set of (concept) inclusions of the form φ ⊆ s, with φ a shape that does not mention any shape

names1, and s a shape name.
1The condition that φ does not mention any shape names will entail that the target query can be evaluated on the underlying
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E JEKI

p− {(a,b) | (b,a) ∈ JpKI}
JE1∪E2KI JE1KI ∪ JE2KI

JE1 ◦E2KI {(a,b) | ∃c : (a,c) ∈ JE1KI

∧(c,b) ∈ JE2KI}
JE∗KI the reflexive-transitive

closure of JEKI

JE?KI JEKI ∪{(a,a) | a ∈ ∆I}

Table 1: Semantics of a path expression E
in an interpretation I.

φ JφKI

> ∆I

{c} {cI}
φ1∧φ2 Jφ1KI ∩ Jφ2KI

¬φ1 ∆I \ Jφ1KI

≥n E.φ1 {a ∈ ∆I | ](JφKI
1∩ JEKI(a))≥ n}

eq(E1,E2) {a ∈ ∆I | JE1KI(a) = JE2KI(a)}
disj(E1,E2) {a ∈ ∆I | JE1KI(a)∩ JE2KI(a) = /0}
closed(Q) {a | JpKI(a) = /0 for every p ∈ P\Q}

Table 2: Semantics of a shape φ in an interpretation I. We
use ]X to denote the cardinality of X . For a binary relation
R and an element a, we use R(a) to denote {b | (a,b) ∈ R}.

A shape name s1 depends on shape name s2 in Def if there is a rule s1← φ in Def , and s2 or some shape
name that depends on s2 occurs in φ . A schema is non-recursive if no shape name depends on itself.

If (Def ,T) is a non-recursive SHACL schema, and I a graph-interpretation, then I can be uniquely
extended to an interpretation I′ such that for each s ∈ S, JsKI′ = JφKI′ if s← φ ∈ Def . In that case,
we say that I validates with respect to (Def ,T) if JφKI′ ⊆ JsKI′ for each inclusion φ ⊆ s in T . For the
recursive case, the situation is less obvious; in Section 4, we use approximation fixpoint theory to study
the different semantic options that arise, but before doing so, we recall preliminaries on AFT.

3 Approximation Fixpoint Theory

A complete lattice 〈L,≤〉 is a set L equipped with a partial order ≤, such that every set S⊆ L has a least
upper bound and a greatest lower bound. A complete lattice has a least element⊥ and a greatest element
>. An operator O : L→ L is monotone if x≤ y implies that O(x)≤ O(y). An element x ∈ L is a fixpoint
of O if O(x) = x. Every monotone operator O in a complete lattice has a least fixpoint, denoted lfp(O).

Given a lattice L, AFT uses a bilattice L2. We define projections for pairs as usual: (x,y)1 = x and
(x,y)2 = y. Pairs (x,y) ∈ L2 are used to approximate elements in the interval [x,y] = {z | x ≤ z∧ z≤ y}.
We call (x,y) ∈ L2 consistent if x ≤ y, that is, if [x,y] is non-empty. We use Lc to denote the set of
consistent elements. The precision order on L2 is defined as (x,y) ≤p (u,v) if x ≤ u and v ≤ y. If (u,v)
is consistent, this means that (x,y) approximates all elements approximated by (u,v).

In its original form, AFT makes use of approximators, which are operators on L2, but [16] showed
that all the consistent fixpoints studied in AFT are uniquely determined by an approximator’s restriction
to Lc and developed a theory of consistent approximators. An operator A : Lc → Lc is a consistent
approximator of O if it is ≤p-monotone and coincides with O on L (meaning A(x,x) = (O(x),O(x)) for
all x ∈ L). AFT studies fixpoints of O using fixpoints of A.

• The A-Kripke-Kleene fixpoint is the ≤p-least fixpoint of A; it approximates all fixpoints of O.
• A partial A-stable fixpoint is a pair (x,y) such that x = lfp(A(·,y)1) and y = lfp(A(x, ·)2), where

A(·,y)1 : L→ L maps z to A(z,y)1 and similarly for A(x, ·)2.
• The A-well-founded fixpoint is the least precise (≤p-least) partial A-stable fixpoint.
• An A-stable fixpoint of O is a fixpoint x of O such that (x,x) is a partial A-stable fixpoint.

graph, without knowledge of the shape definitions. In actual SHACL, the condition is even more limited; there only very
specific queries are allowed as targets.
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These definitions allow reconstructing all major logic programming semantics by taking for O Van
Emden and Kowalski’s immediate consequence operator TP [26] and for A Fitting’s three- (or four-)
valued extension ΨP [18].

4 Fixpoint Semantics for Recursive SHACL

For the rest of this paper, we fix a SHACL schema (Def ,T) and a graph-interpretation I. We already
mentioned that if Def is non-recursive, it uniquely induces a complete interpretation I′ in which all
constraints in T are to be verified. When Def is recursive, however, the situation becomes more complex.
On the one hand, there is a range of possible semantics dealing with recursion. On the other hand,
some of the semantics yield not a single interpretation I′, but either a set of them, or a three-valued
interpretation. This will give us a choice between brave and cautious validation; the focus of this paper
is on the treatment of negation, but we briefly discuss brave and cautious validation below.

To apply AFT, the first step to take is to determine a suitable lattice. In our case, the obvious candidate
is the lattice LI (from now on, denoted L) of all interpretations I′ with domain ∆I that agree with I on
N ∪P, or in other words, the set of interpretations that expand I. This set is equipped with the standard
truth order, I1 ≤t I2 if JsKI1 ⊆ JsKI2 for all s∈ S. The role of the semantic operator is to update the value of
the interpretation of the shapes. In analogy with logic programming, its definition is straightforward: it
maps the interpretation I′ to TDef (I′) such that for each shape name s with defining rule s← φ , we define
TDef (I′)(s) = JφKI′ .

With the lattice 〈L,≤t〉, elements of Lc are pairs I = (I1,I2) of two interpretations with I1 ≤t I2;
such pairs correspond one-to-one to three-valued interpretations that assign each s ∈ S a function ∆→
{t, f,u}, mapping a to t if a in JsKI1 , to f if a 6∈ JsKI2 and to u otherwise (in other words, I1 represents
what is certainly true and I2 what is possibly true). From now on, we simply refer to elements of Lc as
three-valued interpretations.

We can evaluate a shape φ in a three-valued interpretation I with a straightforward extension of
Kleene’s truth tables, as also used in previous studies of recursive SHACL [12, 1]; for completeness, this
is included in Table 3. This table makes use of the truth order ≤t on truth values defined as f ≤t u ≤t t,
and the negation on truth values defined as usual: ¬t = f;¬f = t;¬u = u.

φ JφKI (a)

> t
{c} t if a = c; f otherwise
s JsKI (a)
¬φ1 ¬Jφ1KI (a)
φ1∧φ2 min≤t (Jφ1KI (a),Jφ2KI (a))

≥n E.φ1


t if ]{b ∈ JEKI (a) | Jφ1KI (b) = t} ≥ n,
f if ]{b ∈ JEKI (a) | Jφ1KI (b)≤t u}< n,
u otherwise

eq(E1,E2) t if a ∈ Jeq(E1,E2)KI ; f otherwise
disj(E1,E2) t if a ∈ Jdisj(E1,E2)KI ; f otherwise
closed(Q) t if JpKI (a) = /0 for all p ∈ P\Q; f otherwise

Table 3: Three-valued semantics of shapes.

a

c
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e

d

f

Pfizer

Cough
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o closeTo

closeTo

closeTo

clo
seT

o closeTo

vaccinated

hasSymptoms

Figure 1: Visual representation
of the example interpretation.

Once a three-valued evaluation of shapes is defined, an approximator is obtained directly: like the
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operator, the approximator updates the value of each shape symbol according to its defining rule: it maps
I to ΨDef (I ) where for each shape s ∈ S defined by the rule s← φ , ΨDef (I )(s) = JφKI .
Theorem 4.1. ΨDef is a consistent approximator of TDef .

At this point, AFT dictates what the supported models (fixpoints of TDef ), (partial) stable models
(ΨDef -stable fixpoints), well-founded model (ΨDef -well-founded fixpoint), and Kripke-Kleene model
(ΨDef -KK fixpoint) of Def are. It is worth stressing that to arrive to this point, we made two choices.
The first was our choice of order on the lattice. We opted here for the truth order, but its inverse would
also have been a possible choice. Several of the semantics induced by AFT aim to minimize models in
the chosen order for reasons of groundedness [8], e.g., if s has s← s as defining rule, in stable and well-
founded semantics, our chosen order would result in no nodes satisfying s. The second choice we made
is which three-valued truth evaluation to use; we opted for the most obvious choice: a direct extension of
Kleene’s three-valued truth tables, which was used in other studies of recursive SHACL as well [12, 1].
Given these choices, models of the different types (stable, well-founded, ... ) are defined by AFT, and
hence semantics for brave and cautious validation under of each semantics are established.
Definition 4.2. Let σ ∈ {KK,WF} and let I be the σ -model. We say that I cautiously (resp. bravely)
σ -validates with respect to (Def ,T) if Jφ ∧¬sKI = f (resp. Jφ ∧¬sKI ≤t u) for every φ ⊆ s in T .
Let σ ∈ {St,Sup} and let M be the set of σ -models. We say that I cautiously (resp. bravely) σ -validates
with respect to (Def ,T) if Jφ ∧¬sKI′ = f for all (resp. for some) I′ ∈M for every φ ⊆ s in T .

Let us illustrate the differences between the various types of models on a small example.
Example 4.3. Consider binary predicates closeTo, hasSymptoms, and vaccinated and an interpretation
I with domain {a,b,c,d,e, f ,Pfizer,Cough}, where a, . . . , f represent people (divided in two cliques of
three “close” friends); one person (c) is vaccinated and one person (d) shows Covid symptoms. This
interpretation is visually depicted in Fig. 1. We define two shapes: the shape of people at risk (those who
(i) are not vaccinated and (ii) have symptoms or are close to someone at risk) and the shape of people
who can go to office (those who are not at risk), as formalized below:

atRisk←¬≥1 vaccinated.>∧ (≥1 hasSymptoms.>∨∃closeTo.atRisk)

canWork←¬atRisk

For this set of shape definitions, the unique stable model equals the well-founded model and states that
d, e, and f are at risk, while a, b, and c can work. In the Kripke-Kleene model, d, e, and f are again at
risk, c is not at risk (and hence can work), but for a and b it is unknown whether they are at risk. There
are two supported models: the stable model and one in which everyone except for c is at risk. N

5 Comparison with Existing Semantics

Corman et al. [12] already defined a supported semantics and Andreşel et al. [1] a stable semantics for
SHACL. For clarity, we refer to the existing semantics as CRS-supported and ACORSS-stable semantics,
and to the semantics induced by AFT, e.g., as AFT-stable. Both of them focus on brave validation, but
Andreşel et al. also mention the possibility of cautious validation. The main results on correspondence
between the semantics are summarized here.

In fact, Corman et al. [12, Definition 5] already defined the three-valued immediate consequence
operator ΨDef (there denoted T). While the focus of that work was on supported semantics, we now
showed that in fact, by defining the approximator ΨDef , they had everything at hand to define the full.
Since Corman et al. also characterized supported models as fixpoints of ΨDef (in their Definition 17), our
semantics and theirs coincide.
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Theorem 5.1. I CRS-validates (Def ,T) if and only if I bravely Sup-validates (Def ,T).

The situation is somewhat different for stable semantics, which Andreşel et al. [1] defined in terms
of level mappings.

Definition 5.2 ([1]). Let I′ be an interpretation. A level assignment for I′ is a function level that maps tu-
ples in {(φ ,a) | JφKI′(a)= t} to integers and satisfies (i) level(φ1∧φ2,a)=max{level(φ1,a), level(φ2,a)},
(ii) level(φ1∨φ2,a) =min{level(φi,a) | i∈ {1,2}∧JφiKI′(a) = t}, (iii) level(≥n E.φ) is the smallest k≥ 0
for which there are n elements b1, . . .bn ∈ ∆I′ such that level(φ ,bi)≤ k, (a,bi) ∈ JEKI′ , and JφKI′(bi) = t,
and (iv) level(∀E.φ ,a) = max({level(φ ,b) | (a,b) ∈ JEKI′ ∧ JφKI′(b) = t}.

A supported model I′ is an ARCOSS-stable model if there exists a level assignment for I′ such that
level(s,a)> level(φs,a) for each rule s← φs in Def and each a with JsKI′(a) = t.

For the correspondence in case of stable semantics, we recall a normal form of Andreşel et al. [1]:

Definition 5.3. Def is in shape normal form if all rules in Def have one of the following forms:

s←> s←{c} s←¬s′ s← s′∧ s′′ s← s′∨ s′′

s←≥n E.s′ s←∀E.s′ s← eq(E,E ′) s← disj(E,E ′)

Theorem 5.4. If I′ is an AFT-stable model of Def , then it is also an ACORSS-stable model. If Def is in
shape normal form, the converse also holds.

The difference between our stable semantics and the ACORSS-stable semantics is a semantic (in
terms of the standard three-valued truth evaluation) versus a syntactic (the level mappings are defined in
terms of the syntactic structure of the shapes) treatment of negation and is illustrated in the next example.

Example 5.5 (Example 4.3 continued). Suppose that in our same interpretation, we wish to define a
shape that identifies possible superspreaders. To do this, we say that a person is “safe” if they are
vaccinated, or in contact with at most 1 non-safe person. This can be formalized as:

Safe←∃vaccinated.>∨ ≤1 closeTo.¬Safe,

Where ≤1 is an abbreviation for ¬ ≥2. With the interpretation of Fig. 1, there is a single AFT-stable
model in which a, b, and c are safe, but d, e, and f are not. However, there are two ACROSS-stable
models: the one mentioned above, and one in which everyone is safe, including the three-clique of
non-vaccinated people. N

6 Conclusion

When Corman et al. [12] defined the supported model semantics for SHACL, they showed how to trans-
late actual SHACL expressions (as specified by the W3C recommendation) into logical expressions in a
language akin to description logics. For studying recursive SHACL expressions, they even already defined
the operator ΨDef . Hence, the only work left to obtain a rich family of semantics, was observing that
this operator is indeed an approximators and applying AFT. As such, we believe this paper establishes
strong and formal foundations for the study of recursive SHACL. Indeed, AFT does not just dictate how
the semantics are to be defined, but immediately provides guarantees such as stratification and predicate
introduction results that can be instrumental when developing concrete validators for recursive SHACL:
we immediately obtain results about which transformations can safely be applied to our theories.

Our results have been presented without taking a stance on the choice of semantics. It is important
to realize though, that if one wants to view Def as an (inductive) definition of the shapes, it has been
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argued repeatedly that the well-founded semantics correctly formalizes this [17]. Under the well-founded
semantics, SHACL integrates first-order constraints (of a restricted form) with inductive definitions and
aggregates, and hence can be seen as a fragment of the language FO(ID,Agg), the formal foundation of
the IDP language [13]. It is a topic for future work to investigate whether this can be exploited for either
extending SHACL, or for developing alternative validation mechanisms, building on IDP.
Acknowledgements This research was supported by the Flemish Government in the “Onderzoekspro-
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