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We propose a method for generating explainable rule sets from tree-ensemble learners using Answer

Set Programming (ASP). To this end, we adopt a decompositional approach where the split structures

of the base decision trees are exploited in the construction of rules, which in turn are assessed using

pattern mining methods encoded in ASP to extract interesting rules. We show how user-defined con-

straints and preferences can be represented declaratively in ASP to allow for transparent and flexible

rule set generation, and how rules can be used as explanations to help the user better understand

the models. Experimental evaluation with real-world datasets and popular tree-ensemble algorithms

demonstrates that our approach is applicable to a wide range of classification tasks.

1 Introduction

Interpretability in machine learning is the ability to explain or to present in understandable terms to a

human [8]. Interpretability is particularly important when, for example the goal of the user is to gain

knowledge from some form of explanations about the data or process through machine learning models,

or when making high-stakes decisions based on the outputs from the machine learning models where the

user has to be able to trust the models.

In this work we address the problem of explaining and understanding tree-ensemble learners by ex-

tracting meaningful rules from them. This problem is of practical relevance in business domains where

the understanding of the behavior of high-performing machine learning models and extraction of knowl-

edge in human readable form can aid users in the decision making process. We use Answer Set Pro-

gramming (ASP) [14, 22] to generate rule sets from tree-ensembles. ASP is a declarative programming

paradigm for solving difficult search problems. An advantage of using ASP is its expressiveness and

extensibility, especially when representing constraints. To our knowledge, ASP has never been used in

the context of rule sets generation from tree-ensembles, although it has been used in pattern mining, e.g.,

[19, 16, 12, 27].

Generating interpretations for machine learning models is a challenging task since it is often neces-

sary to account for multiple competing objectives. For instance, if accuracy is the most important metric,

then it is in direct conflict with interpretability, because accuracy favors specialization while interpretabil-

ity favors generalization. Any interpretation method should also strive to imitate the behavior of learned

models as to minimize misrepresentation of models, which in turn may result in misinterpretation by the

user. While there are many interpretation methods available (some are covered in Section 2), we propose

to use ASP as a medium to represent the user requirements declaratively and to quickly search feasible

solutions for faster prototyping. By implementing a rule selection method as a post-processing step to

model training, we aim to offer an off-the-shelf objective interpretation tool as an alternative to subjective

manual rule selection, which could be applied to existing processes with minimum modification.

http://dx.doi.org/10.4204/EPTCS.345.26
https://creativecommons.org
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Figure 1: Overview of our framework

We consider the two-step procedure for rule set generation from tree-ensembles (Figure 1): (1) ex-

tracting rules from trained decision tree-ensembles, and (2) computing sets of rules according to selection

criteria and preferences encoded declaratively in ASP. For the first step, we employ the efficiency and

prediction capability of modern tree-ensemble algorithms in finding useful feature partitions for predic-

tion from data. For the second step, we exploit the expressiveness of ASP in encoding constraints and

preference to select useful rules from tree-ensembles, and rule selection is automated through a declara-

tive encoding. The generated rule sets therefore not only act as interpretations for tree-ensemble models

but are also explainable.

We then evaluate our approach from two perspectives: the number and relevance of rules in the rule

sets. The number of rules is often associated with interpretability, with a large number of rules being

less desirable. Performance metrics such as classification accuracy, precision and recall can be used as a

measure of relevance of the rules to the prediction task.

This paper makes the following contributions:

• We present a novel application of Answer Set Programming (ASP) for interpreting machine learn-

ing models. We propose a method to generate explainable rule sets from tree-ensemble models

with ASP. More generally, this work contributes to the growing body of knowledge on integrating

symbolic reasoning with machine learning.

• We present how the rule set generation problem can be reformulated as an optimization problem,

where we leverage existing knowledge on declarative pattern mining with ASP.

• To demonstrate the practical applicability of our approach, we provide both qualitative and quan-

titative results from evaluations with public datasets, where machine learning models are used in a

realistic setting.

The rest of this paper is organized as follows. In Section 2 we review and discuss related works. In

Section 3, we review tree-ensembles, ASP and pattern mining. Section 4 presents our method to generate

rule sets from tree-ensembles using pattern mining and optimization encoded in ASP. Section 5 presents

experimental results on public datasets. Finally in Section 6 we present the conclusions.

2 Related Works

Summarizing tree-ensembles has been studied in literature, see for example, Born Again Trees [3], de-

fragTrees [17] and inTrees [7]. While exact methods and implementations differ among these examples,

a popular approach to tree-ensemble simplification is to create a simplified decision tree model that ap-

proximates the behavior of the original tree-ensemble model. Depending on how the approximate tree
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model is constructed, this could lead to a deeper tree with an increased number of conditions which

makes them difficult to interpret.

Integrating association rule mining and classification is also known, e.g., Class Association Rules

(CARs)[23], where association rules discovered by pattern mining algorithms are combined to form a

classifier. Repeated Incremental Pruning to Produce Error Reduction (RIPPER)[6] was proposed as an

efficient approach for classification based on association rule mining, and it is a well-known rule-based

classifier. In CARs and RIPPER, rules are mined from data with dedicated association rule mining

algorithms, then processed to produce a final classifier.

Interpretable classification models is another area of active research. Interpretable Decision Sets

(IDS)[21] are learned through an objective function which simultaneously optimizes accuracy and inter-

pretability of the rules. In Scalable Bayesian Rule Lists (SBRL)[32], probabilistic IF-THEN rule lists are

constructed by maximizing the posterior distribution of rule lists. In RuleFit[11], a sparse linear model is

trained over rules extracted from tree-ensembles. RuleFit is the closest to our work in this regard, in the

sense that both RuleFit and our method extract conditions and rules from tree-ensembles, but differ in the

treatment of rules and representation of final rule sets. In RuleFit, rules are accompanied by regression

coefficients, and it is left up to the user to further interpret the result.

Lundberg et al.[24] showed how a variant of SHAP[25], which is a post-hoc interpretation method,

can be applied to tree-ensembles. While our method does not produce importance measures for each

feature, the information about which rule fired to reach the prediction can be offered as an explanation in

a human readable format. Shakerin and Gupta [30] proposed a method to use LIME weights[29] as a part

of learning heuristics in inductive learning of default theories. Instead of learning rules with heuristics

from data, our method directly handles rules which exist in decision tree models with answer set solver.

Guns et al.[15] applied constraint programming (CP), a declarative approach, to itemset mining.

This constraint satisfaction perspective led to the development of ASP encoding of pattern mining e.g.,

[19, 16]. Gebser et al.[12] applied preference handling to sequential pattern mining, and Paramonov

et al.[27] extended the declarative pattern mining by incorporating dominance programming (DP) from

Negrevergne et al.[26] to the specification of global constraints. Paramonov et al.[27] proposed a hybrid

approach where the solutions are effectively screened first with dedicated algorithms for pattern mining

tasks, then declarative ASP encoding is used to extract condensed patterns. While aforementioned works

focused on extracting interesting patterns from transaction or sequence data, our focus in this paper is

to generate rule sets from tree-ensemble models to help users interpret the behavior of machine learn-

ing models. In terms of ASP encoding, we use dominance relations similar to the ones presented in

Paramonov et al.[27] to further constrain the search space.

3 Background

3.1 Tree-Ensembles

Tree-Ensemble (TE) models are machine learning models widely used in practice, typically, but not lim-

ited to, when learning from tabular datasets. A TE consist of multiple base decision trees each trained

on an independent subset of the input data. For example, Random Forests [2] and Gradient Boosted

Decision Tree (GBDT) [10] are tree-ensemble models. Recent surge of efficient and effective GBDT

algorithms, e.g., LightGBM [20], has led to wide adoption of TE models in practice. Although individ-

ual decision trees are considered to be interpretable [18], ensembles of decision trees are seen as less

interpretable.



130 Generating Explainable Rule Sets from Tree-Ensemble Learning Methods by ASP

The purpose of using TE models is to predict the unknown value of an attribute y in the dataset,

referred to as labels, using the known values of other attributes x = (x1,x2, ...,xm), referred to as features.

For brevity we restrict our discussion to classification problems. During the training or learning phase,

each input instance to the TE models is a pair of features and labels, i.e. (xi,yi), where i denotes the

instance index, and during the prediction phase, each input instance only include features, (xi), and the

model is tasked to produce predictions ŷi. A collection of input instances, complete with features and

labels, is referred to as a dataset. Given a dataset D = {(xi,yi)} with n ∈N examples and m ∈N features,

a decision tree classifier t will predict the class label ŷi based on the feature vector xi of the i-th sample:

ŷi = t(xi). A tree-ensemble T uses K ∈ N trees and additionally an aggregation function f over the

K trees which combines the output from the trees: ŷi = f (tk∈K(xi)). In the case of Random Forest, for

example, f is a majority voting scheme (i.e. argmax of sum), and in GBDT f may be a summation

followed by softmax to obtain ŷi in terms of probabilities.

In this paper a decision tree is assumed to be a binary tree where the internal nodes hold split con-

ditions (e.g., x1 ≤ 0.5) and leaf nodes hold information related to class labels such as the number of

supporting data points per class label that have been assigned to the leaf nodes. Richer collections of de-

cision trees provide higher performance and less uncertainty in prediction compared to a single decision

tree. Typically, each TE model has specific algorithms for learning base decision trees, adding more trees

and combining outputs from the base trees to produce the final prediction. In GBDT, the base trees are

trained sequentially by fitting the residual errors from the previous step. Interested readers are referred

to [10], and its more recent implementations LightGBM [20] and XGBoost [5].

3.2 Answer Set Programming

Answer Set Programming [22] has its roots in logic programming and non-monotonic reasoning. A

normal logic program is a set of rules of the form

a1 :- a2, . . . , am, not am+1, . . . , not an.

where each ai is a first-order atom with 1 ≤ i ≤ n and not is default negation. If only a1 is included

(n = 1), the above rule is called a fact, whereas if a1 is omitted, it represents an integrity constraint. A

normal logic program induces a collection of models, which are called answer sets defined by the stable

model semantics [14]. Additionally, in modern ASP systems, constructs such as conditional literals and

cardinality constraints are supported. The former in clingo [13] are written in the form {a(X) : b(X)}1,

and expanded into the conjunction of all instances of a(X) where corresponding b(X) holds. The latter

are written in the form s1 {a(X) : b(X)} s2, which is interpreted as s1 ≤ #count{a(X) : b(X)} ≤ s2

where s1 and s2 are treated as lower and upper bounds, respectively, thus the statement holds when the

count of instances a(X) where b(X) holds, is between s1 and s2. The minimization (or maximization)

of an objective function can be expressed with #minimize (or #maximize). clingo supports multiple

optimization statements in a single program, and one can implement multi-objective optimization with

priorities by defining two or more optimization statements.

3.3 Pattern Mining

In a general setting, the goal of pattern mining is to find interesting patterns from data, where patterns can

be, for example, itemsets, sequences and graphs. For example, in frequent itemset mining [1], the task is

1Unless otherwise noted, we follow the Prolog-style notation in logic programs where strings beginning with a capital letter

are variables, and others are predicate symbols or constants.
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to find all subsets of items that occur together more than the threshold count in databases. In this work,

the patterns of interest are sets of predictive rules. A predictive rule has the form c ⇐ s1 ∧ s2∧, ...,sn,

where c is a class label, and {si} (1 ≤ i ≤ n) represents conditions.

For pattern mining with constraints, the notion of dominance is important, which intuitively reflects

pairwise preference relation (<∗) between patterns [26]. Let C be a constraint function that maps a

pattern to {⊤,⊥}, and let p be a pattern, then the pattern p is valid iff C(p) = ⊤, otherwise it is invalid.

An example of C is a function that checks the support of a pattern is above the threshold. The pattern p

is said to be dominated iff there exists a pattern q such that p <∗ q and q is valid under C. Dominance

relations have been used in ASP encoding for pattern mining [27].

There are existing ASP encodings of pattern mining algorithms, e.g., [19, 12, 27], that can be used to

mine itemsets and sequences. Here we develop and apply our own encoding on rules to extract interesting

rules from tree-ensembles. On the surface, our problem setting may appear similar to frequent itemset

and sequence mining, however, rule set generation is different from these pattern mining problems. We

can indeed borrow some ideas from frequent itemset mining for encoding, however, our goal is not

to decompose rules (cf. transactions) into individual conditions (cf. items) then constructing rule sets

(cf. itemsets) from conditions, but rather to treat each rule in its entirety then combining rules to form

rule sets. The body (antecedent) of a rule can also be seen as a sequence, where the conditions are

connected by conjunction connective ∧, however, in our case, the ordering of conditions does not matter,

thus sequential mining encodings that use slots to represent positional constraints [12] cannot be applied

directly to our problem.

4 Rule Set Generation

4.1 Problem Statement

The rule set generation problem is represented as a tuple P = {R,M,C,O}, where R is the set of all rules

in the tree-ensemble, M is set of meta-data and properties associated with each rule in R, C is the set of

user-defined constraints including preferences, and O is the set of optimization objectives. The goal is

to generate a set of rules from R by selection under constraints C and optimization objectives O, where

constraints and optimization may refer to the meta-data M. In the following sections, we describe how

we construct each R, M, C and O, and finally how we solve this problem with ASP.

4.2 Rule Extraction from Decision Trees

Recall that a tree-ensemble T is a collection of K decision trees, and we refer to individual trees tk with

subscript k. An example of a decision tree-ensemble is shown in Figure 2. A decision tree tk has Ntk

nodes and Ltk leaves. Each node represents a split condition and there are Ltk paths from the root node

to the leaves. For simplicity, we assume only features that have orderable values (continuous features)

are present in the dataset in the examples below.2 The tree on the left in Figure 2 has 4 internal nodes

including the root node with condition [x1 ≤ 0.2] and 5 leaf nodes, therefore there are 5 paths from the

root note to the leaf nodes 1 to 5.

2Real datasets may have unorderable categorical values. For example, in the census dataset, occupation (Sale, etc.) and

education (Bachelors, etc.) are categorical features. Support for categorical feature split is implementation-dependent, however

in general one can replace the continuous split with a subset selection e.g., xc ∈ {xc1,xc2, ...}
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Figure 2: A simple decision tree-ensemble consisting of two decision trees. The rule associated with

each node is given by the conjunction of all conditions associated with nodes on the paths from the root

node to that node.

From the left-most path of the decision tree on the left in Figure 2, the following prediction rule is

created. We assume that node 1 predicts class label 1 in this instance.3

class(1)⇐ (x1 ≤ 0.2)∧ (x2 ≤ 4.5)∧ (x4 ≤ 2)

Assuming that node 2 predicts class label 0, we also construct the following rule (note the reversal of the

condition on x4):

class(0)⇐ (x1 ≤ 0.2)∧ (x2 ≤ 4.5)∧ (x4 > 2)

We can also construct subsets of rules by applying each of the conditions sequentially and computing the

predicted label at each step. For example, from the last rule we may construct the following rule:

class(1)⇐ (x1 ≤ 0.2)∧ (x2 ≤ 4.5)

The set of all rules, R, is constructed as follows:

1. Enumerate all possible paths from the root node to the leaves. For a binary decision tree with depth

dk, the maximum number of leaf nodes is 2dk , which is also the maximum number of paths from

the root node to the leaf nodes.

2. For each path, at each subsequent node on the path to the leaf node, the split condition of the

node is appended to the body (antecedent, set of conditions) of the rule. For a decision tree the

maximum number of such rules is the same as the maximum number of nodes in the tree, i.e.

2dk+1 −1.

3. Compute the predicted class label for each rule. For simplicity, we apply all conditions in the rule

and calculate the most likely class label from the count data (argmax of counts).

4. Add the generated rules to the candidate rule set R.

5. Repeat steps 1 to 4 for each tree tk where 1 ≤ k ≤ K, in the ensemble of K trees.

3Label=1 and 0 refer to the attributes in the dataset and have different meaning depending on the dataset. For example,

in the census dataset, label=1 and 0 mean that the personal income is more than $50,000 and that it is no more than $50,000,

respectively.
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Table 1: List of predicates representing a rule in ASP.

Predicate Meaning

rule(X) X holds the rule index.

condition(X,I) Rule X has condition I.

support(X,S) Support S of rule X, the number of instances that is covered by rule X.

size(X,L) Number of conditions in rule X (length, L).

error_rate(X,E) Error rate (1−accuracy), E, of the rule X evaluated in the training data.

accuracy(X,A) Accuracy score of rule X.

precision(X,P) Precision score of rule X.

recall(X,R) Recall score of rule X.

f1_score(X,F) F1-score of rule X.

predict_class(X,C) Predicted class label C of rule X.

By constructing the candidate rule set R in this way, the bodies (antecedents) of rules included in

rule sets are guaranteed to exist in at least one of the trees in the tree ensemble. Rule sets generated in

this manner are therefore faithful to the representation of the original model in this sense. If we were

to construct rules from the unique set of split conditions, the resulting rule may have combinations of

conditions that may not exist in any of the trees.

4.3 Computing Metrics and Meta-data for Selection

After the candidate rule set R is constructed, we gather information about the performance and properties

of each rule and collect them into a set M. Performance metrics, in general, measure how well a rule can

predict class labels. Examples of widely adopted performance metrics in machine learning are: accuracy,

precision, recall and F1-score. We compute multiple metrics for a single rule, to meet a range of user

requirements for interpretation. For example, one user may only be interested in simply most accurate

rules (maximize accuracy), whereas another user could be interested in more precise rules (maximize

precision), or rules with more balanced performance (maximize F1-score). The meta-data, or properties,

of a rule are information such as the size of the rule, as defined by the number of conditions in the rule, or

the number of instances which are covered by the rule. These properties can be used in the selection step

to define competing objectives. For example, one can expect a very long rule with relatively large number

of rules to be precise, but the rule may be too specific and may not cover many instances. Moreover, a

long rule is more difficult to comprehend than a short, concise rule. In this case, the size property needs

to be minimized, while the precision metric is maximized.

The candidate rule set R and meta-data set M are represented as facts in ASP, as shown in Table 1.

For example, the first rule in Section 4.2 may be represented as follows4:

% rule 1

rule(1). condition(1,1). condition(1,2). condition(1,3). support(1,10).

size(1,3). accuracy(1,50). error_rate(1,50). precision(1,30).

recall(1,40). f1_score(1,34). predict_class(1,1).

4The performance metrics are for illustration purposes only and are chosen arbitrarily.
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4.4 Encoding Constraints

For the rule set generation task, we consider three types of constraints: (1) local constraints that are

applied on a per-rule basis, for example, to select rules that meet the minimum support threshold, (2)

pairwise constraints that are applied to pairs of rules, which include dominance relations, and (3) global

constraints that are applied to a set of rules, for example to control the total number of conditions in the

rule set.

To encode local constraints, a predicate valid(X) is introduced, to specify that a rule(X) is valid

whenever invalid(X) cannot be inferred:

valid(X) :- rule(X), not invalid(X).

This example of a local constraint eliminates rules with low support:

% this will eliminate rules that apply to less than 10 instances

invalid(X) :- rule(X), support(X,S), S < 10.

Pairwise constraints can be used to encode dominance relations between rules. For a rule X to be

dominated by Y, Y must be strictly better in one criterion than X and at least as good as X or better in

other criteria. For example, in the following case we encode the dominance relation between rules using

the F1 score, support and size of the rule, where we prefer rules that are small (more interpretable), have

higher support (covers more instances) and perform well (higher F1 score).

% cannot be dominated

:- dominated.

% X is dominated by Y if ...

ge_f1_leq_size_geq_sup(Y) :- selected(X), valid(Y), size(X,Sx), size(Y,Sy),

f1_score(X,Fx), f1_score(Y,Fy), support(X,Spx), support(Y,Spy),

Fx < Fy, Sx >= Sy, Spx <= Spy.

geq_f1_le_size_geq_sup(Y) :- selected(X), valid(Y), size(X,Sx), size(Y,Sy),

f1_score(X,Fx), f1_score(Y,Fy), support(X,Spx), support(Y,Spy),

Fx <= Fy, Sx > Sy, Spx <= Spy.

geq_f1_leq_size_ge_sup(Y) :- selected(X), valid(Y), size(X,Sx), size(Y,Sy),

f1_score(X,Fy), f1_score(Y,Fy), support(X,Spi), support(Y,Spy),

Fx <= Fy, Sx >= Sy, Spx < Spy.

dominated :- valid(Y), ge_f1_leq_size_geq_sup(Y).

dominated :- valid(Y), geq_f1_le_size_geq_sup(Y).

dominated :- valid(Y), geq_f1_leq_size_ge_sup(Y).

Global constraints are applied to rule sets in addition to the local and pairwise constraints and pref-

erences. For example, the following ”generator” encoding puts a limit on the maximum size of rule sets

that are considered:

% pick at least 1 rule and at maximum 10 rules for each predict_class

1 { selected(X) : predict_class(X, K), valid(X) } 10 :- class(K).

This encoding will select at least 1 and up to 10 valid rules for each class label K. The properties of rule

sets can also be used to construct constraints. For instance, one can put restrictions the maximum number

of conditions in rule sets, using the aggregate atom #sum:

% total number of conditions should not exceed 30

:- #sum { S,X : size(X,S), selected(X) } > 30.
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Exact set of constraints and preferences depend on the problem domain, use-case and/or intention of the

user. The expressiveness of the ASP language allows one to represent constraints in a declarative manner

under the semantics of logic programming.

4.5 Optimizing Rule Sets

Finally, we pose the rule set generation problem as a multi-objective optimization problem, given afore-

mentioned facts and constraints encoded in ASP. The desiderata for generated rule sets may contain

multiple competing objectives. For instance, we consider a case where the user wishes to collect accu-

rate rules that cover a large number of instances, while minimizing the number of conditions in the set.

This is encoded as a group of optimization statements:

% maximize accuracy and support, minimize the number of conditions

#maximize { A,X : selected(X), accuracy(X,A)}.

#maximize { S,X : selected(X), support(X,S)}.

#minimize { L,X : selected(X), size(X,L)}.

For optimization, we introduce a measure of overlap between the rules to be minimized. Intuitively,

minimizing this objective should result in rule sets where rules share only a small number of conditions,

which should further improve the interpretability of the resulting rule sets. Specifically, we introduce a

predicate rule_overlap(X,Y,Cn) to measure the degree of overlap between rules X and Y.

% number of shared conditions between rules

rule_overlap(X,Y,Cn) :- selected(X), selected(Y), X!=Y,

Cn = #count { Cx : Cx=Cy, condition(X,Cx), condition(Y,Cy) }.

#minimize { Cn,X : selected(X), selected(Y), rule_overlap(X,Y,Cn) }.

5 Experiments

We evaluate our rule set generation framework on several public datasets and compare the performance

to existing methods including rule-based classifiers.

5.1 Experimental Setup

We used 10 publicly available datasets from the UCI Machine Learning Repository5 [9]. The summary

of these datasets is shown in Table 2. We used Clingo 5.4.06 [13] for answer set programming, and

set the time out to 600 seconds.7 We used RIPPER implemented in Weka [31] and an open source

implementation of RuleFit8 where Random Forest was selected as the rule generator, and scikit-learn9

[28] for general machine learning functionalities. Our experimental environment is a desktop machine

with Ubuntu 18.04, Intel Core i9-9900K 3.6GHz (8 cores/16 threads) and 64GB RAM.

In order to evaluate the performance of the extracted rule sets, we implemented a naive rule-based

classifier which is constructed from the rule sets extracted with our method. In this classifier, we apply

the rules sequentially to the validation dataset and if all conditions within a rule are true for an instance

5https://archive.ics.uci.edu/ml/index.php
6https://potassco.org/clingo/
7Full ASP encoding of our method is available in the supplementary materials.
8https://github.com/christophM/rulefit
9https://scikit-learn.org/

https://archive.ics.uci.edu/ml/index.php
https://potassco.org/clingo/
https://github.com/christophM/rulefit
https://scikit-learn.org/
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Table 2: Datasets used in the experiments. #data and #feature refer to the number of data points (rows)

and features (columns), respectively. The number of categorical features is shown in parenthesis.

Dataset # data # feature y = 1

autism 704 20 (18) screening result

breast 699 9 (9) malignant

census 299,286 42 (29) income > 50k

credit a 690 14 (8) application accepted

credit t 30,000 23 (10) payment next month

heart 270 13 (8) disease present

ionosphere 351 34 (0) good radar return

kidney 400 24 (13) chronic disease

krvskp 3,196 36 (36) white can win

voting 435 16 (16) democrat

in the dataset, the consequent of the rule is returned as the predicted class. More formally, given a set of

rules Rs ⊂ R with cardinality |Rs| that shares the same consequent class(Q), we represent this rule-based

classifier as the disjunction of antecedents of the rules:

class(Q)⇐ body(R1)∨body(R2)∨ ...∨body(Rr) where 1 ≤ r ≤ |Rs|

For a given data point, it is possible that there are no rules applicable, and in such cases the most common

class label in the training dataset is returned.

We conduct the evaluation experiment in the following order. First, we train Random Forest and

LightGBM on the datasets in Table 2. We then apply our rule set generation method to the trained tree-

ensemble models. Finally, we construct a naive rule-based classifier using the set of rules extracted in

the previous step, and calculate performance metrics on the validation set. This process is repeated in a

5-fold stratified cross validation setting to estimate the performance. We compare the characteristics of

our approach against the known methods RIPPER and RuleFit.

Table 3: Average number of candidate rules (|R|), size of the generated rule sets (# rule), averaged over

5 folds. Hyphen indicates a failure case where no rules could be found.

LightGBM+ASP RandomForest+ASP RuleFit RIPPER

Dataset |R| # rule |R| # rule # rule # rule

autism 2.0 1.0 59.8 7.6 3.0 2.0

breast 131.2 2.8 27.8 8.8 55.8 13.0

census 8806.8 9.0 - - 304.0 54.7

credit a 275.2 3.8 123.4 7.4 55.2 7.0

credit t 2098.4 6.6 - - 187.8 7.4

heart 159.6 2.8 47.6 8.8 40.8 6.2

ionosphere 314.4 5.2 1127.0 9.8 272.0 7.0

kidney 179.6 3.2 101.0 5.8 160.6 4.4

krvskp 140.8 7.6 69.6 10.0 240.4 16.4

voting 59.6 1.4 45.2 3.4 44.0 6.2
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Table 4: Average ratio of rule-based classifier’s performance vs. original tree-ensembles. Acc.=accuracy,

Prec.=Precision, Rec.=Recall and F1=F1 score. Performance ratio of 1 means the rule set’s performance

is identical to the original classifier. Hyphen indicates a failure case where no rules could be found.

LightGBM+ASP RandomForest+ASP RuleFit

Dataset Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

autism 1.00 1.00 1.00 1.00 0.70 0.47 1.20 0.69 1.05 1.00 1.21 1.11

breast 0.75 0.62 1.05 0.77 0.76 0.61 1.08 0.78 1.01 1.00 1.03 1.01

census 0.37 0.12 2.01 0.27 - - - - - - - -

credit a 0.81 0.78 0.99 0.85 0.94 0.89 1.05 0.96 1.02 0.97 1.10 1.03

credit t 0.39 0.35 2.49 0.79 - - - - - - - -

heart 0.83 0.79 0.99 0.85 0.69 0.59 1.40 0.86 1.04 0.98 1.17 1.08

ionosphere 0.80 0.85 0.93 0.87 0.69 0.71 1.01 0.83 1.01 1.03 0.98 1.00

kidney 0.74 0.73 0.99 0.83 0.63 0.64 1.00 0.78 1.01 1.01 1.00 1.00

krvskp 0.78 0.73 0.93 0.82 0.58 0.60 1.03 0.75 1.09 1.14 1.02 1.08

voting 0.94 0.95 0.95 0.95 0.66 0.64 1.08 0.81 1.03 1.01 1.04 1.02

5.2 Number of Rules

The average number of rules extracted from the data is shown in Table 3. RuleFit includes original

features (called linear terms) as well as conditions extracted from the tree-ensembles in the construction

of a sparse linear model, that is to say, the counts in Table 3 may be inflated by the linear terms. On

the other hand, the output from RIPPER only contains rules, and RIPPER has rule pruning and rule

set optimization to further reduce the rule set size. Moreover, RIPPER has direct control over which

conditions to include into rules, whereas our method and RuleFit relies on the structure of the decision

trees to construct rules.

Our approach consistently produces smaller rule sets compared to RuleFit, and the rule sets are

comparable in size to, or smaller than, those produced by RIPPER. Comparing the size of the candidate

rule set |R| with the size of rule sets, our method can produce rule sets which are significantly smaller

than the original model. Overall, in terms of the number of rules in the final rule set, where smaller count

is desirable for better interpretability, LightGBM+ASP performed the best, followed by RIPPER. The

failure cases with Random Forest (census and credit t datasets) occurred due to leaf-only trees. Because

leaf-only trees have no split conditions, rules could not be extracted and our method produced no rule

sets as a result.

5.3 Relevance of Rules

To quantify the relevance of the extracted rules, we measured the ratio of performance metrics using

the naive rule-based classifier by 5-fold cross validation (Table 4). Performance ratio of less than 1.0

means that the rule-based classifier performed worse than the original classifier (LightGBM and Random

Forest), whereas performance ratio greater than 1 means the rule set’s performance is better than the

original classifier.

From Table 4 we observe that this particular encoding yields rules that have good recall, but other

metrics could suffer especially in larger datasets such as census and credit t. In this instance, F1-score

was used to define dominance relations in the ASP encoding, and the performance is mostly comparable

with the original model, with the exception of the census dataset where the F1-score was noticeably
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worse. For this evaluation, we did not set any restrictions on the number of rules RuleFit could have, and

it performs as well as the original Random Forest classifier in most cases.

5.4 Changing Optimization Criteria

The definition of optimization objectives has a direct influence over the performance of the resulting rule

sets, and the objectives need to be set in accordance with user requirements. Because the solution space

is bound by the constraints, changing the optimization statements by themselves may not give desired

solutions. In an extreme case, e.g., LightGBM+ASP on the autism dataset, there is only 1 candidate rule

to begin with and changing the optimization statements (e.g., more weight on precision) will have no

effect on the final solution.

The answer sets found by clingo with multiple optimization statements are optimal with respect to

the set of goals defined by the user. Instead of using accuracy one may use other rule metrics as defined

in Table 1 such as precision and/or recall. If there are priorities between optimization criteria, then one

could use the priority notation (weight@priority) in clingo to define them. Optimal answer sets can

be computed in this way, however, if enumeration of such optimal sets is important, then one could use

the pareto or lexico preference definitions provided by asprin [4] to enumerate Pareto optimal answer

sets. Instead of presenting a single optimal rule set to the user, this will allow the user to explore other

optimal rule sets.

6 Conclusion

In this work, we presented a method for generating explainable rule sets from tree-ensembles using pat-

tern mining techniques encoded in ASP for the interpretation of tree-ensembles. Adopting the declarative

programming paradigm with ASP allows the user to take advantage of the expressiveness of ASP in rep-

resenting constraints and preferences. This makes our approach particularly suitable for situations where

fast prototyping is required, since changing the constraint and preference settings require relatively low

effort compared specialized mining algorithms. Useful interpretations can be generated using our ap-

proach, and combined with the expressive ASP encoding, we hope that our method will help the users of

tree-ensemble models to better understand the behavior of such models.

A limitation of our method in terms of scalability is the size of search space, which is exponential in

the number of valid rules. When the number of candidate rules is large, we suggest using stricter local

constraints on the rules, or reducing the maximum number of rules to be included into rule sets (Section

4.4), in order to achieve reasonable solving time.

There is a number of directions for further research. First, while the current work did not modify

the conditions in the rules in any way, rule simplification approaches could be incorporated to remove

redundant conditions. Second, we could extend the current work to support regression problems. More

generally, in future, we plan to explore how ASP and modern statistical machine learning could be

integrated effectively to produce more interpretable machine learning systems.
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