Securing Open Source Clouds Using Models

Irum Rauf Elena Troubitsyna
Abo Akademi University, Turku, Finland Abo Akademi University, Turku, Finland
irum.rauf@abo.fi elena.troubitsyna@abo.fi

The widespread adoption of cloud computing has resulted in proliferation of open source cloud com-
puting frameworks that give more control to enterprises over their data and networks. Though, the
benefits of the open source software are widely recognized, there is a growing concern over their
security assurance. Often open source software is a subject of frequent updates. The updates might
introduce or remove a variety of features and hence violate security properties of the previous re-
leases. Obviously, a manual inspection of security would be prohibitively slow and inefficient. In
this work, we propose an automated approach that can help developers to assure security of open
source cloud framework even in the presence of frequent releases. Our methodology consists of cre-
ating a (stateful) wrapper that emulates the usage scenarios with explicit representation of security
and functional requirements as contracts. We use a model-driven approach to model REST APIs of
KeyStone, an identity service in OpenStack. Openstack is an open source cloud computing frame-
work providing IaaS. Our models define structural and behavioral properties of Keystone together
with its security requirements. We detail the implementation of these models in Django Web Frame-
work and also show how to use the behavioral interfaces to implement a service monitor for the cloud
services. This mechanism facilitates verification and validation of functional behavior and security
requirement in an automated manner.

1 Introduction

Open source cloud frameworks allow their customers to build their own private Infrastructure as a Service
(IaaS). IaaS provides Virtual Machines (VMs) under the pay-per-use business model [17]. The source
code of Open Source (OS) clouds is distributed publicly. Moreover, often software is developed in a
collaborative manner that makes it a subject of frequent updates. These updates might introduce or
remove a variety of features and hence, violate the security properties of the previous releases.

Assuring the security of opensource clouds is an important concern for cloud providers. Often open
source clouds use REST architectural style to offer their APIs. REST offers a different architectural style
to invoke remote services in contrast to contemporary SOAP-based services. Its different architecural
style motivates the need to develop novel design and security assurance methodologies to handle its
stateless protocol for developing stateful services. Stateful services can have different states that a service
must go through during its lifecycle. It requires a certain sequence of method invocations that must be
followed in order to fulfill the functionality a service promises to deliver to its users. In this work, we
propose a methodology that consists of creating a (stateful) wrapper that emulates the usage scenarios
and contains an explicit representation of security and functional requirements as contracts.

We adopt a model-driven approach — Security and Rest compliant UML Models (SecReUM) — that
builds on the theory presented in [22] to create a security-validating wrapper. We define the structural
interface of a REST API using UML class diagram. The usage scenarios — the dynamic behaviors
— are represented as state diagrams. These models lead to RESTful interfaces, describe the behavior
of operations in terms of preconditions and postconditions and also facilitate the specification of the
authentication mechanism. In this work, we demonstrate how to generate contracts defining the security

R. Laleau, D. Méry, S. Nakajima, E. Troubitsyna (Eds): Joint Workshop on
Handling IMPlicit and EXplicit knowledge in formal system development

and Formal & Model-Driven Techniques for Developing Trustworthy Systems.
EPTCS 271, 2018, pp. 80-94, doi:10.4204/EPTCS.271.6

© Irum Rauf & Elena Troubitsyna
This work is licensed under the
Creative Commons Attribution License.

http://dx.doi.org/10.4204/EPTCS.271.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Irum Rauf & Elena Troubitsyna 81

properties as pre- and post-conditions using these models and implement them as a wrapper for the cloud
implementation.

The approach is implemented as a wrapper in Django Web Framework [13] for the KeyStone com-
ponent of OpenStack. OpenStack is an open-source software platform for cloud computing that offers
REST interfaces to provide IaaS (Infrastructure as a Service)[25]. Keystone offers identity service in
OpenStack for authentication and authorization.

The paper is organized as: Section 2 briefly explains Keystone and its interface. Section 3 presents an
overview of our overall approach. Section 4 explains our modeling approach for REST APIs with stateful
behavioral and section 5 shows the generation of contracts with security concerns. The implementation
of the approach is presented in section 6. Section 7 and section 8 show the applications of our work and
the related work, respectively. The paper is concluded in section 8.

2 Keystone Open Stack

Keystone is the centralized identity service of OpenStack that offers authentication and authorization
[25]. KeyStone authenticates a user by generating a token. A token can either be scoped or unscoped
depending on the client’s request and the configured policy of KeyStone. An unscoped token authenti-
cates a user without authorising for any project. In contrast, a scoped token provides the authorization
information of the user for a particular project or domain.

KeyStone offers REST API in compliance with OpenStack policy [3]. REST services expose their
functionality as resources and each resource has a unique URI that provides addressability. CRUD
(create, retrieve, update and delete) operations can be performed on resources using standard HTTP
methods. This means that only HTTP request methods (GET, PUT, POST, DELETE) can be invoked on
KeyStone resources. In order to offer scalability, the statelessness feature of REST is ensured by treating
every request independently without requiring any session or cookie information from user requests.
Each resource, when invoked via its URI and a standard HTTP method, replies with a status code and a
resource representation, which contains the data about the resource attributes and links to other resources.
The HTTP response code is a numeric code that tells the clients whether the request went successfully.
HTTP has a list of status codes that reveal how the request went [7], for example, 200 means the request
was successful, 404 means the resource was not found and 403 implies that it is forbidden to make this
request on this resource. The client machine interpret these response codes to know how their request
went.

3 Overall Approach

In this section we give an overview of our overall approach to create security-validating wrapper. The
approach is presented in Figure 1. It consists of two main steps 1) Designing SecReUM and 2) Imple-
menting wrapper with behavioral contracts.

The specifications and implementation of the open source cloud frameworks, that are publicly avail-
able, are taken as input. The security requirements for the system are provided by security experts and
also taken as an input. These three entities are shown as grey boxes in Figure 1 to indicate their avail-
ability beforehand.

In the first step, Security and REST compliant UML Models (SecReUM) are designed using our
approach detailed in Section 4.

82 Securing Open Source Clouds Using Models

In the second step, we build upon the design by contract strategy and generate contracts that define
the security properties from SecReUM that are implemented as code skeletons in the wrapper program.
The code-skeletons can be generated using our tool presented in [23]. The tool generates code skeleton
for design models in Django that is a high level Python web framework [12].

A wrapper program is capable of invoking another program, perhaps with a larger body of code,
by providing an interface to call. Our code skeletons, generated for the security-validating wrapper,
has behavioral information, i.e., contracts for each method and the developer just has to write the im-
plementation of the operations, i.e., invocation to the cloud implementation. Contracts use pre- and
post-conditions for the methods to define correctness conditions of the program. They are capable of
detecting a change in the state of the program and identifying when a certain piece of code violates the
pre-defined conditions. Moreover, they can be used for fault localization. Our approach builds upon
these features offered by contracts and invoke the cloud implementation through our wrapper program
to validate if the cloud implementation conforms to its security specifications.

Our approach can be used by an in-house developer, a designer of the cloud of an organization or
a security expert to validate if the implementation of the cloud is as specified. As shown in Figure 1,
user invokes the wrapper with the right method call. The wrapper program checks the user request and
invokes the cloud implementation only if the pre-conditions for that method are satisfied. The wrapper,
thus, constraint the user to invoke the service under the right conditions. This information can be used
by security experts to know whether a method can be invoked on the cloud implementation if different
resources of the service are not in the specified or required state. Similarly, the response from the cloud
implementation is received by the wrapper and checked to see if it satisfies the post-condition for that
method. The corresponding response to the user is only given if the post-condition for that method is
satisfied. The post-condition, thus, constraint the implementation to provide the correct functionality
and fulfill the security concerns expected from it. This gives security experts the information whether
a feature is removed or updated in the cloud implementation that was not intended during the update
resulting in functional incorrectness or compromise on the expected security features.

Open Source
Cloud
Specifications

Security and REST
compliant UML
Models(SecReUM)

Designing

Implementing
Wrapper

Security
Requirements Method Calls Wrapper with Contracts and Security
\/\ @ to Wrapper Requirements

—_—P

Developer/Security

Expert/ Designer KeyStorje API

Method Invocations

Open Source Cloud Implementation

Figure 1: Model-Driven Framework for Security Assurance

Irum Rauf & Elena Troubitsyna 83

4 Modeling approach for SecReUM

REST APIs use stateless protocol but they can be used to create applications with complex stateful be-
havior. Stateful behavior requires that methods are invoked in a particular sequence to fulfill a specific
goal. For example, in order to delete a user in KeyStone, the user must first authenticate herself in ad-
min role and also get a valid scoped token. The stateless feature of REST implies that every method is
treated independently without requiring information about the methods invoked earlier by not keeping
any hidden state or session information. All the methods in REST API are self-contained, i.e., all the
information required to invoke the method is contained in the invoked method. By adopting this archi-
tecture style, scalable services can be offered. However, in addition to preserving sequence of method
calls, stateful behavior also offers information about the conditions under which these methods should
be invoked in order to fulfill service goals. This information can be used in a variety of ways in order
to determine if the service continues to offer the functional and non-functional properties it promises to
deliver. In this section, we present our approach to model stateful services using REST architecture style.

In section 4.1 and section 4.2, we present resource model as UML class diagram and behavioral
model with UML state machine, respectively, with additional constraints to represent REST features.
Figure 2 and Figure 3 gives an excerpt of REST interface of KeyStone as an example.

4.1 Resource Model:

A UML class diagram represents the classes of a software and the associations between them. An associ-
ation defines a relationship between two classes by which one class knows about the other class [28]. We
are using UML class diagram with additional design constraints to represent resources, their properties
and relation with each other. The concept of a resource is central to Resource Oriented Architecture
(ROA). ROA is a structural design that fulfills design criteria presented by REST [24]. A resource is
something that can be referred to and can have an address. Any important information in a service
interface is exposed as a resource.

We have used the term resource definition to define resource entity such that its instances are called
resources. This is analogous to the relationship between a class and its objects in object oriented
paradigm.

In our resource model, we represent resource definitions as classes. A resource is an instance of a
resource definition, analogous to the object of a class. A collection resource definition is represented by a
class with no attributes and a normal resource definition has one or more attributes. Each association has
a name and minimum and maximum cardinalities. These cardinalities define the minimum and maximum
number of resources that can be part of the association.

In Figure 2, there are four collection resource definitions, i.e., projects, tokens, users and roles, and
five normal resource definition, i.e., SecKS, token, role, user and project where SecKS represents our
wrapper program capable of invoking resources in KeyStone. A collection resource definition is rep-
resented by classes that have no attributes and their name starts with collection_. It has one outgoing
transition with multiplicity of 0...* for the contained resource definition indicating that a collection re-
source can have none or many resources. A GET method on a collection resource returns a list of all the
child resources it contains

We require that every association must have a role name in order to form URI addresses.The attributes
of classes must be public since the representation of a resource is available for manipulation and they
must have a type since they represent a document containing information of the resource, i.e. an XML
document or a JSON serialized object.

84 Securing Open Source Clouds Using Models

SecKS)| collection_tokens 0..’| token

{tokenid)] + token: object
+ X-Subject-Token: string
+ issued_at: string

—I

- P>
+processing: Boolean tokens

projects y0..* users 0.*

N - - collection_roles
collection_projects 0..* collection_users i
{roleid}

users

0. + role: object
- +id: string

+ links: object

+ name: string

+ id:string

Figure 2: Resource Model for KS Security Wrapper(SecKS)

4.2 Behavioral Model:

The purpose of the behavioral model is to describe the dynamic structure of the behavioral interface of a
REST service and is represented by a UML state-machine. Figure 3 shows an excerpt of the behavioral
interface of KeyStone with wrapper and provides information on what methods a user can invoke on a
resource and under what circumstances. Any client can invoke the service to request the token but only
an admin user (shown as an actor) can delete a user. Only if the client is valid, the token is generated.

A UML state-machine has transitions that are triggered by method calls and each state has a state
invariant. State invariant is a boolean condition that evaluates to true when the service is in that particular
state. Otherwise it evaluates to false.

In our work, we define the invariant of a state using OCL [19] as a boolean expression over ad-
dressable resources. In this way, the stateless nature of REST remains uncompromised since no hidden
information about the state of the service is being kept between method calls.

In Figure 3, state invariant for state Token_Not_ Granted is written as an OCL expression:
Token.token— > size() =0 and sel f.processing = False. Here, Token.token— > size() = 0 implies
that the response for invoking GET on token resource was not 200, meaning either the resource does not
exist or is not reachable to infer anything about its state. Similarly, an OCL expression Token.token— >
size() = 1 implies the response for invoking GET on token resource was 200, meaning the resource
exists. The state invariant:

[sel f.processing = False and Token.token— > size() =1] and User.id— > size() =1 and
token.expires_at <= clockTime for Token_Issued specify that whenever a token is requested, a token
is issued if the authorized user exists in the database, expiration time of token is less than the current
time of the system and the wrapper is not processing the request (an asynchronous call from wrapper to
KeyStone). Thus, in order to define state with stateless REST protocol, we define the state invariant as a
predicate over resources.

In addition, we constrain our behavioral model to have only side-effect methods, i.e., PUT, POST
and DELETE methods as method calls for a transition. This is because only these HTTP methods are
capable of making any changes to resources.

Irum Rauf & Elena Troubitsyna 85

. Token_Not_Granted
t2a: -
resp_code=404
[self.processing = False and Delete User
Token.token->size()=0 | _

[Token.token->size()=1 and
User.id->size()=0 and

t2b:resp_code =200 . - forall _
¢ Projects:Project.id.User.id.roles->size()=0]

(Token_Issued \

[self.processing = False and Admin
Token.token->size()=1 and
User.id->size()=1 and
token.expires_at<=clockTime]

t1:POST(../wrapper/token)

Token_Requested
t2:POST(../v3/auth/tokens)

[self.processing
= True]

Sec.Req 1.1 OR Sec.Req
1.2 OR Sec. Req 1.3 OR
Sec.Req 1.4 OR Sec.Req 2.1
OR Sec.Req 2.2

t3:DELETE(../v3/users/{user_id})
[User.id->size()=1]

Figure 3: Behavioral Model for KS Security Wrapper(SecKS)

5 Generating Contracts from SecReUM

The stateful behavior of a software requires a certain order of method invocation. These condition under
which the methods can be invoked are called contracts, i.e., the pre- and post-conditions of a method.
This information together with the expected effect of an operation become part of the behavioral interface
of a service. Our design approach preserves the sequence of method invocations and contains behavioral
information specifying the conditions under which these methods can be invoked.

5.1 Method Contract with Functional Requirements

The method contracts can be generated from the behavioral model. The precondition of a method should
be true in order to fire the method in the behavioral model because it defines the conditions under which
a method is allowed to be invoked by the client. We say that if a method m triggers a transition ¢ in a
state machine, then the precondition for method m is true if the invariant of the source state of transition ¢
and the guard on ¢ is true. The post-condition constraints the implementation to provide the functionality
expected from it as specified in its specification document. Thus, the post-condition states that if the
precondition for invoking a method is true then its post-condition should also be true. We say, that the
postcondition of method m is true if the conjunction of state invariant of the target state of # and the
effect on transition ¢ is true provided its pre-condition is true. The implication principle encompasses the
stateful behavior since the same method can be fired from different states of the system and have different
results. Thus, if the method is fired with certain pre-conditions then the corresponding post-condition for
that method should be true.

The re-evaluation of the precondition of a method for evaluating the post-condition may not return
the same values, i.e., before the method execution, since after the method execution values of some
of the resources may change. This situation is kept safe by saving the resource values before method
execution in local values in the wrapper. The values of these variables are later used to calculate the
post-condition. We believe this is not computationally expensive as we do not need to save the copy of
the whole resource/s but only the values that constitute guards and invariants that are enabled. Usually,
that only requires a few bits of storage per method.

For detailed description on how contracts are generated from state-machines under different scenar-
10s, readers are referred to [21].

86 Securing Open Source Clouds Using Models

Table 1: Requirements for Authentication in KeyStone (excerpt)
No. | If Then
1.1 | User is valid and has not given an unscoped token should
be generated

scope information

1.2 | User is valid and has explicitly requested
unscoped token

1.3 | Token is valid and has not given

scope information

1.4 | Token is valid and has explicitly
requested unscoped token

2.1 | User is valid and has valid scope information | a scoped token should be
generated

2.2 | Token is valid and has valid scope information

5.2 Security Requirements in OCL

The security requirements are usually specified by security experts. We assume that they are represented
in tabular format for each method. Security specifications are then translated to OCL manually. These
OCL-based security requirements become part of method contract during code transformation process
as shown in section 5.3.

The functional and security requirements for Keystone at the application level are not clearly separa-
ble. This is because the KeyStone functionality is to validate the identity of the user, his roles, and access
rights before generating scoped or unscoped token. The security requirements on KeyStone also im-
pose the same semantics. We classify them under security requirements since the security experts expect
these behaviors from KeyStone at the application level to assure its security. We explain our approach
with two important security concerns, authentication and authorization. Authentication is explained with
transition ¢2 and authorization is explained with transition #3.

5.2.1 Authentication

Authentication is an important security concern that requires that only the user with the right credentials
is able to enter the system. It is also considered as one of the top three security concerns addressed by
the existing model-driven security engineering approaches [18]. In Figure 3, an authentication request to
KeyStone triggers transition t2. The security requirements attached to t2 are listed in Table 1.

These security requirements are written in OCL. For example, the security requirement for scoped
token is written as:

((user.credential —>size ()=1 or token.token—>size()=1) and
(request.scope—>size ()=1 and not request.scope.ocllsInvalid())) => (token.token—>size ()=1)
and token.catalog—>size ()=1)

In Table 1, the security requirements specify different conditions under which scoped and unscoped
tokens are issued and are written in the if-else format on resources and resource attributes. The secu-
rity requirements can also be in a statement form enforcing some rule, for example, the authorization
requirement explained in the next section.

Irum Rauf & Elena Troubitsyna 87

5.2.2 Authorization

Authorization defines access rights of users by defining permissions on the user, user roles, and user
groups. KeyStone determines whether a request from the user should be accepted based on the policy
rules defined in Role Based Access Control (RBAC). In Figure 3, ¢3 can only be fired by an admin user.
In addition, the guard value shows that the user to be deleted should have initially existed in the system.
The information about actors in the behavioral model can be realized in two ways.
1) The developer can use this information to implement the access rights on resources and help users
in understanding and writing correct authorization headers. Different authentication mechanisms can be
implemented to control access to resources [2]. If the Basic authentication mechanism is implemented,
the client sends the username and password to the server in the authorization header. The authentication
information is in base-64 encoding. It should only be used with HTTPS, as the password can be easily
captured and reused over HTTP.

For KeyStone, authorization to resources is checked with token. A typical call from curl to access
User resource using user’s foken is given as:

curl —s \ —H "X—Auth—Token: $OS_.TOKEN” \ “http ://localhost:5000/v3/users”

2) It becomes part of the method contract. The security requirement for the authorization is: Only an
admin user can delete a user. In OCL, it is written as: user.role =' admin’.

This can be specified in UML as notes (not shown in Figure 3 due to space limitation). In the next
section, we define rules on how they become part of the method contract.

5.3 Method Contracts with Functional and Security Requirements

The security requirements are merged with functional requirements during the translation process to
code. In our example, the KeyStone service is invoked by POST method on the token resource
(POST(../v3/auth/tokens)). We populate our definition of contracts with security requirements given
above such that:

e The statement in if clause becomes part of the method pre-condition
e The statement in else clause become part of the method post-condition

e The statement/s that are not part of if-else clause become part of both the pre- and post-conditions.
By checking the rule in pre-condition, the user request is validated before processing the method
and causing undesired changed in the system. By placing in the post-condition, the system is
validated that it behaves as expected and without side effects. This serves as a double check on
security requirements.

We, thus, require that for KeyStone to generate a token, the following method contract must be met:

PreCondition (POST (../v3/auth/tokens)):

[(self.processing = True and (user.credential —>size ()=1 or

token.token—>size ()=1 and token.expires_at—> <= clockTime])

and

((request.scope—>size ()=1 and request.scope <> ’unscope’ and not request.scope.oclIsInvalid())
or (request.scope—>size ()=0 or request.scope.ocllslnvalid () or

request.scope = ‘unscope’))]

PostCondition (POST (../v3/auth/tokens)):
[((user.credential —>size ()=1 or

88 Securing Open Source Clouds Using Models

token .token—>size ()=1 and User.id—>size ()=1 and

token.expires_at <= clockTime$) and

((request.scope—>size ()=1 and request.scope <> ’‘unscope’ and not
request.scope.ocllsInvalid ())=>

(self.processing = False and token.token—>size ()=1 and token.catalog—>size ()=1))

or ((self.processing = True and request.scope—>size ()=0 or request.scope.ocllsInvalid() or

request.scope = ‘unscope’) => (self.processing = False and token.token—>size ()=1 and
token.catalog—>size ()=0))]

The preconditions in the listing above show the boolean expression that should be true for invoking
a POST on KeyStone for either scoped or unscoped token. The postcondition circumscribes different
scenarios for scoped and unscoped token. In order to return an unscoped/ scoped token, the previous
values, i.e. the values before method invocation, are checked. If the previous values require an unscoped/
scoped token then the response of method calls are checked to ensure if unscoped/ scoped token is
actually delivered. The previous values, i.e., the values before the method invocation are stored as local
variables in the wrapper program.

For authorization, the method contract for DELETE on user resources is given as:

PreCondition (DELETE (../v3/users/{user-id }))):

[self.processing = False and token.token—>size ()=1 and
user .id—>size ()=1 and token.expires_at <= clockTime
and user.role="admin’]

PostCondition (DELETE (../v3/users/{user_id })):
[(self.processing = False and token.token—>size ()=1 and
user .id—>size ()=1 and token.expires_at <= clockTime
and user.role="admin’) =>

(token.token—>size ()=1 and user.role="admin’ and

user .id—>size ()=0)]

In this listing, user.role =" admin’ is checked before invoking DELETE method on User resource
to ensure that user with the right credentials is making the desired change in the system. Interestingly,
user.role =" admin’ is also a part of the post-condition, i.e., the credentials of the user are checked before
and after the method execution to ensure that the system change is made by the right user. This double
check of the security requirement for authorization provides added security and guards the system against
the malicious user during the communication.

6 Implementation of OpenStack and a Service Monitor

We deployed OpenStack on a separate machine as single node deployment using DevStack. The machine
had UBuntu 16.04 installed with 8GB RAM and i3 processor. The Keystone service was invoked using
OpenStack client and curl commands over the network using a machine with MacOS and 8 GB RAM. We
implemented our monitoring mechanism in Django [13] by using the behavioral and security information
present in our design model. At a glance, Django can be understood with its three basic files that support
separation of concerns, i.e. models.py, urls.py and views.py where models.py contain descriptions of
database tables, views.py contains the business logic and urls.py specify which URIs map to which view.
For a detailed working of Django Framework, readers are encouraged to read Django Documentation [10]
and Django Book [12].

The service monitor is implemented as a service proxy (wrapper). It listens for requests from the
cloud user, verifies the conditions to invoke the method and then forward it to the actual service imple-
mentation.

Irum Rauf & Elena Troubitsyna 89

A service monitor can be used to continuously verify the functionality of an implemented cloud ser-
vice. This monitoring mechanism checks that the open source cloud environment continues to follow its
security concerns despite frequent updates in the code by other developers. We consider our implemen-
tation of monitoring mechanism as a complementary approach to other security validation mechanisms.

In the current implementation, we validate security concerns of authentication and authorization. If
the cloud user does not invoke the cloud service with right credentials, the error messages are returned
back without invoking the cloud service. If the pre-conditions for invoking the method are met, the
method is invoked on the cloud service and the response is received from the cloud. The implemented
wrapper then goes through the response and verifies if the response from the cloud service is as expected,
i.e. according to the user’s request. For example, if the user has given credentials for the unscoped
token, then the cloud service should provide the unscoped token correspondingly. If the scoped token
is requested, then the cloud service should return the scoped token. Thus, the cloud user is checked
for an invocation to the service under right conditions and the cloud service is constraint to provide the
implementation as specified.

The main steps in our implementation phase are:

e Implement database tables in models.py
e Create views for each resource and its transitions in views.py
e Map relative URIs from resource model to respective views in urls.py.

Our models.py contain only one class kswrapper, i.e., the wrapper class as shown in the listing below
since our wrapper saves all the information required for processing requests. The other required pieces
of information are retrieved from the open source implementations through their REST APIs at runtime.

from django.db import models

class kswrapper(models.Model) :
ksDate = models.DateTimeField ()
tokenld = models.CharField (max_length=200)

Listing 1: Implementation of Database Model for KS wrapper

In the second step, a view is defined for each resource in our resource model. These views contain
information on allowed and not-allowed methods on resources retrieved from behavioral model and also
the contracts for these invocations. The incoming request to the view is verified against the allowed
methods and redirected to the view that supports the request method for the resource.

In a proxy interface for the KeyStone service, a POST method on the token resource for a scoped
token is implemented as:

def ks_token(request, body):
if not request.method in [”GET”, “POST”]:
return HttpResponseNotAllowed (["GET”, “POST”])
if request.method == "GET”:
bodyl = body
return ks_token_get(request, bodyl)
if request.method == "POST”:
bodyl = body
return ks_token_post(request, bodyl)

def ks_token_post(request, body):
parsed_json = json.loads (body)
sc_var=False
scopeVar= None
try:
scopeVar=parsed_json [auth”][”scope”]

90

Securing Open Source Clouds Using Models

if scopeVar:
sc_var=True
except KeyError:
print "The object does not have scope information”
sc_.var=False
scopeVar= None
req-method=parsed_json[”auth”]J[”identity”][”methods”][0]
if req.method == ”password”:
uname=parsed_json[”auth”]J[”identity”][”password”][user”]["name”]
un_flag=True # This means that request has username information
else:
if req-method=="token”:
tid = parsed_json[”auth”][”identity”][”methods”][0]
token_flag=True # This means that request has token information
req = urllib2 .Request(http://130.232.85.9/identity/v3/auth/tokens’ , body)
processing=True
req.add_header (”Content—Type”, application/json’)

if (processing==True and (un_flag == True or token_flag==True) and ((sc_var== True and
scopeVar != “unscope”) or (scopeVar== False or scopeVar != “unscope”))):
response = urllib2 .urlopen(req)
the_page = response.read()

processing=False
parsed_json2 = json.loads(the_page)
cat_var= False
try:
cat=parsed_json2[”token”][”catalog”]
if cat:
cat_var=True
except KeyError:
print "The object doesn’t have catalog information”
cat_var= False
response_headers = response.info ()
##skipping the extraction of other attributes like expires_at for token
token = response.info().getheader(’X—Subject—Token’) # getting token

body= “"token:”, token
if ((response.code == 200 or response.code == 201 and p==False and notExpired=True) and
((un_flag == True or token_flag==True) and (sc_var== True and scopeVar !=

“unscope”)) and (cat_var==True)):
for scoped token
T_type="T_type = Scoped Token:
body= str(body) + T_type

r = HttpResponse (the_page)
response = HttpResponse (body)

2

response . status_code = 200
return response

elif ((response.code == 200 or response.code == 201 and p==False and notExpired=True) and
((un_flag == True or token_flag==True) and (sc_var== False or scopeVar == “unscope”))

and (cat_var==False)):
for UNscoped Token
T_type="T_type = UNscoped Token: ”
body= str(body) + T_type
r = HttpResponse (the_page)
response = HttpResponse (body)
response . status_code = 200
return response

else:
print response.code
response = HttpResponse ()
response.status_code = 404
return response

Listing 2: Excerpt of POST view in Proxy Interface for POST on Token resource

The listing above follows the following algorithm:

Irum Rauf & Elena Troubitsyna 91

1) When an HTTP request comes for authentication to foken view (associated with token resource),
the request is filtered according to request method and redirected to the corresponding view. In the listing
above, we only show post view in detail.

2) The request body is parsed and checked to see if it has scope values. The scope flag (sc_var) is set
to true if scope values are present and otherwise false.

3) If the preconditions are satisfied, then the Keystone REST API is invoked with the authorization
header.

4) The response from the Keystone is parsed to check if it contains right information, e.g., does it
have catalog information. The response body from KeyStone for POST request on token contain catalog
information if it is a scoped token.

5) Different variable values, some of which were set earlier by parsing the request body before
method invocation to KeyStone API and some that were set by parsing response body after method
invocation to KeyStone API, are combined together in boolean expressions as explained earlier in section
5.3. Based on these conditions, successful or unsuccessful responses are given by the wrapper program.

In the real proxy interface, i.e. our wrapper, a method is implemented for each of the selected methods
that are invoked on the Keystone component of OpenStack using urllib2. urllib2 is a python module that
is used to fetch URLs [1]. The number of methods that are selected for implementation in the wrapper
can be reduced by selecting only those resources that are considered assets by security experts or any
other priority criteria. We leave the job of selecting the resources and methods to be implemented by the
wrapper program on security experts and quality experts based on their priority lists.

In the third step, the relative URIs shown in the resource model are mapped to the respective views.
Every resource in our resource model is addressable. We can get the relative URI for each resource
directly from Figure 2 that is then mapped to the respective views as shown in Listing 3.

urlpatterns = [

url (r’“kswrapper/’, views.index , name=’index’),
url (r’“kswrapper/tokens/’, views.ks_tokens, name=’'ks_token’),
url (r’“domains/’, views.domains, name=’domains_get’),
url (r’"admin/’, admin. site .urls),

Listing 3: Relative URIs and views mapping for KSWrapper

7 Applications of the Approach

Cloud security is generally associated with the use of latest technologies and security techniques to
protect applications, data and infrastructure associated with cloud computing. However, as security
technologies and techniques evolve so do the techniques used by the attackers to attack the clouds. There
is a need to consider security of cloud at the software and application level in addition to the use of latest
security-related technologies.

By using models to define behavioral interfaces for REST APIs and the approach described in this
article to generate contracts as code skeletons in a wrapper program, we can benefit from previous and
future efforts in test case generation from behavioral contracts while using a familiar and standardized
visual notation. In addition, our work complements the security technologies in providing secure cloud
by providing a continuous validation and monitoring approach for the security concerns.

The security concerns of authentication and authorization are part of behavioral contracts imple-
mented in the behavioral wrapper. The Identity service, like KeyStone of OpenStack, define role assign-

92 Securing Open Source Clouds Using Models

ments, i.e. what role does a user has on a specific project or domain [20]. However, the capabilities of
roles, i.e. what can or cannot these roles do is defined in the authorization policies defined separately
for each service in OpenStack. Different authorization policies can be defined for different services in
the same cloud environment. Using our approach, the specification of different authorization policies
along with the functional contracts can become part of behavior wrapper which can be used to validate
the security concerns in the actual cloud implementation. The contracts can thus be exploited for the
generation of test oracles and test cases can validate the implementation of a cloud. Test oracles are used
to determine whether a test has passed or failed. In the context of test case generation and test oracle
generation, we can take advantage of several efforts done previously to validate the behavior of classes
and services using contracts [8] [9].

The wrapper program with behavioral specifications can also be added as a proxy interface to the
implemented cloud to monitor its functioning and security compliance. This facilitates location of the
fault in and application by observing the conditions that are not being met and by which methods. It
can also check for any failure caused by a network fault, late delivery or if an implementation violates a
certain pre or post condition of a method.

Finally, cloud designers and developers along with security experts can use the models with usage
scenarios and security information as detailed documentation on how to use a cloud correctly.

8 Related Work

Research in using models to develop and analyze secure systems has been an active area of research
for more than a decade.The work of Nguyen et al. [18] provides a comprehensive review of efforts
done in the area of model-driven development of secure systems. Their work encompasses various
modeling approaches like UML-based approaches, UML profiles, DSLs and aspect-oriented approaches
and analyzes them for their support for model-to-code and model-to-model transformations, verification,
validation and different types of security concerns. UML has been used much to model security concerns.
Some approaches use only UML (e.g., [4], MDSE@R [6], AOMSec [11] etc.) and some use UML
profiles(e.g., SECTET [5],UMLsec[14], etc.)

In [4], Abramov et. al. present a model-driven approach to integrate access control policies on
database development. SECTET [5] provides a model-driven security approach for web services. They
also use OCL to define constraints on UML to provide access control. The approach generates XACML
policy files that provide a platform-independent policy for enforcing the access control policy. The
SECTET framework mainly addresses authorization and provides state-dependent permissions that are
not applicable to REST interfaces. UMLsec[14, 15] provides a comprehensive and consistently progress-
ing approach to formally analyze the security properties. MDSE@R [6] provides a UML profile based
approach that uses aspect-oriented programming to integrate security concerns at the runtime. AOMSec
[11] also uses aspect-oriented approach to model security mechanism and attacks to the system. A de-
tailed analysis of existing literature is out of the scope of this paper. However, compared to previous
work our work strongly relies on existing UML without the need of any new profiles. This gives the
benefit of using many well-known and mature tools with a wide user base for our approach. Our work
also caters well with the stateless nature of REST.

In our previous work [27],[26], we have investigated the problem of deriving the security require-
ments from the formal system model. The approach presented in this paper, complements this work by
bridging the gap between the security requirements and the actual code. In [16], we have proposed a
method for identifying security vulnerabilities using formal architectural model. The UML modeling

Irum Rauf & Elena Troubitsyna 93

patterns proposed in this paper can significantly facilitate constructing such models and hence, enable
the industrial adoption of the proposed technique.

9 Conclusions

Open source cloud frameworks are becoming popular as more and more enterprises are opting for private
clouds for their work amid data and network security concerns. Security experts are often looking out
for ways to assure that their security expectations from a system are met. Our approach provides security
experts with a model-driven approach that facilitates them by providing a semi-automatable approach
for validating the open source cloud environment for its security concerns like authentication and au-
thorization. We show how the security concerns can be integrated into the behavioral models of REST
services and how method contracts can be generated from them that can be later used to validate any
security loopholes in the open source software in case of frequent updates. The approach is applied on
the KeyStone component of OpenStack.

We have presented in detail the implementation of service monitor using Django web framework. We
also present the applications of our behavioral and security modeling approach along with the contract
generation methodology for cloud security. In our future work, we plan to further extend our work for
different authorization scenarios and validating cloud implementations for their security concerns.

References

[1] 20.6. urllib2 extensible library for opening URLs Python 2.7.14 documentation. https://docs.python.
org/2/library/urllib2.html. (Accessed on 18/10/2017).

[2] HTTP Authentication. http://www.httpwatch.com/httpgallery/authentication/. Accessed:
20.08.2013.

[3] Identity API v3 (CURRENT). Online at https://developer.openstack.org/api-ref/identity/v3/. Retrieved:
11.2017.

[4] Jenny Abramov, Omer Anson, Michal Dahan, Peretz Shoval & Arnon Sturm (2012): A methodology for
integrating access control policies within database development. computers & security 31(3), pp. 299-314,
doi:10.1016/j.cose.2012.01.004.

[5] MM Alam, Ruth Breu & Michael Breu (2004): Model driven security for Web services (MDS4WS).
In: Multitopic Conference, 2004. Proceedings of INMIC 2004. 8th International, IEEE, pp. 498-505,
doi:10.1109/INMIC.2004.1492930.

[6] Mohamed Almorsy, John Grundy & Amani S Ibrahim (2014): Adaptable, model-driven security en-
gineering for SaaS cloud-based applications. Automated Software Engineering 21(2), pp. 187-224,
doi:10.1007/s10515-013-0133-z.

[7] Tim Berners-Lee, Roy Fielding & Henrik Frystyk (1996): Hypertext transfer protocol-HTTP/1.0.

[8] Ilinca Ciupa & Andreas Leitner (2005): Automatic testing based on design by contract. In: Proceedings of
Net. ObjectDays, 2005, pp. 545-557, doi:10.1.1.83.7881.

[9] Guilan Dai, Xiaoying Bai, Yongbo Wang & Fengjun Dai (2007): Contract-based testing for web services.
In: Computer Software and Applications Conference, 2007. COMPSAC 2007. 31st Annual International, 1,
IEEE, pp. 517-526, doi:10.1109/COMPSAC.2007.100.

[10] Django Software Foundation (2010): Django Documentation. Online Documentation of Django 1.11.
https://www.djangoproject.com/.

https://docs.python.org/2/library/urllib2.html
https://docs.python.org/2/library/urllib2.html
http://www.httpwatch.com/httpgallery/authentication/
http://dx.doi.org/10.1016/j.cose.2012.01.004
http://dx.doi.org/10.1109/INMIC.2004.1492930
http://dx.doi.org/10.1007/s10515-013-0133-z
http://dx.doi.org/10.1.1.83.7881
http://dx.doi.org/10.1109/COMPSAC.2007.100
https://www.djangoproject.com/

94

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]
(21]

[22]

[23]

[24]
[25]

[26]

[27]

(28]

Securing Open Source Clouds Using Models

Geri Georg, Indrakshi Ray, Kyriakos Anastasakis, Behzad Bordbar, Manachai Toahchoodee & Siv Hilde
Houmb (2009): An aspect-oriented methodology for designing secure applications. Information and Software
Technology 51(5), pp. 846—864, doi:10.1016/j.infsof.2008.05.004.

A. Holovaty & J. Kaplan-Moss (2010): The Django Book. Online version of The Django Book. http:
//docs.djangoproject.com/en/1.2/.

Adrian Holovaty & Jacob Kaplan-Moss (2009): The definitive guide to Django: Web development done right.
Apress, doi:10.1007/978-1-4302-1937-8.

Jan Jiirjens (2001): Towards development of secure systems using UMLsec. In: International Conference on
Fundamental Approaches to Software Engineering, Springer, pp. 187-200, doi:10.1007/3-540-45314-8_14.
Jan Jiirjens & Pasha Shabalin (2007): Tools for secure systems development with UML. International Journal
on Software Tools for Technology Transter 9(5-6), pp. 527-544, doi:10.1007/s10009-007-0048-8.

Linas Laibinis, Elena Troubitsyna, Inna Pereverzeva, Ian Oliver & Silke Holtmanns (2016): A Formal Ap-
proach to Identifying Security Vulnerabilities in Telecommunication Networks. In: International Conference
on Formal Engineering Methods, Springer, pp. 141-158, doi:10.1007/978-3-319-47846-3_10.

Peter Mell, Tim Grance et al. (2011): The NIST definition of cloud computing. doi:10.6028/NIST.SP.800-145.

Phu H Nguyen, Max Kramer, Jacques Klein & Yves Le Traon (2015): An extensive systematic review on
the Model-Driven Development of secure systems. Information and Software Technology 68, pp. 62-81,
doi:10.1016/j.infsof.2015.08.006.

OMBG (2006): OCL, OMG Available Specification, Version 2.0.
Ken Pepple (2011): Deploying openstack. > O’Reilly Media, Inc.”.

Ivan Porres & Irum Rauf (2010): From nondeterministic UML protocol statemachines to class contracts.
In: Software Testing, Verification and Validation (ICST), 2010 Third International Conference on, IEEE, pp.
107-116, doi:10.1109/ICST.2010.62.

Ivan Porres & Irum Rauf (2011): Modeling behavioral RESTful web service interfaces in UML.
In: Proceedings of the 2011 ACM Symposium on Applied Computing, ACM, pp. 1598-1605,
doi:10.1145/1982185.1982521.

Irum Rauf & Ivan Porres (2011): Beyond CRUD. In: REST: From Research to Practice, Springer, pp. 117—
135, doi:10.1007/978-1-4419-8303-9._5.

Leonard Richardson & Sam Ruby (2008): RESTful web services. O’Reilly.

Omar Sefraoui, Mohammed Aissaoui & Mohsine Eleuldj (2012): OpenStack: toward an open-source solu-
tion for cloud computing. International Journal of Computer Applications 55(3), doi:10.5120/8738-2991.

Elena Troubitsyna (2016): An Integrated Approach to Deriving Safety and Security Requirements from Safety
Cases. In: Computer Software and Applications Conference (COMPSAC), 2016 IEEE 40th Annual, 2, IEEE,
pp- 614-615, doi:10.1109/COMPSAC.2016.58.

Elena Troubitsyna, Linas Laibinis, Inna Pereverzeva, Tuomas Kuismin, Dubravka Ilic & Timo Latvala
(2016): Towards Security-Explicit Formal Modelling of Safety-Critical Systems. In: International Conference
on Computer Safety, Reliability, and Security, Springer, pp. 213-225, doi:10.1007/978-3-319-24249-1_23.
OMG UML (2011): 2.4. 1 superstructure specification. Technical Report, document formal/2011-08-06.
Technical report, OMG.

http://dx.doi.org/10.1016/j.infsof.2008.05.004
http://docs.djangoproject.com/en/1.2/
http://docs.djangoproject.com/en/1.2/
http://dx.doi.org/10.1007/978-1-4302-1937-8
http://dx.doi.org/10.1007/3-540-45314-8_14
http://dx.doi.org/10.1007/s10009-007-0048-8
http://dx.doi.org/10.1007/978-3-319-47846-3_10
http://dx.doi.org/10.6028/NIST.SP.800-145
http://dx.doi.org/10.1016/j.infsof.2015.08.006
http://dx.doi.org/10.1109/ICST.2010.62
http://dx.doi.org/10.1145/1982185.1982521
http://dx.doi.org/10.1007/978-1-4419-8303-9_5
http://dx.doi.org/10.5120/8738-2991
http://dx.doi.org/10.1109/COMPSAC.2016.58
http://dx.doi.org/10.1007/978-3-319-24249-1_23

	1 Introduction
	2 Keystone Open Stack
	3 Overall Approach
	4 Modeling approach for SecReUM
	4.1 Resource Model:
	4.2 Behavioral Model:

	5 Generating Contracts from SecReUM
	5.1 Method Contract with Functional Requirements
	5.2 Security Requirements in OCL
	5.2.1 Authentication
	5.2.2 Authorization

	5.3 Method Contracts with Functional and Security Requirements

	6 Implementation of OpenStack and a Service Monitor
	7 Applications of the Approach
	8 Related Work
	9 Conclusions

