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In functional programming languages, the classic form ofadation is a single type constraint on
a term. Intersection types add complications: a single teay have to be checked several times
against different types, in different contexts, requiramgnotation with several types. Moreover, it is
useful (in some systems, necessary) to indicate the cantestich each such type is to be used.

This paper explores the technical design space of annogaticsystems with intersection types.
Earlier work (Dunfield and Pfenning 2004) introduazmhtextual typing annotationghich we now
tease apart into more elementary mechanisms: a “right hamadtation (the standard form), a “left
hand” annotation (the context in which a right-hand annatais to be used), anergethat allows
for multiple annotations, and an existential binder forerdiariables. The most novel element is
the left-hand annotation, which guards terms (and rigimahennotations) with a judgment that must
follow from the current context.

1 Introduction

The origin of intersection lay in the analysis of the solNigpof A-terms; the key early result was that,
in a system with— and/\, typeability and strong normalization coincide (Coppolefl881). While
pure type assignment is thus undecidable for intersectipast systems thathecktypes of lightly-
annotated programs, including systems based on bidiredtiypechecking, have had some success.
But constructing a type-checking system from a type assigmisystem is not trivial. A key issue is the
design of the annotations. The classic annotation farmA ), which merely marks a term with a single
type, fails in intersection type systems that must checlsime term several times, in different contexts.
Furthermore, in systems with indexed types, we run into lerab with the scope of index variables;
the simple mechanism of a term-level binder fails, becantgFdections can be formed from types with
different numbers of quantifiers.

For guidance, we can look to logic and the form of hypothétidgments: in" - A we have, on the
left, assumption$’ (implicitly conjoined, because we wish to make several mggions, each definite);
on the right, we have conclusiah In the sequent calculus (Gentzen 1969), the conclusioluialgand
implicitly digoined: from a conjunction of assumptions, we conclude mddion of conclusions. This
conforms to the internal duality of the sequent calculus.

The classic annotation form,: A, seems to be “on the right”. It is an obligation that consisahe
type ofe: “l insist thate have typeA, and if you cannot satisfy this demand, typechecking shtaild
(The terme might have some other tyde but unless is a subtype oA the demand is not met. Also, in
typecheckers that backtrack, like the intersection-typesckers considered in this paper, the requirement
that “typechecking should fail” means that the particulging subproblem fails—the program could
still typecheck.) Writing(e : A) does not correspond to having an assumptioA, because that would
let us assume that has typeA, even if it should not have that type. Further evidence inpsupof
right-handedness is that several systems with intersegfmes allow lists of types in annotations, and
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these lists are interpreted disjunctively, consistenhwhie sequent calculus where lists of conclusions
are interpreted disjunctively.

If the classic annotatiofe : A) is “on the right”, what form of annotation is “on the left"? i hard
to imagine an annotation that is not an obligation, or dog¢santribute to an obligation (leaving aside
the sort of annotation that is an explicit direction to igmtnuth and charge ahead, as with Hamit of
Coq (Coquand et &l. 2012) or thierustme of Twelf (Pfenning et al. 2012)).

We can, however, distinguish annotations that carry argabbn with respect to the term on the
right of the turnstile, such g% : A), from those that carry an obligation with respect to the aggions
on theleft of the turnstile. Writing such a “left-hand” annotation sayl insist on something about the
assumptions you have when you type this term, and if you dasatsfy me, give up.” Since the point
of an assumption is to help conclude things, the “somethimuithe assumptions” should be about
what those assumptions entail. The most direct entailnsethiei use of a hypothesis: lif={I1,..., T}
thenT + Ty for 1 < k <n, suggesting that we should be able to write part of a context keft-hand
annotation.

The last piece of the puzzle is a way of writing more than oigh{thand) annotation. It suffices to
support a well-behaved special case of the unnubyge construc{Dunfield 2012).

Contents We start by giving an overview of annotations in intersattigpe systems (Sectidn 2), then
describe a language whose most notable features are tHeatefguard annotation(Section 8) and a
merge construct (Sectian 4). Next, we extend that languatieindexed types (Sectidd 5); the presence
of index variables leads us to another construct (an exiatésinder for index variables). In Sectidnh 6,
we show that the features of the extended language—leftrightthand annotations, plus the merge
construct and the existential binder—collectively subsuhecontextual typing annotationgeveloped

in earlier work (Dunfield and Pfenning 2004), replacing onmplicated construct with several simpler
ones. Sectionl7 compares our approach to contextual mquis.tyFinally, we briefly discuss a prototype
implementation (Sectidn 8) and speculate on the usabilitheapproach (Sectidg 9).

2 Overview

For languages based on the ordinargalculus, the usual form of annotation is a single typejesit
around a terme(: A) or on a bound variablext : A.e). In such languages, the single type corresponds
to typing: exactly one subderivation types each subterm

In languages with intersection types, the introductior ffok intersection replicates the same term
in each premise:

2 D
FI—e:A1 FI—e:Az/\
FI—e:A1/\A2

Both 7 and 2, have as conclusion a typing fer in general, neitheAy is a subtype of the other.
In general, we need both derivations because the diffeselbeveenA; and A, can lead to structural
differences inz; and2,, and even in the contexts used insideand 2.

Assume a subtyping system in which the tyes of bitstrings is refined bydd andeven, denoting
bitstrings of odd and even parity (having an odd or even nurnbés). Appending a (writtenx - 1)
should flip the parity, so

(Ax.x-1) : (odd — even) /\ (even — odd)
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In the typing derivation, we assume odd inside the first branch of\l andx : even inside the second:

x:odd - x-1:even Xx:even - x-1:0dd
-+ (Ax.x-1): (odd — even) -+ (Ax.x-1): (even — odd)
-+ (Ax.x-1) : (odd — even) A (even — odd)

A\

This functionAx.x - 1 is very simple; assuming the goal typedd — even) /\ (even — odd) is already
known, any reasonable typechecker should handle it witannbtations inside the function body. But
more complicated code might require internal annotatiomywtay, programmers should be able to write
unnecessary annotations if they want to.

Here, there is no single type we can write for the use iof x - 1: in the left side of the derivatiorx
has typeodd, and in the right sidex has typesven. To handle this issue, several systems with intersection
types allowlists of types in annotations: Forsythe (Reynalds 1988, 1996 Rierte (1991, p. 21) allow
A arguments to be annotated with a sequence of typesodd|even.x - 1; the refinement typechecker
SML-CIDRE (Davies 2005) allows terms to be annotated wikslof types, so we could wrifex. (x :
odd,even) - 1.

Intersection type inference is undecidable, but evensetgion typecheckingis PSPACE-hard. Un-
fortunately, unlike Hindley-Milner inference, which istiactable in theory but polynomial in practice,
intersection typechecking is expensive in practice (Dloh2807a). A system should, therefore, give the
user a rich set of tools—such as annotations—to help maleshgeking practical.

Finally, in systems with indexed types and index-level afles, we need to resolve a conflict be-
tween orderly variable scoping and intersection types.

Earlier work (Dunfield and Pfenning 2004) describedoatextual typing annotatiothat combined
several features:

e contextuality guarding the type in the annotation with the context in Whignakes sense;

e multiplicity, allowing more than one typing to be given, correspondinglifierent branches of
intersection;

e index variable linking maintaining index variable scoping even with intersactpes.

We now recast the contextual typing annotation, separdtingo constituent mechanisms that col-
lectively subsume it. For contextuality, we introducguaard construct. For multiplicity, we usemerge
construct(Dunfield 2012). For index variable linking, we propose ars&ntial binder.

3 A Languagewith Guard Annotations

We'll use a small functional language with intersectiondypa merge construct, and two kinds of anno-
tations (Figuréll).

3.1 Bidirectional Typechecking

Our type system ibidirectional (Pierce and Turner 2000; Dunfield and Pfenning 2004; Dunfie);

see Dunfield (2009) for background. This technique offers tmajor benefits over Damas-Milner type
inference: it works when annotation-free inference is eithble, and it produces more localized error
messages. Unlike constraint-based type inference, btairal typechecking does not inherently require
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Types A,B,C == unit|A—>B|AAB

Terms e s=x|0O|Ax.e|lere
| (e: A) standard (“right-hand”) annotation
|[d>:>e guard (“left-hand”) annotation
| e » €2 merge

Declarations d == x:A

Contexts N:=-|NLd

Figure 1. Types, terms, declarations and contexts

unification, nor the generation or manipulation of any caists. The basic idea of bidirectional type-
checking is to separate checking of a term against a knowa frggin synthesis of an unknown type:
I' F e & A means that checks against known typ®, while " - e = A means that synthesizes type
A. In the checking judgment;, e and A are inputs to the typing algorithm. In the synthesis judgmen
" and e are inputs andA is output. As usual, declarations of the fosn A are added td" through
—-introduction (rule—l); unlike in the Damas-Milner framework, the type added @ a unification
variable but a closed type. I, the typeA comes from the typA — B that thex-expression is checked
against.

Bidirectional typechecking does need more type annotsitiban type inference. However, by fol-
lowing the approach of Dunfield and Pfenning (2004)—chegkimroduction forms (likeAx.e) and
synthesizing the types of elimination forms (likge;)—annotations are required only on redexes like
(Ax.e1)e; and recursive function declarations. The need for anmotatis thus predictable; variations
and refinements of this basic approach (such as trying thegizie the types of introduction forms) can
further reduce the volume of annotations.

While we omit parametric polymorphism from this paper touson issues specific to intersection
types, it is straightforward to support parametric polyptesm,if type abstraction and application are
explicit: givene : V. B, write e[A] to instantiatex at A. Such explicit instantiation is very inconvenient
for the programmer. It is possible, but not entirely stréigiward, to extend bidirectional typechecking
with a form of existential type variable Dunfield (2009). Fkilgorithm removes the need for explicit
instantiation, yet does not use unification, relying indtea a form of matching.

3.2 Merging

If either e; or e, has typeA, then the merge; , e, has typeA. This construct first appeared in
Forsythe [(Reynolds 1996). Used in full generality (Dunfigfl2), the merge can encode a variety
of type system features, requires an elaboration-basedrgms, and leads to ambiguity ¢f ande;
have different operational behaviour. In the presentrggttine purpose of the merge is just to let us
annotate the same term in different ways. Used in this o#strifashion, erasing annotations frem
ande, yields the same term; thus; ande, have the same operational behaviour. We discuss this point
further in Section}4.

Since the merge is neither an introduction nor an elimimattom, we can give a synthesizing rule
in addition to a checking rule; see Figlide 2.

Using a merge, the exampla.x - T from the introduction can be annotated as follows:

Ax. (x-1:even), (x-1:0dd)
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Subtypin
yping FEBi<A; THA<B,
—refl< —<
'-A<A r|—A1—>A2§B]—>Bz
'EAL<B ' A <Bj 'EA<B;
ALk < AR<
'EA;ANA2<B ''A<B;ABy
Variables,unit, —
var —— unitl
MNyx:ALhFx=A ' () < unit
Lx:AFe&B 'ree=A—B ey &A
—l —E
'EAx.e&=A—B Fl—e1e2:>B
Intersection, subsumption, merge
'ke&e Ay FI—e<:A2N F'Fe= AT ANA) E
FTFe=AlAA, MFe= Ap b
N'-e=A '-A<B Feg&E A lex=A
sub ———————— merge&y merge=yy
'-e&<B N'-e,e0&EA N'-er,e0=>A
Annotations
'Fe&s A
right-anno
' (e:A)=A
'Ex&A 'He&B 'Ex&A 'He=B
left-anno& left-anno=
I-x:A>:>e&B I'Ex:A>>e=B

Figure 2: Subtyping and typing rules

so it checks againgbdd — even) A\ (even — odd).

3.3 Guard Annotations

Checking a function against intersection type leads to timetfon body being checked several times
against different return types, and even under varyingntypiof the function's argument. The latter
motivatesguards A guardd >:> e protects a terne (say, the body of a function) with a declaration, so
that the current typing contektmust support the guarding declaratidnFor variable declarations: A,
this amounts td' - x < A.

We have both synthesis and checking typing rules for guamdsiring that guards can be placed
anywhere the user chooses.

Using guards, we can annotate the exaniplex - 1 so that the choice of branch is fully determined:

AX. (X:odd >:> (x- 1 :even)),, (x:even >:>(x-1 :odd))
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3.4 Free Annotation

Given a terme that can be typed with the bidirectional rules—that is, aténat already has enough
annotations for the typechecker—the user can freely chtmgeit in more annotations, either right-
hand annotations or guards. If different annotations aeele@@ in the subderivations ofl, the user can
duplicate the term with a merge.

4 Operational Semantics of Annotations and Merges

We are working with a bidirectional type system. For suchsiesy, the easiest way to translate the usual
notions of preservation and progress is to give an equiv&yge assignment system. That is, we want
rules derivingl”" F e : A such that:

Q) fTrFe<= A, thenl" - e: A;
(2) ifTr'Fe= A,thenl" - e:A.

To showequivalence we would also need to consider the other direction: givanesb - e : A,
can we derive appropriate bidirectional judgments? We megchnswer this question to describe the
operational semantics; see Dunfield and Pfenning (2004Hrferanswer.

4.1 Left- and Right-Hand Annotations

For standard and guard annotations, we can give a smalbptptional semantics, but we have a choice
of approaches. The first approach—standard in typed furaitianguages—is to erase the annotations,
so that the operational semantics does not mention thenh dhahis approach, we define an erasure
function|el:

x| = x

1O = 0O
Ax.e] = Ax.le|
lerer] = lerllezl

[(e: A)| = e

[d>:>e] = e

The typing rules for left- and right-hand annotations hanepses typing the inner expressieyso this
erasure function clearly preserves types. SiteeA) andd >:> e get erased, they need no reduction
rules.

The second approach is to extend the definition of values:

v = x|Ax.e| (v:A)[d>:>v

and give reduction rules that drop the annotations.

(e:A) — e d>:>e — e

As just noted, the typing rules for these constructs havenjses typinge, so we can readily extend an
existing proof of type preservation to handle these newatalurules. Moreover, progress is maintained:
if (e:A) is well-typed and not a value, thenis not a value, and we can use the induction hypothesis
on the premise typing to show that, which (e : A) steps to, is well-typed.
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42 Merges

We still have to deal with the merge construct. In this paper,are interested in merges only as an
annotation mechanism; merges, e, used for that purpose must have similar branahesnde,. That

is, e; ande; are differently-annotated versions of some unannotatedetg”e. We can apply the first
approach—erasing annotations before evaluation—by dixtgrihe definition of erasure:

leryeal = el if [er]=]ey]

If merges are indeed always used purely as an annotationamisah, the side condition will always
hold.

We can also try to apply the second approach of reducing atwes$ during evaluation, with reduc-
tion rules

€1y€2 € €ipe2 €2

These reduction rules introduce nondeterminism. If weinaetto assume, however, thgtande; are
differently-annotated versions of the same term, this eterhinism is harmless: we will end up with
the same value, no matter which rule we apply. Thus, we caulid @ane of the preceding two reduction
rules, removing the nondeterminism.

4.3 Merges Without Restriction

Giving an operational semantics to arbitrary uses of mewperee; ande, may be entirely different, is
more involved| Dunfield (2012) gives such a semantics in tartsp The first part is a system of reduction
rules, including the two above, for which the usual notiohgreservation and progress fail to hold. The
second part is an elaboration (more involved than erasar&rget terms\, which are evaluated by
a completely standard operational semantics. This eliboraanslates intersections to products (and
unions to sums); the elaborating version/sf generates a pair, and the elaborating versions\iBf
generate projections.

The central result in that paper is thaeitlaborates tévi, evaluating the target teril produces a
value W such thatthere existsome sequence of reductionseofhat yield an equivalent value—one
such that elaborates toV.

5 Extensionto Indexed Typeswith Index Variables

The above constructs collectively yield annotations thatkwvhen terms are checked repeatedly under
different contexts. But this does not quite subsume counédxyping annotations (Dunfield and Pfenning
2004), which were designed in the setting of a system witexed types as well as intersection (and
union) types, and treat index-level variables differently from term-level variables«( y, etc.).

After setting the stage with some background on indexedstyye look at two alternatives in lan-
guage design and show how our approach works for both; foobtie alternatives, one more language
construct is needed.



42 Annotations for Intersection Typechecking

Index variables a,b

Index sorts Y o= int|---

Index expressions iuo=al---

Index propositions Puo=1i=1i|---

Types A,B,C z= - |T(1) | TTaxy. A
Declarations d:=-]a:y

Figure 3: Indexed types

5.1 Indexed Types

The kind of indexed types we consider here is exemplified byL i and Pfenning 1999; Xi 1998),
and some of its descendants (Dunfield and Pfenning 2003, Pfg#ield 2007b), which added several
features, most notably intersection and union types. Isdlsystems, users can index datatypes with
index expressionsom a constraint domain with decidable equality (at leaBkle canonical example of
such a domain is linear inequalities over integers; dinmss(metres, seconds, etc.) form another useful
domain (Dunfield 2007a).

In contrast to dependent types, indices do not appear inster(except within annotations) and
disappear completely during compilation; terensan never appear in indices. Indexed type systems are
parametric in the index domain.

We mostly follow (Figureé B) the notation of Dunfield and Pfangn(2004). Index expressionsave
index sortsy (e.g.int or dim); a andb are index-level variables standing for index expressi@rstands
for propositions over index expressions, such as equélityypes are extended with indexed datatypes
1(1) (Wwheret is some inductive datatypit, tree, etc.) and universal quantification over index variables.
(The use ofT is traditional and, to readers used to dependent typeshbagiivantage of suggesting the
appropriate quantifier, with the disadvantage of beingleasnfused with a genuine dependénj In
practice, we also need existential quantificatbomy. A, which we omit since it has no effect on the
techniques described in this paper.

We assume that the constraint domain defines when two kinfilglgients are derivabld’ - P
(index assumptions it entail index propositio?) andT" - i:vy (index expressiori, which might
include index variables declaredlinhas index sor). The only mandatory syntax in an index domain
is =, which is needed for subtyping. In practice, the index esgimsi might include literal integers
and operations liké+ 1; the index propositions would include comparisons iikei.

Practical bidirectional typechecking with indexed typasjke bidirectional typing for the language
in previous sections of this paper, does involve conssairtiowever, these constraints are just over
index expressions, not types, so the basic structure ofithettional approach need not change. For a
discussion of the techniques involved, see Xi (1998) andfiblan(2007Dh).

5.2 Indexed Types Without Binders

The most syntactically economical formulation of indexgpels does not extend the term syntax at all
(apart from the extension of the type language, which chatigge syntax of annotations). Its subtyping
and typing rules are shown in Figure 4. Implicitly, we asstthv TTR< andTTl rename the variable
introduced into the context if it already occurslin

Is that the end of the story? No. We have actually introducseri@us problem: What does it mean
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i =1 iy '-[i/a]A<B Lb:yFALB
: —_iLR< ML< TIR<
e t(i) <7t(iyp) ' Tay.A<B ' A<TIb:y.B

Na:yFe& A - N'Fe=Tlay.A iy
N'ke&sTlay. A N-e<[i/adA

Figure 4: Subtyping and typing for indexed types (without term-ldvielders)

iy ' [i/ble = A iy Ik [i/ble= A
'Hsomeb:y.e&< A '-someb:y.e= A

Figure 5: Typing for thesome binder

to mention an index variable in an annotation when there are no term-level binders? Thetbimg
that bindsa is TT, and the scope of the bindBra:y. A is just A. And what if the implicit condition in
TTR< andTTl is triggered and we have to rename the variable? The usedveuunable to refer to the
variable in annotations.

One way to solve this is to introduce an odd sort of bindingstaret, some a’ : y. e, which binds
its variablea’ to some unwritten index expression—one chosen by the tyofeh to make everything
work out. An example:

(Ax....(someb:y.x:list(bx2) >:>e)...) & Maint.list(a2) — list(a)

Within the inner terme, we can write (right-hand) annotations that mentiorthe typechecker chooses
b to bea, which satisfies the guard conditian& list(b * 2).

The typing rules in Figuré]5 substitute an indefor b in e, wherei is well-sorted in the actual
contextl". Thus, all annotations that mentibrwill be renamed so they make sense uddeFhese rules
do not requirel to be a variable: the following code is acceptable, choostoghea * 2.

(?\x. ...(someb:y.x:list(b) >:>e) ) & Tlacint.list(a*2) — list(a)

Non-renaming substitutions achieve a measure of robustribe type being checked against can, in
some circumstances, change without requiring changeseimal annotations.

5.3 Indexed Types With Binders

Alternatively, we can have an explicit term-level introtdan form forTTa:y. A:

Lb:yFe& A
'FAb:y.e&<A

TTl-explicit

Dunfield and Pfenning (2004) did not take this route, becaypsimg would fail for intersections of
differently-quantified types. For example, the first comjuaf (TTa:y.A — A’) A (B — B’) can type
a term if it has a binder (foa), but the second conjunct cannot type a term with a bindacédi — B’
has nadlT). With our merge construct, we can write the term twice, vaitidl without a binder.
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iy (i/alTy F [i/a]Ag) S (THA)
<-empty <-ivar
(FA)S(TEA) (aryo,To = Ag) S (TEA)

FET(x)<By (ToF Ag) < (THA)
(X Bo,ro F Ao) (F F A)

<-pvar

MFA)S(THFA) ThesA
N'e(e:...,(To F Ap)y... ) = A

ctx-anno

Figure 6: Rules for contextual typing annotations

trans(x) = x
trans(O) = O
trans(Ax.e) = Ax.trans(e)
trans(eje;) = trans(ep) trans(e;)
trans(e: (IMFA1),...,(ThFAL)) = trans(lT F Aq),, ..., trans(I F Ay)

wheretrans(dy,...,dn F A)=d; >:>...d, >:> (trans(e) : A)

Figure 7: Translating contextual typing annotations

5.4 Free Annotation Revisited

Whether we haveome binders orA binders, we maintain the property mentioned in Sedtioh thé:
user can always add an extra annotation if desired.

o If we havesome, the user will need to add some binder for any index variable mentioned in
annotations (left- and right-hand).

¢ If we haveA and rulelTl-explicit instead offTl, the user must already have put in thdorms, and
can refer to those bound index variables in annotations.

6 Comparison to Contextual Typing Annotations

We briefly review contextual typing annotations, introdiidxy| Dunfield and Pfenning (2004). Such an
annotation has a lisks of typings (I} - A4,..., F Ay). The typing rulectx-anno (Figurel6) chooses
a typingl, - Ap and then uses@ontextual subtyplng relatiofiy - Ap) < (I' H A), which is derivable
whenT is at least as strong dg, that is, wherl" satisfies all assumptions listed i, Declarations in
I thus should correspond to a sequence of guard annotatioaslaftions of index variables ir,
however, are treated differently: the ruieivar behaves like the typing rules for tkeme binder (Figure
[B), effectively binding variables declaredlinso they can be used .

In hindsight, contextual typing annotations combine al thechanisms in this paper—guard an-
notations, standard annotations, and merges: programblarieclarations : A in Iy correspond to a
sequence of guard annotations, the tyypecorresponds to a standard annotation, and the multiplgity
typings corresponds to merges. Translating contextuadygnnotations (Figurlg 7) preserves typing:

Theorem 1 (Encoding Contextual Typing Annotations)
If ' - e & A (resp.=) with rule ctx-anno available therl" |- trans(e’) & A (resp.=) without applying
rule ctx-anno.
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Proof. By induction on the derivation. All cases are straightfamvaxcept wherttx-anno concludes
the derivation.

In that case, apply the i.h. resultingtirans(e). This application ottx-anno uses one of the con-
textual typings, sayli F Ay) wherely = dy,...,d,; thekth branch of the merge created byins(—)
isdy>:>...dm >:> (trans(e}) : A).

By ruleright-anno, I' - trans(e))A = A.

By m applications ofeft-anno,

ME dy>:>...dy >:> (trans(e)) : A) = A

Finally, applymerge= as needed to pick out theh branch of the merge created tyns(—). O

Given that we subsume contextual typing annotations, whgtroach should be preferred when
designing a language? It is hard to give a universal answenefally speaking, simpler constructs are
better than complicated ones, but fewer constructs arerbithn many. By the former criterion, the
mechanisms proposed in this paper win; by the latter, ctuéxyping annotations win. The particular
design setting matters: if we need some of these mechaniseslyg their marginal cost is reduced.
This was the case in the work that directly inspired this paglaboration-based typing of intersections
and unions/(Dunfield 2012), where the merge construct waa@dyrpresent.

7 Comparison to Contextual Types

There are several approaches to typing open code. In oneagpcbach, contextual modal type the-
ory (Nanevski et al. 2008), the contextual typ€¥] represents data of type closed under a conte}t.
Providing a substitution for the variableshallows a term of typeA [V] to yield a term of typeA [-],
closed under the empty context—that is, a closed term.

Contextual types appear to subsume both guard annotatrmhswa use of merges. For example,
instead of the guard annotationsAr. (x rodd>:> (x-1 :even)) ” (x teven >:> (x-1 :odd)) we could
write

Ax. letr=(y-1):even[y:odd] Aodd[y:even]in
rx/y]

Checking(y - 1) against the first conjunct of the (ordinary right-hand) aation, even [y : odd], shows
that (y - 1) has typeeven wheny is substituted with a value of typedd. The second conjunct is sym-
metric. In the body of théet, we plug inx. When we check the whole function agaifstild — even) A
(even — odd), the variablex will have typeodd in one subderivation of\l, and typeeven in the other.

In each subderivation, using intersection eliminatioregiva contextual type that can be eliminated by
substitutingx for y.

Contextual types are versatile. For example, they enabie lifs the binding ofr outside the func-
tion, and instantiater with different concrete contexts (different substitusofor y : even) at several
program points. Extending typecheckers and compilers suitth types, however, is nontrivial (Pientka
2008). Introducing contextual types just to support typeatations seems extravagant. If contextual
types are already available in a language, of course, itdamalke sense to encode the annotation mech-
anisms of this paper as contextual types, or for programinessite contextual types directly.
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8 Implementation

Several of the ideas described above have been implemengdrdust, a typechecker (and compiler)
for a small language in the Standard ML tradition. In additio intersection types and indexed types,
Stardust supports union types, datasort refinements aachpaic polymorphism.

The implementation, with some examples, can be downloaded ittp://stardust.qc.com.
The syntax diverges slightly from the above presentation:

e the left-hand annotatiod >: > e is writtenwhere d do e;

e type annotations can be given separately from their birgjikgese annotations are similar to
contextual type annotations, but with the : > e syntax for variable typings;

e thesomebinder is (presently) only implemented for separate typetations on bindings, not as
an ordinary expression form.

An early version of Stardust was described_in_Dunfield (20)7aut the current version adds a
number of important features, incorporating ideas from figdm (2009/ 2012).

9 Usability

We briefly consider some practical issues around the usabflour annotation mechanisms.

The approach to bidirectional typechecking developed infl@ld and Pfenning (2004) guarantees
that right-hand annotations are needed only at redexed owsnonly, recursive function declarations).
Once the user decides to add an annotation (whether stecflyred for typechecking, or for the purpose
of documentation), the next step—of adding a merge witkHaftd annotations (or perhaps a contextual
typing annotation)—is fully determined: if the term need&ave different types under different contexts,
the user must add a merge and left-hand annotations.

The overall size of the annotations is hard to characte8nee examples of annotated programs can
be found in Xi (1998) for bidirectional typechecking wittdiexed types (but without intersections or con-
textual typings), Davies (2005) for bidirectional typeckiag of refinement types and intersection types,
and Dunfield|(2007b) for bidirectional typechecking of refiment types, indexed types, intersection and
union types. Our experience with our implementation is thahontrivial uses of intersection and union
types, the performance of typechecking becomes highlylgnaditic long before the annotations become
unacceptably long. It is difficult to see how truly complexatations could be substantially reduced: if
the annotations are complex, it is probably because thegmogpecification is nontrivial.
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