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1 Introduction

Intersection types were originally introduced as idempotent, i.e., modulo the equivalenceσ ∧σ = σ . In
fact, they have been used essentially for semantic purposes, for building filter models forλ -calculus,
where the interpretation of types as properties of terms induces naturally the idempotence property.
Recently it has been observed that, when dropping idempotency, intersection types can be used for rea-
soning about the complexity ofβ -reduction. Some results have been already obtained along this line.
Terui [15] designed a system assigning non-idempotent intersection types toλ -calculus, which can type
all and only the strongly normalizing terms, and such that the size of any derivation with subjectM is
bigger than the size of every term in theβ -reduction sequence fromM to its normal form. This property
can be used for computing a bound of every normalizingβ -reduction sequence starting fromM. A more
precise result in this direction has been obtained by Lengrand [2], who gave a precise measure of the
number ofβ -reduction steps. Namely he designed a type assignment system, where intersection is con-
sidered without idempotency, and defined the notions of measure of derivation and of principal derivation
for a given term. Then he proved that the measure of a principal derivation of a type for a normalizing
termM corresponds to the maximal length of a normalizingβ -reduction sequence forM.
In this line, we go one step forward, and use intersection types without neither idempotence nor associa-
tivity to express the functional dependence of the length ofa normalizingβ -reduction sequence from a
termM on the size ofM itself . In order to obtain such a result, we take inspirationfrom the systemSTA of
Gaboardi and Ronchi Della Rocca [6], in its turn inspired by the Soft Linear Logic of Lafont [9], which
characterizes the polynomial time computations. The resulting system allow us to give a bound on the
number of steps necessary to reduce a normalizing termM to its normal form, in the form|M|d+1, where
|M| is the size of the term, andd is a measure depending on the type derivation for it (thedepth). Since
for every normalizing term there is a type derivation with minimal depth, this bound does not depend on
a particular derivation. A preliminary type assignment of this kind has been described in [1].

Some type assignment systems without idempotency have beenalready studied in the literature, for
various purposes. Kfoury and Wells, in [8] used non-idempotent intersection in order to formalize a type
inference semi-algorithm, whose complexity has been studied in [10]. Kfoury, in [7], connected non
idempotent intersection types with linearβ -reduction. Recently non idempotent intersection types have
been used by Pagani and Ronchi Della Rocca for characterizing the solvability in the resourceλ -calculus
[12, 13]. In [5] the game semantics of a typedλ -calculus has been described in logical form using an
intersection type assignment system where the intersection is not idempotent neither commutative nor
associative. Some complexity results have been obtained byDe Carvalho in [4], using aλ -algebra
induced by non idempotent types. Recently a logical description of relational model ofλ -calculus [3]
has been designed, through a non-idempotent type assigmentsystem [14].
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2 SystemSTI

We start by introducingSTI (Soft Type assignment with Intersection), a type assignment system forλ -
calculus assigning toλ -terms non-idempotent and not associative intersection types. The system assigns
types to all and only strongly normalizing terms.

Definition 1. i) Terms ofλ -calculus are defined by the following grammar:

M ::= x | MM | λx.M

wherex ranges over a countable set ot variables. The symbol≡ denotes the syntactical equality
modulo renaming of bound variables.

ii) The reduction relation−→
β

is the contextual closure of the rule(λx.M)N → M[N/x], whereM[N/x]

is the capture-free substitution ofN to all the free occurrences ofx in M.
∗

−→
β

is the reflexive and

transitive closure of−→
β

.

iii) A term M is an instance ofN if it is obtained fromN by renaming a subset of its free variables with a
unique fresh name.

iv) The set ofSTI types is defined as follows:

A ::=a | σ → A (linear types)

σ ::=A | σ ∧ ...∧σ
︸ ︷︷ ︸

n

(n> 1) (intersection types)

wherea ranges over a countable set of type variables. Linear types are ranged over byA,B,C, inter-
section types byσ ,τ ,ρ . The connective∧ is commutative, but it is not idempotent nor associative.

The number of elements of a type is defined inductively as l(A) = 1, l(σ1∧ ...∧σn) = l(σ1)+ ...+
l(σn).

v) A context is a finite set of assumptions of the shapex : σ , wherex is a variable andσ is a type.
Variables in a context are all distinct, and contexts are ranged over byΓ,∆. dom(Γ) is the set
{x | x : σ ∈ Γ}. The intersection of contexts is given by

Γ∧∆= {x : σ | x : σ ∈Γ,x 6∈ dom(∆)}∪{x : τ | x : τ ∈∆,x 6∈ dom(Γ)}∪{x : σ ∧τ | x : σ ∈Γ,x : τ ∈∆}

while Γ,∆ represents the union of setsΓ and∆, provided thatΓ#∆, i.e. dom(Γ)∩dom(∆) = /0.

vi) The systemSTI proves sequents of the shapeΓ⊢ M : σ , whereΓ is a context,M is a term ofλ -calculus,
andσ is a type. The rules are given in Table1.

vii) Derivations are denoted byΠ,Σ. Π⊲Γ ⊢ M : σ denotes a derivationΠ with conclusionΓ ⊢ M : σ .

Some comments are in order. Since the condition on contexts in rule (→ E), terms are built in a
linear form, and an explicit multiplexor rule is present (rule (m)). This allows to control the number of
(multiple) contractions, which is responsible for the growth of the reduction time. The counterpart of the
contraction on the right side of a derivation is the rule(∧n), which is parametric inn. In doing this, we
were inspired by the Soft Linear Logic of Lafont.

Let us defineconstructivethe rules, which contribute in building the subject, i.e., either (Ax), or
(→ I) or (→ E)).
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x : A ⊢ x : A
(Ax)

Γ ⊢ M : σ x /∈ dom(Γ)
Γ,x : A ⊢ M : σ (w)

Γ,x : σ ⊢ M : A
Γ ⊢ λx.M : σ → A

(→ I) Γ ⊢ M : σ → A ∆ ⊢ N : σ Γ#∆
Γ,∆ ⊢ MN : A

(→ E)

Γ1 ⊢ M : σ1 ... Γn ⊢ M : σn n> 1
∧n

i=1Γi ⊢ M : σ1∧ ...∧σn
(∧n)

Γ,x1 : σ1, ...,xn : σn ⊢ M : τ
Γ,x : σ1∧ ...∧σn ⊢ M[x/x1, ... ,x/xn] : τ

(m)

Table 1: The type assignment system

Definition 2 (Intersection trees). Let(δ ) be a (possibly empty) sequence of applications of rules(w) and
(m). An intersection treeis a maximal (sub)proof of the shape defined inductively in the following way:

• Let the last rule ofΣ be a constructive rule . Then

Σ
Γ ⊢ M : σ (δ )

is an empty intersection tree, with conclusionΓ ⊢ M : σ and one leafΣ.

• If Σi is a (possibly empty) intersection tree (1≤ i ≤ n), then

Σi ⊲Γi ⊢ M : σi (1≤ i ≤ n)
∧n

i=1 Γi ⊢ M : σ1∧ ...∧σn
(∧n)

Γ ⊢ M′ : σ
(δ )

is an intersection tree, with conclusionΓ ⊢ M′ : σ , whereM′ is an instance ofM, Γ is a contraction
of

∧n
i=1 Γi, and its leaves are the leaves of all theΣi .

Since the(∧n) rule is the only rule building an intersection type on the right of the turnstile symbol,
it is possible to state the following, which is a key propertyfor proving the normalization bound.

Property 1 (Subject with intersection type). Let Π⊲Γ ⊢ M : σ1∧ ...∧σm with m> 1. ThenΠ ends with
a non empty intersection tree.

Proof. By induction on the shape ofΠ. If the last applied rule is(∧n), then the statement is trivially true
andδ is the empty sequence. Otherwise, the derivation needs to contain at least one application of rule
(∧n), with subjectM′, such thatM is an instance ofM′. Then this application can be followed only byδ of
rules, which can contain only applications of rule(w) or rule(m).

The substitution property holds for terms having disjoint free variables sets.

Lemma 1 (Substitution). Let Π⊲Γ,x : σ ⊢ M : τ , Σ⊲∆ ⊢ N : σ , Γ#∆ andx 6∈ dom(∆).
Then there exists S(Σ,Π) such that S(Σ,Π)⊲Γ,∆ ⊢ M[N/x] : τ .
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Proof. By induction on the shape ofΠ. The proof is trivial except for the cases of(w), (∧n) or (m).
If (w) is the last applied rule introducing a variabley 6= x, then the proof follows by induction.

Otherwise, letΠ be the proof
Π′ ⊲Γ ⊢ M : σ x /∈ dom(Γ)

Π⊲Γ,x : A ⊢ M : σ (w)

and letΣ⊲∆ ⊢ N : A. If ∆ contains only bindings of variables to linear types, thenS(Σ,Π) is the proof

Π′ ⊲Γ ⊢ M : σ
S(Σ,Π)⊲Γ,∆ ⊢ M : σ

(w)

Otherwise, let us assume, without loss of generality,∆ = ∆′,y : τ such thatA1, ... ,An are the elements of
τ , and let∆′ contain only bindings of variables to linear types. ThenS(Σ,Π) is the proof

Π′ ⊲Γ ⊢ M : σ
Γ,∆′,y1 : A1, ... ,yn : An ⊢ M : σ

S(Σ,Π)⊲Γ,∆′,y : τ ⊢ M : σ
(m)

(w)

where the sequence of applications of rule(m) is constructiongτ .
If the last applied rule is(∧n), with n> 1, thenΠ is of the shape

Π1⊲Γ1,x : σ1 ⊢ M : τ1 ... Πn ⊲Γn,x : σn ⊢ M : τn

Γ,x : σ1∧ ...∧σn ⊢ M : τ1∧ ...∧ τn
(∧n)

By Property 1,Σ is of the shape

Σ1 ⊲∆1 ⊢ N′ : σ1 ... Σn ⊲∆n ⊢ N′ : σn

∆′ ⊢ N′ : σ1∧ ...∧σn

Σ⊲∆ ⊢ N : σ1∧ ...∧σn
(δ )

(∧n)

whereδ is a sequence of applications of(w) and(m) rules, andN is an instance ofN′.
By inductive hypothesisS(Σi ,Πi)⊲Γi ,∆i ⊢ M[N′/x] : τi , sinceΓ#∆ impliesΓi#∆i for all i , soS(Σ,Π)

is given by
S(Σ1,Π1)⊲Γ1,∆1 ⊢ M[N′/x] : τ1 ... S(Σn,Πn)⊲Γn,∆n ⊢ M[N′/x] : τn

Γ,∆′ ⊢ M[N′/x] : τ1∧ ...∧ τn
(∧n)

Γ,∆ ⊢ M[N/x] : τ1∧ ...∧ τn
(δ )

If the last applied rule is(m), thenΠ is of the shape

Π′ ⊲Γ,x1 : σ1, . . . ,xn : σn ⊢ M : τ
Γ,x : σ1∧ ...∧σn ⊢ M[x/x1, ... ,x/xn] : τ

(m)

Exactly as in the previous case, we can apply Property 1 toΣ, thus obtainingΣi ⊲∆i ⊢ N′ : σi, for 1≤ i ≤ n.
Also, we must rename the variables in∆i, so that we actually get proofsΣ′

i ⊲∆′
i ⊢ N′i : σi whereN′i is an

instance ofN′ and all dom(∆′
i) are disjoint from each other; this is not a trouble as we will be able to

recover∆′ andN′ easily by a suitable sequenceρ of applications of(m) rules.
By induction we can now build

S(Σ′
1,Π

′)⊲Γ,∆′
1,x2 : σ2, ...,xn : σn ⊢ M[N′1/x1] : τ

S(Σ′
2,S(Σ

′
1,Π

′))⊲Γ,∆′
1,∆

′
2,x3 : σ3, ...,xn : σn ⊢ M[N′1/x1, ... ,N

′
2/x2] : τ

...
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S(Σ′
n,S(Σ

′
n−1, ...S(Σ

′
1,Π

′)...))⊲Γ,∆′
1, ...,∆

′
n ⊢ M[N′1/x1, ... ,N

′
n/xn] : τ

and by applying sequencesρ andδ of rule (m), we get the desired proof

Γ,∆′
1, ...,∆

′
n ⊢ M[N′1/x1, ... ,N

′
n/xn] : τ

Γ,∆′ ⊢ M[N′/x1, ... ,N
′/xn] : τ

(ρ)

S(Σ,Π)⊲Γ,∆ ⊢ M[N/x1, ... ,N/xn] : τ
(δ )

The substitution property is sufficient for proving the subject reduction property, but we need to
take into account that one step ofβ -reduction on the subject can be matched by aset of n≥ 1 parallel
simplification steps in the underlying derivation, corresponding to reducing virtual copies of the same
redex having different types.

Property 2 (Subject reduction). Π⊲Γ ⊢ M : σ andM−→
β

M′ impliesΠ′ ⊲Γ ⊢ M′ : σ .

Proof. M −→
β

M′ meansM = C[(λx.Q)N] and M′ = C[Q[N/x]], for some contextC[.]. The proof is by

induction onC[.]. Let us consider just the base case in whichC[.] = [.], i.e.,M= (λx.Q)N. Then the most
difficult case is whenΠ ends by a non empty intersection tree. Note that the shape ofM implies each leaf
Πi of the intersection tree be of the shape:

Σ′
i ⊲Γ′

i,x : σi ⊢ Q′i : Ai

Γ′
i ⊢ λx.Q′i : σi → Ai

(→ I)

Γi ⊢ λx.Qi : σi → A
(δi) Σ′′

i ⊲∆i ⊢ Ni : σi Γi#∆i

Γi ,∆i ⊢ (λx.Qi)Ni : Ai
(→ E)

where 1≤ i ≤ n, for somen > 1, (λx.Q)N is an instance of(λx.Qi)Ni , andδi is a (possibly empty)
sequence of applications of(w) and(m) rules. Since all(m) rules inδi deal with variables in dom(Γ),
sequenceδi can be delayed to obtain the proof

Σ′
i ⊲Γ′

i ,x : σi ⊢ Q′i : A

Γ′
i ⊢ λx.Q′i : σi → Ai

(→ I)
Σ′′

i ⊲∆i ⊢ Ni : σi

Γ′
i ,∆i ⊢ (λx.Q′i)Ni : Ai

(→ E)

Γi ,∆i ⊢ (λx.Qi)Ni : Ai
(δi)

By Lemma 1, there are proofsS(Σ′′
i ,Σ′

i)⊲Γi ,∆i ⊢ Qi[Ni/x], and then the result is obtained by replacing the
leafsΠi of the intersection tree byS(Σ′′

i ,Σ′
i) (1≤ i ≤ n).

Moreover the system is strongly normalizing. Formally:

Property 3 (Strong normalization). Π⊲Γ ⊢ M : σ if and only ifM is strongly normalizing.

For the right implication, the proof is obtained in the next section by observing that the measure
of Π decreases with each reduction step, and this does not dependon any particular strategy. As for
the left implication, the proof can be obtained by adapting Neergaard’s proof [11] to systemSTI. In
fact, Neergaard proved the strong normalization property for a system with rigid intersection types, i.e.
intersection without commutativity, associativity nor idempotency.
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Example 1. Here we will show an example of a derivation inSTI, aiming to clarify the behaviour on the subject
reduction in the case of a non-empy intersection tree. Let

y : A ⊢ y : A
(Ax)

⊢ λy.y : A→ A
(→ I)

z : A ⊢ z : A
(Ax)

Σ1 ⊲z : A ⊢ (λy.y)z : A
(→ E)

and

y : a ⊢ y : a
(Ax)

⊢ λy.y : a→ a
(→ I)

z : a ⊢ z : a
(Ax)

Σ2⊲z : a ⊢ (λy.y)z : a
(→ E)

whereA= a→ a.
We want to reduce the term(λx.xx)((λy.y)z) to normal form; the derivation is the following:

x1 : A ⊢ x1 : A
(Ax)

x2 : a ⊢ x2 : a
(Ax)

x1 : A,x2 : a ⊢ x1x2 : a
(→ E)

x : A∧a ⊢ xx : a
(m)

⊢ λx.xx : (A∧a)→ a
(→ I)

Σ1⊲z : A ⊢ (λy.y)z : A Σ2 ⊲z : a ⊢ (λy.y)z : a

Σ⊲z : A∧a ⊢ (λy.y)z : A∧a
(∧2)

z : A∧a ⊢ (λx.xx)((λy.y)z) : a
(→ E)

Notice that, sinceΣ ends by a non empty intersection tree, there are two “virtual“ copies of the same redex;
therefore, if we reduce the redex(λy.y)z, we get the following derivation:

x1 : A ⊢ x1 : A
(Ax)

x2 : a ⊢ x2 : a
(Ax)

x1 : A,x2 : a ⊢ x1x2 : a
(→ E)

x : A∧a ⊢ xx : a
(m)

⊢ λx.xx : (A∧a)→ a
(→ I) z : A ⊢ z : A

(Ax)
z : a ⊢ z : a

(Ax)

z : A∧a ⊢ z : A∧a
(∧2)

Π⊲z : A∧a ⊢ (λx.xx)z : a
(→ E)

where both the redexes ofΣ1 andΣ2 have been reduced.
Finally, we reduce(λx.xx)z (easy, asΠ ends with an empty intersection tree), obtaining the proof

z1 : A ⊢ z1 : A
(Ax)

z2 : a ⊢ z2 : a
(Ax)

z1 : A,z2 : a ⊢ z1z2 : a
(→ E)

z : A∧a ⊢ zz : a
(m)

Notice that, as explained in the proof for Lemma 1, the premises of rule(∧2) need to be rewritten in the
substitution so that their contexts are disjoint; the original context is then recovered by a suitable sequence of(m)
rules.

3 Normalization bound

In computing the normalization bound, we take inspiration fromSLL [9] and [6], but taking into account
the mismatch between proof simplification andβ -reduction. So here we do not use the derivation as
reduction machine, but rather as a tool for computing the number of reduction steps.

To do so, we first introduce a few necessary definitions of measures.

Definition 3 (Measures).

i) Thesize|Π| of a proofΠ is defined inductively as follows:

• if the last rule ofΠ is the axiom rule, then|Π|= 1;

• if the last rule ofΠ is a rule withn premisesΠi , then|Π|= (∑n
i=1 |Πi |)+1.
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ii) The size|M| of a termM is defined inductively as follows:

|x|= 1; |λx.M|= |M|+1; |MN|= |M|+ |N|+1.

iii) The rank of a multiplexor
Γ,x1 : σ1, ...,xn : σn ⊢ M : τ

Γ,x : σ1∧ ...∧σn ⊢ M[xi 7→ x]ni=1 : τ
(m)

is the numberk≤ n of variablesxi such thatxi ∈ FV(M). Let r be the maximum rank of a rule(m)
in Π. The rankrk(Π) of Π is the maximum between 1 andr.

iv) The degreeof a proofΠ, denoted byd(Π), is the maximal nesting of applications of the(∧n) rule
in Π, i.e. the maximal number of applications of the(∧n) rule in a path connecting the conclusion
and one axiom ofΠ.

v) Theweight W(Π, r) of Π with respect tor is defined inductively as follows:

• if (Ax) is the last applied rule, thenW(Π, r) = 1;

• if (→ I) is the last applied rule andΣ is the premise of the rule, thenW(Π, r) = W(Σ, r)+1;

• if (→E) is the last applied rule andΣ1,Σ2 are the premises of the rule, thenW(Π, r)= W(Σ1, r)+
W(Σ2, r)+1;

• if (∧n) is the last applied rule andΣ1, ...,Σn are the premises of the rule, thenW(Π, r) = r ·
maxn

i=1W(Σi, r);

• if either(w) or (m) is the last applied rule andΣ is the unique premise derivation, thenW(Π, r)=
W(Σ, r).

The previously introduced measures are related to each other as shown explicitly by the following
lemma:

Lemma 2. LetΠ⊲Γ ⊢ M : σ . Then:

i) rk(Π)≤ |M| ≤ |Π|.

ii) W(Π, r)≤ rd(Π) ·W(Π,1).

iii) W(Π,1) = |M|.

Proof. The proofs are given by induction on the shape ofΠ.

i) The most interesting case is forΠ of the shape

Σ⊲Γ,x1 : τ1, ...,xn : τn ⊢ M : σ
Π⊲Γ,x : τ1∧ ...∧ τn ⊢ M[x/x1, ... ,x/xn] : σ

(m)

By inductive hypothesis,rk(Σ)≤ |M| ≤ |Σ|.
Letk≤ nbe the number of variables in{x1, ...,xn}∩FV(M). By Definition 3,rk(Π)=max{rk(Σ),k},
k≤ |M[x/x1, ... ,x/xn]|= |M| and|Π|= |Σ|+1, therefore

• if max{rk(Σ),k)}= rk(Σ), thenrk(Π) = rk(Σ)≤ |M[x/x1, ... ,x/xn]| ≤ |Σ|+1

• if max{rk(Σ),k)}= k, thenrk(Π) = k≤ |M[x/x1, ... ,x/xn]| ≤ |Σ|+1

andrk(Π)≤ |M[x/x1, ... ,x/xn]| ≤ |Π|.
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ii) The most interesting case is forΠ of the shape

Σ1⊲Γ1 ⊢ M : σ1 ... Σn ⊲Γn ⊢ M : σn

Π⊲
∧n

i=1 Γi ⊢ M : σ1∧ ...∧σn
(∧n)

By inductive hypothesis,W(Σi, r) ≤ rd(Σi ) ·W(Σi,1) for 1≤ i ≤ n, and in particular maxni=1W(Σi, r) ≤
rmaxn

i=1d(Σi) ·maxn
i=1W(Σi ,1). Moreover, by Definition 3,W(Π, r)= r ·maxn

i=1W(Σi, r), d(Π)=maxn
i=1d(Σi)+

1 andW(Π,1) = 1·maxn
i=1W(Σi,1), therefore

r ·
n

max
i=1

W(Σi , r)≤ r · rmaxn
i=1d(Σi) ·

n
max
i=1

W(Σi,1) = rmaxn
i=1d(Σi )+1 ·

n
max
i=1

W(Σi ,1)

andW(Π, r)≤ rd(Π) ·W(Π,1).

iii) We only show the case whereΠ is of the shape

Σ1⊲Γ1 ⊢ M : σ1 ... Σn ⊲Γn ⊢ M : σn

Π⊲
∧n

i=1 Γi ⊢ M : σ1∧ ...∧σn
(∧n)

By inductive hypothesisW(Σi,1) = |M| for 1 ≤ i ≤ n. Moreover, by Definition 3,W(Π,1) = 1 ·
maxn

i=1W(Σi,1), therefore maxni=1W(Σi,1) = |M|, andW(Π,1) = |M|.

So we can give the following weighted version of Lemma 1:
Lemma 3 (Weighted substitution). Let Π⊲Γ,x : σ ⊢ M : τ andΣ⊲∆ ⊢ N : σ , with Γ#∆ andx 6∈ dom(∆).
Then S(Σ,Π)⊲Γ,∆ ⊢ M[N/x] : τ andW(S(Σ,Π), r)≤ W(Π, r)+W(Σ, r), for every r≥ max{rk(Π),rk(Σ)}.

Proof. By induction on the shape ofΠ: we will refer to the proof for Lemma 1 and show that the
condition on the measure holds. Again, most cases are trivial so we will only show the most meaningful
ones, namely(w), (∧) and(m).

If the last applied rule is(w), sinceW(S(Σ,Π), r) = W(Π′, r) = W(Π, r), the inequalityW(S(Σ,Π), r)≤
W(Σ, r)+W(Π, r) is satisfied: in fact, the sequence of rules needed to recover∆ is a sequence of(w) and
(m) rules, which do not contribute to the weigth.

If the last applied rule is(∧n), with n> 1, then, by the proof for Lemma 1,W(Π, r)= r ·maxn
i=1W(Πi, r)

andW(Σ, r)= r ·maxn
i=1W(σi , r). By inductive hypothesisS(Σi ,Πi)⊲Γi,∆i ⊢ M[N

′/x] : τi andW(S(Σi ,Πi), r)≤
W(Σi , r)+W(Πi, r) for 1≤ i ≤ n. SinceW(S(Σ,Π), r) = r ·maxn

i=1W(S(Σi ,Πi), r) ≤ r ·maxn
i=1W(Σi, r)+ r ·

maxn
i=1W(Πi , r) = W(Σ, r)+W(Π, r), the inequality is satisfied.
Let the last applied rule be(m), and letk be its rank. From the proof for Lemma 1, we can assume

{x1, ... ,xk}= FV(M)∩{x1, ... ,xn}, and moreoverW(Σ, r) = r ·maxn
i=1W(Σi , r) = r ·maxn

i=1W(Σ
′
i, r).

Let r ≥ max{rk(Π),rk(Σ)} ≥ max{rk(Σ1), ... ,rk(Σn),rk(Π′),k}. By inductionW(S(Σ′
1,Π′), r) ≤

W(Σ′
1, r) + W(Π′, r); then W(S(Σ′

2,S(Σ′
1,Π′))2, r) ≤ W(Σ′

2, r) + W(S(Σ′
1,Π′), r), and so on. By applying

substitutions from 1 throughk we getW(S(Σ′
k, ...S(Σ

′
1,Π′)), r) ≤ W(Σ′

k, r) + W(S(Σ′
k−1, ...S(Σ

′
1,Π′)), r).

By applying sequences of rulesρ and δ to S(Σ′
k, ...S(Σ

′
1,Π′)), and then a suitable sequence of(w)

and (m) rules to recover the context∆, we get the desired proof. Notice that bothρ and δ do not
contribute to the weight. By induction,W(S(Σ′

k, ...S(Σ
′
1,Π′)), r) ≤ W(Σ′

1, r) + ...+ W(Σ′
k, r)+ W(Π′, r) ≤

k ·maxk
i=1W(Σ′

i, r)+W(Π′, r). SinceW(S(Σ,Π), r) = W(S(Σ′
k, ...S(Σ

′
1,Π′)), r) andW(Π, r) = W(Π′, r),

W(S(Σ,Π), r) = W(S(Σ′
k, ...S(Σ

′
1,Π

′)), r) ≤ k ·
k

max
i=1

W(Σ′
i, r)+W(Π′, r)≤ W(Σ, r)+W(Π, r)

and the inequality is satisfied.
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Using the previous property, we can prove that the weight of aproof decreases while reducing the
subject.

Lemma 4. Π ⊲Γ ⊢ M : σ and M −→
β

M′ imply there is a derivationΠ′ ⊲Γ ⊢ M′ : σ , such that for every

r ≥ rk(Π), W(Π′, r)< W(Π, r).

Proof. As in the proof of Property 2, we consider just the base case, whenM = (λx.Q)N. Then the most
difficult case is whenΠ ends by a non empty intersection tree. We will use the same terminology as in
Property 2. Remember thatΠ′ is obtained fromΠ by replacing every subproofΠi:

Σ′
i ⊲Γ′

i,x : σi ⊢ Q′i : Ai

Γ′
i ⊢ λx.Q′i : σi → Ai

(→ I)

Γi ⊢ λx.Qi : σi → A
(δi) Σ′′

i ⊲∆i ⊢ Ni : σi

Γi ,∆i ⊢ (λx.Qi)Ni : Ai
(→ E)

by S(Σ′′
i ,Σ′

i), and leaving the intersection tree connecting all these subproofs unchanged.
By Lemma 3, for everyr ≥ rk(Π), W(S(Σ′′

i ,Σ′
i), r)≤ W(Σ′′

i , r)+W(Σ′
i, r).

SinceW(Πi , r) = W(Σ′′
i , r)+W(Σ′

i, r)+1, the proof is given.

We can now prove that both the number of normalization steps and the size of the normal form are
bounded by a function of the size of the term.

Theorem 1(Measure of reduction). Let Π⊲Γ ⊢ M : σ , and letM β -reduce toM′ in n steps. Then:

i) n < |M|d(Π)+1;

ii) |M′|< |M|d(Π)+1.

Proof. Let M −→
β

M1 −→
β

... −→
β

Mn = M′. Then, by repeatedly applying Lemma 4, there isΠi ⊲ Mi : σ

such that, for allr ≥ rk(Π), W(Πi+1, r) < W(Πi, r), for all 1≤ i ≤ n−1. Since the rank of a proof never
increases when reducing the subject, ifr = rk(Π), thenW(Πi+1, r)< W(Πi , r). Then the proof of the first
point follows.

By Lemma 2, for alli, |Mi|= W(Πi ,1). Then the proof follows again from Lemma 4.

So the exponent of the function is, in general, dependent on the term; for this reason, the bound
on the normalization procedure can easily become exponential. Nevertheless, the proof given above is
independend on a given reduction strategy.

Remark 1. One of the referees of this paper asked why we chosed the intersection as n-ary instead than
binary connective, since by the lack of associativity the typability power of the system is the same in both
cases, and binary intersection is more ”standard”. The answer is simple. We are interested not only
in typability, but in using derivations for measuring the complexity of the reduction. Consider the term
M = (λxy.yxx...x

︸ ︷︷ ︸

n

)(II ), where I= λx.x. |M|= 2n+6. The minimal depth of a derivation inSTI typing

M has depth1, and rank n, so the resulting bound for the number ofβ -reduction steps is(2n+6), while
the effective number of reductions is2n+ 1. In case of binary intersection, so modifyingSTI in order
to have only a multiplexor of rank2, the minimal derivation has depth n−1, and the resulting bound is
(2n+6)n, so becomes exponential.
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