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1 Introduction

Intersection types were originally introduced as idempbtee., modulo the equivalen@eA o = 0. In
fact, they have been used essentially for semantic purpésebuilding filter models forA-calculus,
where the interpretation of types as properties of termsded naturally the idempotence property.
Recently it has been observed that, when dropping idempgteriersection types can be used for rea-
soning about the complexity @-reduction. Some results have been already obtained ahosgjrte.
Terui [15] designed a system assigning non-idempotentsiettion types tad -calculus, which can type
all and only the strongly normalizing terms, and such thatdize of any derivation with subjetitis
bigger than the size of every term in tBereduction sequence fromto its normal form. This property
can be used for computing a bound of every normalifZageduction sequence starting framA more
precise result in this direction has been obtained by Lenthfd], who gave a precise measure of the
number off3-reduction steps. Namely he designed a type assignmeinsysthere intersection is con-
sidered without idempotency, and defined the notions of areas derivation and of principal derivation
for a given term. Then he proved that the measure of a prihdgrdvation of a type for a normalizing
termM corresponds to the maximal length of a normalizfhgeduction sequence for.

In this line, we go one step forward, and use intersectioegypithout neither idempotence nor associa-
tivity to express the functional dependence of the lengta nbrmalizingB-reduction sequence from a
termM on the size oftitself . In order to obtain such a result, we take inspirafimm the systensTA of
Gaboardi and Ronchi Della Rocca [6], in its turn inspired oy oft Linear Logic of Lafont{ ][9], which
characterizes the polynomial time computations. The tiegubystem allow us to give a bound on the
number of steps necessary to reduce a normalizing Metavits normal form, in the form|9+2, where

|M| is the size of the term, andlis a measure depending on the type derivation for it ¢eth). Since
for every normalizing term there is a type derivation witmimial depth, this bound does not depend on
a particular derivation. A preliminary type assignmentte$tkind has been described In [1].

Some type assignment systems without idempotency havedbeszay studied in the literature, for
various purposes. Kfoury and Wells, i [8] used non-iderapbintersection in order to formalize a type
inference semi-algorithm, whose complexity has been studi [10]. Kfoury, in [7], connected non
idempotent intersection types with ling@sreduction. Recently non idempotent intersection types ha
been used by Pagani and Ronchi Della Rocca for characigtizinsolvability in the resource-calculus
[12,[13]. In [B] the game semantics of a typ&ecalculus has been described in logical form using an
intersection type assignment system where the interseiioot idempotent neither commutative nor
associative. Some complexity results have been obtaineDebZarvalho in([4], using a-algebra
induced by non idempotent types. Recently a logical desonipf relational model ofA -calculus [3]
has been designed, through a non-idempotent type assigystatm [[14].
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2 SystemSTI

We start by introducin@TI (Soft Type assignment with Intersection), a type assigriragstem forA -
calculus assigning td-terms non-idempotent and not associative intersectipastyThe system assigns
types to all and only strongly normalizing terms.

Definition 1. i) Terms ofA-calculus are defined by the following grammar:
Mi=x|MM|Ax.M

wherex ranges over a countable set ot variables. The symbaolenotes the syntactical equality
modulo renaming of bound variables.

ii) The reduction relation? is the contextual closure of the ru(@x.M)N — M[N/x]|, whereM[N/x]

is the capture-free substitution tifto all the free occurrences of in M. % is the reflexive and
transitive closure of?.

iii) AtermM is an instance of if it is obtained fromN by renaming a subset of its free variables with a
unique fresh name.

iv) The set oBTI types is defined as follows:

Ai=a|o—A (linear types)
o:=A|ON..NO (n>1) (intersection types)

n

wherea ranges over a countable set of type variables. Linear typesamged over by, B, C, inter-
section types by, 7, p. The connective\ is commutative, but it is not idempotent nor associative.

The number of elements of a type is defined inductivelyigsd 1, (o1 A ... Aon) =1(01) + ... +
| (on).
v) A context is a finite set of assumptions of the shape, wherex is a variable ando is a type.

Variables in a context are all distinct, and contexts aregad over byl ,A. dom{) is the set
{x|x: 0 €Tl}. The intersection of contexts is given by

Fr\A={x:0|x:0elxgdomA)}U{x:T|x:TeAxgdomN)}U{x:0AT|x:0€l x:T€A}

while I, A represents the union of sdisandA, provided that #4, i.e. don{l") ndomA) = 0.

vi) The systerATI proves sequents of the shdpke M: o, wherel” is a contextM is a term ofA -calculus,
ando is atype. The rules are given in Talile

vii) Derivations are denoted biyl,>. M>T + M: o denotes a derivatiofl with conclusion” - M: g.

Some comments are in order. Since the condition on contextsleé (— E), terms are built in a
linear form, and an explicit multiplexor rule is presentlérgm)). This allows to control the number of
(multiple) contractions, which is responsible for the gtiowf the reduction time. The counterpart of the
contraction on the right side of a derivation is the r(ig), which is parametric im. In doing this, we
were inspired by the Soft Linear Logic of Lafont.

Let us defineconstructivethe rules, which contribute in building the subject, i.ether (Ax), or
(= 1)or(—E)).
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MrM:0 x¢domT)

x:AFx:A(AX) Mx:AFM:O W)
lx:oFM:A FrEM:o—A AFN:o T#A
FFaxn o8 Y FAFMN:A (= E)

MNMFM:071 ... ThFM:o, N>1
1 1 n n (/\n)

AL TiFEM:O1A ... A Oy

Mx1:01,...,%n:0OnFM: T
Mx:01A...AOnFMx/x1,...,x/xn]: T

(m)

Table 1: The type assignment system

Definition 2 (Intersection trees)Let(J) be a (possibly empty) sequence of applications of ridesand
(m). Anintersection treés a maximal (sub)proof of the shape defined inductively erfofiowing way:

o Let the last rule of be a constructive rule . Then

>
VRS
is an empty intersection tree, with conclusion- M : g and one leat.
e If Z; is a (possibly empty) intersection trek<{ i <n), then
SoliFM:ig (1<i<n)
T . (An)
/\i:lr| FM . Ul/\/\Gn
rv:o (0)

is an intersection tree, with conclusidn- M’ : g, whereM is an instance off, I is a contraction
of A, T, and its leaves are the leaves of all the

Since the(A) rule is the only rule building an intersection type on thétigf the turnstile symbol,
it is possible to state the following, which is a key propddyproving the normalization bound.

Property 1 (Subject with intersection typeletl I -M: 01 A ... A Oy With m> 1. Thenll ends with
a non empty intersection tree.

Proof. By induction on the shape ®f. If the last applied rule i$A\,), then the statement is trivially true
andd is the empty sequence. Otherwise, the derivation needstaiocat least one application of rule
(An), with subject’, such that is an instance af’. Then this application can be followed only Byof
rules, which can contain only applications of rgie) or rule (m). O

The substitution property holds for terms having disjoneefvariables sets.

Lemma 1 (Substitution) LetM>T,x:oFM: 7, Z>AFN: g, [#A andx ¢ dom(A).
Then there exists(8,M) such that &, M) A M[N/x]: T.
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Proof. By induction on the shape &f. The proof is trivial except for the cases @¥), (An) or (m).
If (w) is the last applied rule introducing a variabte# x, then the proof follows by induction.
Otherwise, lef1 be the proof
NeF-M:0 x¢dom{)
MNelx:AFM:O

(W)
and letx>AF N: A. If A contains only bindings of variables to linear types, t8€h 1) is the proof

I e
SZ, Ml AFM: O

(W)

Otherwise, let us assume, without loss of generality; A',y : T such that\y, ... , A, are the elements of
7, and letA’ contain only bindings of variables to linear types. TI&H, M) is the proof

MNsf-M:o
A y1:A1,...,yn:AnFM: O
SE Mol AN y:t-M: 0

(W)

where the sequence of applications of r(t® is constructiongr.
If the last applied rule i$A,), with n > 1, thenll is of the shape

Mpoly,x:oEMitg .. MpplMp,x:onEM: T,
Mx:O0NA...AORFMITIA . AT,

(An)

By Property 1 is of the shape
SicAMFN:or ... ZhapAZEN o

NFEN:OoLA...AOn 5
2>AFEN:O1A...AOp (%)

(An)

whered is a sequence of applications (@¥) and(m) rules, andi is an instance af’.
By inductive hypothesi§(Z;, M;) >, A - M[N'/x] : 1j, sincel #A impliesi#4; for all i , soS(Z, M)
is given by
S(Z]_,rll)Dr]_,A]_}_M[N//X] . T]_ S(Zn,rln)brn,An}_M[N//X] . Tn
MAFMN/x]:TiA . ATy
MAEMN/]:TiA . ATy

If the last applied rule i$m), thenl is of the shape

(An)

Mel,x1:01,...,%n.0nFM: T
Mx:01A...AOnFMx/x1,... ,x/%n]: T

(m)

Exactly as in the previous case, we can apply Propértyz] tious obtainingi>A; - N : g, for 1<i <n.
Also, we must rename the variablesAn so that we actually get proofs >Af - N/ : g; whereN; is an
instance ofi’ and all dontA{) are disjoint from each other; this is not a trouble as we wellable to
recoverA’ andN’ easily by a suitable sequenpeof applications of m) rules.

By induction we can now build

S, N> A L %0 02,y : On EMNY /%3] 0 T
S(ZIZ,S(ZQ_,HI))DF,AQ_,AIZ,X:; 203,...,Xn : Op = M[Nél./xlw-' 7N/2/X2] T
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Sz, S(2 1,2, 1)) e T A, . AL F MNY /X, .. N /0] 0 T
and by applying sequencesandd of rule (m), we get the desired proof
MA, . A MY /xq, .0 N /xn] 0 T
A FMN/xg,... N /xq] 0 T
S(Z,M)>T,AFMN/xq,... ,N/xp] i T

()
(8)

O

The substitution property is sufficient for proving the ®dbjreduction property, but we need to
take into account that one step @freduction on the subject can be matched Isetof n > 1 parallel
simplification steps in the underlying derivation, cormsging to reducing virtual copies of the same
redex having different types.

Property 2 (Subject reduction)F +M: o andM ? M impliesM’'>F =M : 0.

Proof. M - M meansM = C[(Ax.Q)N] andM = C[Q[N/x]], for some contexCl[.]. The proof is by

induction onC|.]. Let us consider just the base case in wit¢h = [.], i.e.,M = (Ax.Q)N. Then the most
difficult case is wheifil ends by a non empty intersection tree. Note that the shapegblies each leaf
M; of the intersection tree be of the shape:

Zol,x:oFQ:A

MEAQ 0 — A

MEAxQ:0—A () Zi”DAiFNiZUi (E:7AV
[, 0 H (/\X.Qi)Ni LA

(= E)

where 1<i < n, for somen > 1, (Ax.Q)N is an instance ofAx.Q;)N;, and & is a (possibly empty)
sequence of applications 6fv) and (m) rules. Since allm) rules in& deal with variables in dof ),
sequence can be delayed to obtain the proof

YoM x:oFQ A
1 I 1 (—)I)
MEAQ 0 — A />N F N o
r{,Ai - (/\X.Qi/)Ni LA
I, A+ (/\X.Qi)Ni LA

(= E)

By Lemmd1, there are proo&=/, =) >, A F Qi[N; /x|, and then the result is obtained by replacing the
leafs[T; of the intersection tree b§(X!", %) (1 <i <n).

O

Moreover the system is strongly normalizing. Formally:
Property 3 (Strong normalization)M>T = M: ¢ if and only ifM is strongly normalizing.

For the right implication, the proof is obtained in the neattion by observing that the measure
of N decreases with each reduction step, and this does not deeady particular strategy. As for
the left implication, the proof can be obtained by adaptireeigaard’s proof [11] to systeSTI. In
fact, Neergaard proved the strong normalization propemtyafsystem with rigid intersection types, i.e.
intersection without commutativity, associativity noerdpotency.
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Example 1. Here we will show an example of a derivationSinI, aiming to clarify the behaviour on the subject
reduction in the case of a non-empy intersection tree. Let

—— (AX) — (AX)
ARy A raky:
s OV g A s 0 e (A
FAyy:A—A z:AFz:A FAyy:a—a z:akz:a
(= E) (= E)
ZipziAF (Ayy)z:A and Sopziak (Ayy)z:a
whereA =a — a.
We want to reduce the terfd x.xx)((Ay.y)z) to normal form; the derivation is the following:
X1 AFx1:A (AX) xp.akxp:a (éi()E)
X1:A,x0 akx1x0:a
< A raFxx a ((T))U SipziAF|(Ayy)z|:A Zzbz:aFm:a(/\>
FAxxx:(ANa)—a Zl>z:A/\aF(/\y.y)z:A/\a( E) 2
%
z:ANalk (Axxx)((Ay.y)z):a

Notice that, sinc& ends by a non empty intersection tree, there are two “vitteabpies of the same redex;
therefore, if we reduce the redéxy.y)z, we get the following derivation:

xl:AFxl:A(AX) XzZaFX2iaEﬁ()E)
x1:A,x0akFx1x0:a
: . (m) . — (AX) — — (AX)
x.ANaFxx:@a (1) z Az A z.an.a(/\z)

FAxxx:(ANa)—a z:ANaFz:AANa
(= E)
MNez:AAalk (Ax.xx)z:a

where both the redexes bf and>, have been reduced.
Finally, we reducg A x.xx)z (easy, ag1 ends with an empty intersection tree), obtaining the proof

AX

z1. Az A ( )

z1:A,zp akz1zp:a
z.ANalzz:a

: — (AX)
zz.a}—zz.a —)E)

(m)

Notice that, as explained in the proof for Lemida 1, the premis rule(A;) need to be rewritten in the
substitution so that their contexts are disjoint; the omiglicontext is then recovered by a suitable sequen¢mpf
rules.

3 Normalization bound

In computing the normalization bound, we take inspiratimmfSLL [9] and [6], but taking into account
the mismatch between proof simplification afiereduction. So here we do not use the derivation as
reduction machine, but rather as a tool for computing thebmrmof reduction steps.

To do so, we first introduce a few necessary definitions of oreas

Definition 3 (Measures)

i) Thesize|MN| of a proofl is defined inductively as follows:

e if the last rule off1 is the axiom rule, thelf| = 1;
e if the last rule off1 is a rule withn premised;, then|M| = (S, |Mi]) + 1.
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ii) The size|M| of a termM is defined inductively as follows:
x| =1; [Ax.M| = M|+ 1; |MN| = M|+ |N|+ 1.
iii) The rank of a multiplexor

Mx1:00,...,%n:0p M T
Mx:0tAAOFMx—x]L, 1T

(m)

is the numbek < n of variablesx; such that; € FV(M). Letr be the maximum rank of a rulen)
in M. The rankek(IM) of I is the maximum between 1 and

iv) The degreeof a proofll, denoted byi (), is the maximal nesting of applications of tbw,) rule

in M, i.e. the maximal number of applications of tfxe,) rule in a path connecting the conclusion
and one axiom ofF1.

v) Theweightw(,r) of M with respect ta is defined inductively as follows:
e if (AX) is the last applied rule, thei(M,r) =1,
e if (— 1) is the last applied rule ardis the premise of the rule, thei{,r) =w(Z,r) +1;
o if (— E)isthe last applied rule arih, >, are the premises of the rule, thefl,r) =w(Z1,r)+

W(Zo,r)+1;

e if (An) is the last applied rule anHy, ..., %, are the premises of the rule, theg,r) =r -
max’ , W(Zi,r);

e if either (w) or (m) is the last applied rule ariis the unique premise derivation, thigfi1,r) =
W(Z,r).

The previously introduced measures are related to eacl ashehown explicitly by the following
lemma:

Lemma 2. LetMN>I FM: g. Then:
i) k(M) < M < |M].

i) w(n,r) <rdM.w(m,1).

i)y w(m,1) =M.

Proof. The proofs are given by induction on the shapélof
i) The most interesting case is for of the shape

2ol x1:T,..,Xp: TnFM: O (m)
Nelx:T4A . AThEMx/x1,... ,x/%n] : O

By inductive hypothesisk(Z) < |M| < |Z]|.
Letk < nbe the number of variables {3, ...,xn } N"FV(M). By Definition[3,rk (M) = max{rk(Z),k},
k< M[x/x1,... ,x/xq]| = |M| and|M| = |Z| + 1, therefore
o if max{rk(Z),k)} = rk(Z), thenrk(M) = rk(Z) < |M[x/x1,... ,x/xn]| < |Z|+1
o if max{rk(Z),k)} =k, thenrk(MN) =k < |M[x/x1,... ,x/xn]| < |Z|+1
andrk(MN) < M[x/x1,... ,x/xp)| <|M].
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i) The most interesting case is fbr of the shape

2iplMiFEM:0p ... ZaplpEM:oy
N> AL TiFM:01A ... ACh

(An)

By inductive hypothesigy(Z;,r) < rd&).w(Z; 1) for 1 <i < n, and in part|cular ma{kl (Z,r) <
ML d@) . max! wz.,l) Moreover, by DefinitionBy(M,r) =r-max' ; w(Z,r) =max ;d(%)+
1andw(M,1) =1-max' ,W(Z;,1), therefore

r-malxw(Zi, ) <r.rmad maxw(Z.,l) :rmawzld(ziHLmnalxw(Zi,l)
1= 1=

andw(M,r) <rdM.y(n,1).
iii) We only show the case wheif@ is of the shape
2ipMFM:0op ... ZpelpbEM:on
Mo AL TiFM:O1A...AOn

(An)

By inductive hypothesisi(Z;,1) = |M| for 1 <i < n. Moreover, by Definitior38W(M,1) = 1-
max' ,W(%, 1), therefore mak , w(Z;,1) = (M, 1) =M.

O

So we can give the following weighted version of Lenima 1:
Lemma 3 (Weighted substitution)LetMN>I,x: o FM: TandZ>AFN: g, withT#A andx ¢ dom(A).
Then $2,M) > AFMN/x]: TandW(S(Z,M),r) <w(M,r)+Ww(Z,r), for every r> max{rk(M),rk(%)}.

Proof. By induction on the shape dfi: we will refer to the proof for Lemmall and show that the
condition on the measure holds. Again, most cases arel swiae will only show the most meaningful
ones, namelyw), (A) and(m).

If the last applied rule i$w), sincew(S(Z,M),r) =w(M’,r) =w(M,r), the inequalityw (S(Z,M),r) <
w(Z,r)+w(M,r) is satisfied: in fact, the sequence of rules needed to re¢oigea sequence dfv) and
(m) rules, which do not contribute to the weigth.

If the last applied rule i$An), with n > 1, then, by the proof for Lemma@(Mn,r) =r-max , w(M;,r)
andw(Z,r) =r-max! ,W(oj,r). By inductive hypothesis(z., e, A M /%] -1 andw(S(Z, 5),1) <
W(Zi,r)+wW(M,r) for 1 <i<n. SinceW(S(Z,M),r) =r-maXl, W(S(Zi,M),r) <r-maxl,w(Zi,r)+r
max’ , W(M;,r) =w(x,r)+w(M,r), the mequallty is satisfied.

Let the last applied rule b@n), and letk be its rank. From the proof for Lemra& 1, we can assume
{x1,...,xk} =FV(M) N {x1,... ,xn}, and moreovew(Z,r) =r-max' ; W(Zj,r) =r-max' , W(,r)

Letr > max{rk(M),rk(Z)} > maxrk(Zy),... ,rk(Zn),rk(I'I’),k}. By inductionw(S(Z,1"),r) <

W(Zp,r) + W', r); thenw(S(Z5, S(Z),M"))2,r) < W(Z5,r) +W(S(Z],M'),r), and so on. By applying
substitutions from 1 througk we getw(S(Z;,...S(Z},M")),r) < W(Z,r) + W(S(Z_q,...S(Z3,1)),r).
By applying sequences of rulgs and é to §(Z,...§%},I")), and then a suitable sequence (of)
and (m) rules to recover the conteXt, we get the desired proof. Notice that bgthand & do not
contribute to the weight. By inductioni(S(Z;,...S(%},M")),r) < W(ZL,r) + ... +W(Z,r) +w(',r) <
k-maX_ w(Z,r) +w(',r). Sincew(S(Z,M),r) = W(S(Z},...S(Z4,17)),r) andw(M,r) = w(r’,r),

WS, M), 1) = W(S(Z,,...S(2),)),r) < k- m:kalxw(zg,r) FW(,r) < W(E,r)+W(m,r)

and the inequality is satisfied.
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Using the previous property, we can prove that the weight pfoaf decreases while reducing the
subject.

Lemma 4. N> =M: 0o andM ? M imply there is a derivatiodl’>I - M : g, such that for every
r>rk(M), w(r’,r) <w(r,r).

Proof. As in the proof of Propertly]2, we consider just the base cakenw = (Ax.Q)N. Then the most
difficult case is whert1 ends by a non empty intersection tree. We will use the samaretogy as in
Property 2. Remember thal is obtained frond1 by replacing every subprodt;:

Selx:oFQ A
(=1
MEAxQ 0 — A
(&)
MEAxQ:0—A 2> N o (
_>
Fi, A F (Ax.Qi)Nj @ A

E)

by S(Z!,%{), and leaving the intersection tree connecting all thesprsalfs unchanged.
By Lemma3, for every > rk(M), W(S(Z/,Z{),r) <W(Z{,r)+W(Z,r).
Sincew(M;,r) =w(Z,r)+W(Z,r)+1, the proof is given.

O

We can now prove that both the number of normalization stepslae size of the normal form are
bounded by a function of the size of the term.

Theorem 1(Measure of reduction)LetN>I - M: g, and letM B-reduce tav’ in n steps. Then:
) n< MM+
i) (M) < |mjdM+1,

Proof. Let M ? M1 ? ? M, = M. Then, by repeatedly applying Lemrh 4, therélis-V; :

such that, for alk > rk(I), W(Mi;1,r) < W(Mj,r), for all 1 <i < n-—1. Since the rank of a proof never
increases when reducing the subject,# rk(M), thenw(M;.1,r) < w(M;,r). Then the proof of the first
point follows.
By Lemmd2, for alli, |M;j| = W(M;,1). Then the proof follows again from Lemrna 4.
U

So the exponent of the function is, in general, dependenherierm; for this reason, the bound
on the normalization procedure can easily become exp@ieMievertheless, the proof given above is
independend on a given reduction strategy.

Remark 1. One of the referees of this paper asked why we chosed theaotam as n-ary instead than
binary connective, since by the lack of associativity tipalblity power of the system is the same in both
cases, and binary intersection is more "standard”. The aesig simple. We are interested not only
in typability, but in using derivations for measuring thengglexity of the reduction. Consider the term
M= (/\xy.yw)(ll ), where |I= Ax.x. [M| = 2n-+6. The minimal depth of a derivation BTI typing

n
M has depthl, and rank n, so the resulting bound for the numbegegduction steps i§2n+ 6), while
the effective number of reductionsas+ 1. In case of binary intersection, so modifyi@@I in order
to have only a multiplexor of rang, the minimal derivation has depth-nl, and the resulting bound is
(2n+6)", so becomes exponential.
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